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Abstract. We make two contributions to the study of polite combina-
tion in satisfiability modulo theories. The first contribution is a separa-
tion between politeness and strong politeness, by presenting a polite the-
ory that is not strongly polite. This result shows that proving strong po-
liteness (which is often harder than proving politeness) is sometimes nec-
essary. The second contribution is an optimization to the polite combina-
tion method, obtained by borrowing from the Nelson-Oppen method. In
its non-deterministic form, the Nelson-Oppen method is based on guess-
ing arrangements over shared variables. In contrast, polite combination
requires an arrangement over all variables of the shared sort (not just
the shared variables). We show that when using polite combination, if
the other theory is stably infinite with respect to a shared sort, only the
shared variables of that sort need be considered in arrangements, as in
the Nelson-Oppen method. Reasoning about arrangements of variables is
exponential in the worst case, so reducing the number of variables that
are considered has the potential to improve performance significantly.
We show preliminary evidence for this in practice by demonstrating a
speed-up on a smart contract verification benchmark.

1 Introduction

Solvers for satisfiability modulo theories (SMT) [6] are used in a wide variety
of applications. Many of these applications require determining the satisfiability
of formulas with respect to a combination of background theories. In order to
make reasoning about combinations of theories modular and easily extensible,
a combination framework is essential. Combination frameworks provide mecha-
nisms for automatically deriving a decision procedure for the combined theories
by using the decision procedures for the individual theories as black boxes. To
integrate a new theory into such a framework, it then suffices to focus on the de-
coupled decision procedure for the new theory alone, together with its interface
to the generic combination framework.

In 1979, Nelson and Oppen [19] proposed a general framework for combining
theories with disjoint signatures. In this framework, a quantifier-free formula in
the combined theory is purified to a conjunction of formulas, one for each theory.
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Each pure formula is then sent to a dedicated theory solver, along with a guessed
arrangement (a set of equalities and disequalities that capture an equivalence
relation) of the variables shared among the pure formulas. For completeness [18],
this method requires all component theories to be stably infinite. While many
important theories are stably infinite, some are not, including the widely-used
theory of fixed-length bit-vectors. To address this issue and support more general
kinds of theory combination, the polite combination method was introduced by
Ranise et al. [20], and later refined by Jovanovic and Barrett [15]. In polite
combination, one theory must be polite, a stronger requirement than stable-
infiniteness, but the requirement on the other theory is relaxed: specifically,
it need not be stably infinite. The price for this generality is that unlike the
Nelson-Oppen method, polite combination requires guessing arrangements over
all variables of certain sorts, not just the shared ones. At a high level, polite
theories have two properties: smoothness and finite witnessability (these are
explained in Section 2). The polite combination theorem in [20] contained an
error, which was identified in [15]. A fix was also proposed in [15], which relies on
stronger requirements for finite witnessability. Following Casal and Rasga [11],
we call this strengthened version strong finite witnessability. A theory that is
both smooth and strongly finitely witnessable is called strongly polite.

This paper makes two contributions. First, we give an affirmative answer to
the question of whether the strengthening of the definition of finite witnessabil-
ity is necessary by giving an example of a theory that is polite but not strongly
polite. The given theory is over an empty signature and has two sorts, and was
originally studied in [11] in the context of shiny theories. Though not explic-
itly mentioned in [11], this theory could be shown to separate politeness from
strong politeness using elements already available in [11,20]. Here we state this
result explicitly and provide a direct proof, without using shiny theories. We
show that for empty signatures, at least two sorts are needed to present a polite
theory that is not strongly polite and also show that this is not the case for
finite witnessability. Second, we explore different polite combination scenarios,
where additional information is known about the theories being combined. In
particular, we improve the polite combination method for the case where one
theory is strongly polite w.r.t. a set S of sorts and the other is stably infinite
w.r.t. a subset S′ ⊆ S of the sorts. For such cases, we show that it is possible to
perform Nelson-Oppen combination for S′ and polite combination for S\S′. This
means that for the sorts in S′, only shared variables need to be considered for
the guessed arrangement, which can considerably reduce its size. We also show
that the set of shared variables can be reduced for a couple of other variations of
conditions on the theories. The proofs are based on arguments similar to those
of the original politeness proofs from [15,20]. Finally, we present a preliminary
case study using a challenge benchmark from a smart contract verification ap-
plication. For this benchmark, we show that the reduction of shared variables is
evident and significantly improves the solving time.

Related Work: Polite combination is part of a more general effort to replace
the symmetric condition in the Nelson-Oppen approach with an asymmetric
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condition. Other examples of this effort include the notions of shiny [24], para-
metric [16], and gentle [14] theories. Shiny theories were introduced by Tinelli
and Zarba [24] for mono-sorted signatures, and were extended to many-sorted
signatures by Ranise et al. [20], who also provided a sufficient condition for their
equivalence with polite theories. For the mono-sorted case, a sufficient condition
for the equivalence of shiny theories and strongly polite theories was given by
Casal and Rasga [10]. In later work [11], the same authors proposed a general-
ization of shiny theories to many-sorted signatures different from the one in [20],
and proved that it is equivalent to strongly polite theories with a decidable
quantifier-free fragment. Restricting the guessing of shared formulas to those
built over the shared variables is also known to be sufficient in other combina-
tion methods such the ones introduced by Baader and Schulz for satisfiability
problems in freely-generated structures [2,3].

The paper is organized as follows. Section 2 provides the necessary notions
from first-order logic and polite theories. Section 3 discusses the difference be-
tween politeness and strong politeness and shows they are not equivalent. Sec-
tion 4 gives the improvements for the combination process under certain condi-
tions, and Section 5 demonstrates the effectiveness of these improvements for a
challenge benchmark. Section 6 concludes with directions for further research.
[Due to space constraints, some proofs are omitted. They can be found in the ap-
pendix.]

2 Preliminaries

2.1 Signatures and Structures

We briefly review the usual definitions of many-sorted first-order logic with
equality (see [13,22] for more details). A signature Σ consists of a set SΣ (of
sorts), a set FΣ of function symbols, and a set PΣ of predicate symbols. We as-
sume SΣ , FΣ and PΣ are countable. Function symbols have arities of the form
σ1 × . . .× σn → σ, and predicate symbols have arities of the form σ1 × . . .× σn,
with σ1, . . . , σn, σ ∈ SΣ . For each sort σ ∈ SΣ , PΣ includes an equality symbol
=σ of arity σ × σ. We denote it by = when σ is clear from context. We assume
an underlying countably infinite set of variables for each sort. Terms, formulas,
and literals are defined in the usual way. For a Σ-formula φ and a sort σ, we
denote the set of free variables in φ of sort σ by varsσ(φ). This notation natu-
rally extends to varsS(φ) when S is a set of sorts. vars (φ) is the set of all free
variables in φ. We denote by QF (Σ) the set of quantifier-free Σ-formulas.

A Σ-structure is a many-sorted structure that provides semantics for the
symbols in Σ (but not for variables). It consists of a domain σA for each sort
σ ∈ SΣ , an interpretation fA for every f ∈ FΣ , as well as an interpretation PA

for every P ∈ PΣ . We further require that =σ be interpreted as the identity
relation over σA for every σ ∈ SΣ . A Σ-interpretation A is an extension of a
Σ-structure with interpretations for some set of variables. For any Σ-term α,
αA denotes the interpretation of α in A. When α is a set of Σ-terms, αA ={
xA | x ∈ α

}
. Satisfaction is defined as usual. A |= ϕ denotes that A satisfies ϕ.
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A Σ-theory T is a class of all Σ-structures that satisfy some set Ax of Σ-
sentences. For each such set Ax, we then say that T is axiomatized by Ax. A
Σ-interpretation whose variable-free part is in T is called a T -interpretation. A
Σ-formula φ is T -satisfiable if A |= φ for some T -interpretation A. A set A of
Σ-formulas is T -satisfiable if A |= φ for every φ ∈ A. Two formulas φ and ψ are
T -equivalent if they are satisfied by the same T -interpretations.

Note that for any class C of Σ-structures there is a natural theory TC that
corresponds to it, and induces the same set of satisfiable formulas: the Σ-theory
axiomatized by the set Ax of Σ-sentences that are satisfied in every structure
of C. In the examples that follow, we define theories TC implicitly by specifying
only the class C, as done in the SMT-LIB 2 standard. This can be done without
loss of generality.4

Example 1. Let ΣList be a signature of finite lists containing the sorts elem1,
elem2, and list, as well as the function symbols cons of arity elem1×elem2× list→
list, car1 of arity list → elem1, car2 of arity list → elem2, cdr of arity list → list,
and nil of arity list. The ΣList-theory TList corresponds to an SMT-LIB 2 theory
of algebraic datatypes [5,7], where elem1 and elem2 are interpreted as some sets
(of “elements”), and list is interpreted as finite lists of pairs of elements, one
from elem1 and the other from elem2. cons is a list constructor that takes two
elements and a list, and inserts the two elements at the head of the list. The
pair (car1(l), car2(l)) is the first entry in l, and cdr(l) is the list obtained from l
by removing its first entry. nil is the empty list. ut

Example 2. The signatureΣInt includes a single sort int, all numerals 0, 1, . . ., the
function symbols +, − and · of arity int× int→ int and the predicate symbols <
and ≤ of arity int× int. The ΣInt-theory TInt corresponds to integer arithmetic in
SMT-LIB 2, and the interpretation of the symbols is the same as in the standard
structure of the integers. The signature ΣBV4 includes a single sort ΣBV4 and
various function and predicate symbols for reasoning about bit-vectors (finite
sequences of bits) of length 4 (such as & for bit-wise and, constants of the form
0110, etc.). The ΣBV4-theory TBV4 corresponds to SMT-LIB 2 bit-vectors of size
4, with the expected semantics of constants and operators. ut

Let Σ1 and Σ2 be signatures, T1 a Σ1-theory, and T2 a Σ2-theory. The com-
bination of T1 and T2, denoted T1 ⊕ T2, is the class of all Σ1 ∪Σ2-structures A,
such that AΣ1 is in T1 and AΣ2 is in T2, where AΣi is the reduct of A to Σi for
i ∈ {1, 2}.

Example 3. Let TIntBV4 be TInt⊕TBV4. It is the combined theory of integers and
bit-vectors. It has all the sorts and operators from both theories. If we rename
the sorts elem1 and elem2 of ΣList to int and BV4, respectively, we can obtain a
theory TListIntBV4 defined as TIntBV4 ⊕ TList. This is the theory of lists of pairs,
where each pair consists of an integer and a bit-vector of size 4. ut

The following theorems will be useful in the sequel.

4 For further discussion on this point, see Appendix A.1.
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Theorem 1 (Theorem 9 of [22]). Let Σ be a signature, and A a set of Σ-
formulas that is satisfiable. Then there exists an interpretation A that satisfies
A, in which σA is countable whenever it is infinite.5

The following theorem from [15] is a variant of a theorem from [23].

Theorem 2 (Theorem 2.5 of [15]). For i = 1, 2, let Σi be disjoint signatures,
Si = SΣi with S = S1 ∩ S2, Ti be a Σi-theory, Γi be a set of Σi-literals, and
V = vars (Γ1)∩vars (Γ2). If there exist a T1-interpretation A, a T2 interpretation
B, and an arrangement δV of V such that: 1. A |= Γ1 ∪ δV ; 2. B |= Γ2 ∪ δV ; and
3. |Aσ| = |Bσ| for every σ ∈ S, then Γ1 ∪ Γ2 is T1 ⊕ T2-satisfiable.

2.2 Polite Theories

We now give the background definitions necessary for both Nelson-Oppen and
polite combination. In what follows, Σ is an arbitrary (many-sorted) signature,
S ⊆ SΣ , and T is a Σ-theory. We start with the basic notions of stable infinite-
ness, smoothness, and arrangements.

Definition 1 (Stably Infinite). T is stably infinite with respect to S if ev-
ery quantifier-free Σ-formula that is T -satisfiable is also satisfiable in a T -
interpretation A in which σA is infinite for every σ ∈ S.

Definition 2 (Smooth). T is smooth w.r.t. S if for every quantifier-free for-
mula φ, T -interpretation A that satisfies φ, and function κ from S to the class of
cardinals such that κ(σ) ≥

∣∣σA∣∣ for every σ ∈ S, there exists a T -interpretation

A′ that satisfies φ with
∣∣∣σA′

∣∣∣ = κ(σ) for every σ ∈ S.

Definition 3 (Arrangement). Let V be a finite set of variables whose sorts
are in S and let {Vσ | σ ∈ S} be a partition of V such that Vσ is the set of
variables of sort σ in V . A formula δ is an arrangement of V if

δ =
∧
σ∈S

(
∧

(x,y)∈Eσ

(x = y) ∧
∧

x,y∈Vσ,(x,y)/∈Eσ

(x 6= y)) ,

where Eσ is some equivalence relation over Vσ for each σ ∈ S.

We identify singleton sets with their single elements when there is no ambiguity
(e.g., when saying that a theory is smooth w.r.t. a sort σ).

We next define finite witnessability and related concepts, following the pre-
sentation in [21]. Let φ be a quantifier-free Σ-formula. A Σ-interpretation A
finitely witnesses φ for T w.r.t. S (or, is a finite witness of φ for T w.r.t. S), if
A |= φ and σA = varsσ(φ)A for every σ ∈ S. We say that φ is finitely witnessed
for T w.r.t. S if it is either T -unsatisfiable or has a finite witness for T w.r.t.
S. We say that φ is strongly finitely witnessed for T w.r.t. S if φ ∧ δV is finitely
witnessed for T w.r.t. S for every arrangement δV of V , where V is any set of

5 In [22] this was proven more generally, for ordered sorted logics.
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Statement [15] This Paper

f.w. formulas 6= s.f.w. formulas Example 3 of [15] Example 4

witness 6= strong witness Example 3 of [15] Example 5

polite 6= strongly polite — Section 3.1

1-sort, empty sig: polite = strongly polite — Section 3.2

f.w. theories 6= s.f.w. theories — Section 3.3

Fig. 1. A summary of the results regarding politeness and strong politeness. The
abbreviation (s.f.w) f.w. stands for (strong) finite witnessability.

variables whose sorts are in S. A function wit : QF (Σ) → QF (Σ) is a (strong)
witness for T w.r.t. S if for every φ ∈ QF (Σ) we have that: 1. φ and ∃−→w .wit(φ)
are T -equivalent for −→w = vars (wit(φ)) \ vars (φ); and 2. wit(φ) is (strongly)
finitely witnessed for T w.r.t. S.6

Definition 4 (Finitely Witnessable). T is (strongly) finitely witnessable
w.r.t. S if there exists a computable (strong) witness for T w.r.t. S.

Definition 5 (Polite). T is (strongly) polite w.r.t. S if it is smooth and (strong-
ly) finitely witnessable w.r.t. S.

3 Politeness and Strong Politeness

In this section we study the difference between politeness and strong politeness.
Since the introduction of strong politeness in [15], it has been unclear whether it
is indeed strictly stronger than standard politeness, that is, whether there exists
a theory that is polite but not strongly polite. We present an example of such a
theory below, answering the open question affirmatively. This result is followed
by some further analysis of notions related to politeness.

Figure 1 summarizes the results of this section and compares them to what
was already known in [15]. We first distinguish between ordinary and strong
finite witnessability of formulas, as well as ordinary and strong witness func-
tions. In [15], this distinction between formulas and functions is not made, with
a single example used to explain both (Example 3 of [15]). We elaborate on this
example in Examples 4 and 5 using the definitions in this paper and distinguish-
ing between formulas and functions. We then present a polite theory that is not
strongly polite in Section 3.1. The theory is over a signature that has two sorts
but is otherwise empty. We show in Section 3.2 that for the case of signatures
containing only sorts, two sorts are actually needed, since every polite theory is
strongly polite when its has no symbols and only one sort. Finally, we show in
Section 3.3 that this equivalence does not hold for finite witnessability alone.

6 The new variables in wit(φ) are assumed to be fresh not only with respect to φ, but
also with respect to the formula from the second theory being combined.
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We start by showing, with an example adapted from [15], that there are
finitely witnessed formulas for T w.r.t. S that are not strongly finitely witnessed
for T w.r.t. S.

Example 4. Let Σ0 be a signature with a single sort σ and no function or pred-
icate symbols, and let T0 be a Σ0-theory consisting of all Σ0-structures with at
least two elements. Let φ to be the formula x = x ∧ w = w. This formula is
finitely witnessed for T0 w.r.t. σ, but not strongly. Indeed, for δV ≡ (x = w),
φ∧ δV is not finitely witnessed for T0 w.r.t. σ: a finite witness would be required
to have only a single element and would therefore not be a T0-interpretation. ut

The next example shows that the notions of a witness and a strong witness are
not equivalent.

Example 5. TakeΣ0, σ, and T0 as in Example 4, and define wit(φ) as the function
(φ ∧ w1 = w1 ∧ w2 = w2) for fresh w1, w2. The function is a witness for T0 w.r.t.
σ. However, it is not a strong witness for T w.r.t. σ; the argument is similar to
that in Example 4. ut

Although the theory T0 in the above examples does serve to distinguish for-
mulas and functions that are and are not strong, it cannot be used to do the
same for theories themselves. This is because T0 is, in fact, strongly polite, via
a different witness function.

Example 6. The function wit ′(φ) = (φ ∧ w1 6= w2), for some w1, w2 /∈ varsσ(φ),
is a strong witness for T0 w.r.t. S, as proved in [15]. ut

A natural question, then, is whether there is a theory that can separate the two
notions of politeness. The following subsection provides an affirmative answer.

3.1 A Polite Theory that is not Strongly Polite

Let Σ2 be a signature with two sorts σ1 and σ2 and no function or predicate
symbols (except =). Let T2,3 be the Σ2-theory consisting of all Σ2-structures A
such that either

∣∣σA1 ∣∣ = 2 ∧
∣∣σA2 ∣∣ ≥ ℵ0 or

∣∣σA1 ∣∣ ≥ 3 ∧
∣∣σA2 ∣∣ ≥ 3 [11].7

T2,3 is polite, but is not strongly polite. Its smoothness is shown by extending
any given structure with new elements as much as necessary.

Lemma 1. T2,3 is smooth w.r.t. {σ1, σ2}.

For finite witnessability, consider the function wit defined as follows:

wit(φ) := φ ∧ x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ y1 = y1 ∧ y2 = y2 ∧ y3 = y3, (1)

for fresh variables x1, x2, and x3 of sort σ1 and y1, y2, and y3 of sort σ2. It can
be shown that wit is a witness for T2,3 but is not strongly finitely witnessable.

Lemma 2. T2,3 is finitely witnessable w.r.t. {σ1, σ2}.
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distinct(x1, . . . , xn) :=
∧

1≤i<j<=n

xi 6= xj

ψσ≥n := ∃x1, . . . , xn.distinct(x1, . . . , xn)

ψσ≤n := ∃x1, . . . , xn.∀y.
n∨
i=1

y = xi

ψσ=n := ψσ≥n ∧ ψσ≤n

Fig. 2. Cardinality formulas for sort σ. All variables are assumed to have sort σ.

Lemma 3. T2,3 is not strongly finitely witnessable w.r.t. {σ1, σ2}.

Notice that T2,3 can be axiomatized using the following set of axioms:{
ψσ1

≥2, ψ
σ2

≥3

}
∪ {ψσ1

=2 → ¬ψσ2
=n | n ≥ 3}

where ψσ≥k and ψσ=k are defined in Figure 2.

Remark 1. An alternative way to separate politeness from strong politeness uses
T2,3 and relies on the two different notions of shininess used in [11] and [20],
as well as their respective connections to politeness and strong politeness: T2,3
is shiny, and therefore polite [20], but is not shiny according to the stronger
definition from [11] and therefore not strongly polite [11]. However, we have
(and prefer) a direct proof based only on politeness, without a detour through
shininess.

3.2 The Case of Mono-sorted Polite Theories

Theory T2,3 includes two sorts, but is otherwise empty. In this section we show
that requiring two sorts is essential for separating politeness from strong polite-
ness in otherwise empty signatures. That is, we prove that politeness implies
strong politeness otherwise. Let Σ0 be the signature with a single sort σ and
no function or predicate symbols (except =), We start by showing that smooth
Σ0-theories have a certain form.

Lemma 4. Let T be a Σ0-theory. If T is smooth w.r.t. σ and includes at least
one finite structure, then there exists n > 0, such that T is axiomatized by ψσ≥n
from Figure 2.

Proposition 1. If T is a Σ0-theory that is polite w.r.t. σ, then it is strongly
polite w.r.t. σ.

7 In [11], the first condition is written
∣∣σA1 ∣∣ ≥ 2. We use equality as this is equivalent

and we believe it makes things clearer.
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Remark 2. We again note (as we did in Remark 1) that an alternative way to
obtain this result is via a detour through shiny theories, using [20], which intro-
duced polite theories, as well as [9], which compared strongly polite theories to
shiny theories in the mono-sorted case. Given Lemma 4 and finite witnessabil-
ity, we get that it is decidable whether a finite structure is in T . Proposition
19 of [20] then gives us that T is shiny. Similar arguments can show that T is
decidable. Then, Proposition 1 of [9] gives us that T is strongly polite.

3.3 Mono-sorted Finite witnessability

We have seen that for Σ0-theories, politeness and strong politeness are the same.
Now we show that smoothness is crucial for this equivalence, i.e., that there is
no such equivalence between finite witnessability and strong finite witnessability.
Let T ∞Even be the Σ0-theory of all Σ0-structures A such that

∣∣σA∣∣ is even or
infinite.8 Clearly, this theory is not smooth.

Lemma 5. T ∞Even is not smooth w.r.t. σ.

We can construct a witness wit for T ∞Even as follows. Let φ be a quantifier-free
Σ0-formula, and let E be the set of all equivalence relations over vars (φ) ∪ {w}
for some fresh variable w. Let even(E) be the set of all equivalence relations in
E with an even number of equivalence classes. Then, wit(φ) is φ∧

∨
e∈even(E) δe,

where for each e ∈ even(E), δe is the arrangement induced by e:∧
(x,y)∈e

x = y ∧
∧

x,y∈vars (φ)∪{w}∧(x,y)6∈e

x 6= y

It can be shown that wit is indeed a witness.

Lemma 6. T ∞Even is finitely witnessable w.r.t. σ.

Finally, we can show that T ∞Even has no strong witness, with a proof similar
to the one for Lemma 3.

Lemma 7. T ∞Even is not strongly finitely witnessable w.r.t. σ.

4 A Blend of Polite and Stably-Infinite Theories

In this section, we show that the polite combination method can be optimized
to reduce the search space of possible arrangements. In what follows, Σ1 and Σ2

are disjoint signatures, S = SΣ1 ∩ SΣ2 , T1 is a Σ1-theory, T2 is a Σ2-theory, Γ1

is a set of Σ1-literals, and Γ2 is a set of Σ2-literals.
The Nelson-Oppen procedure reduces the T1 ⊕ T2-satisfiability of Γ1 ∪ Γ2

to the existence of an arrangement δ over the set V = varsS(Γ1) ∩ varsS(Γ2),
such that Γ1 ∪ δ is T1-satisfiable and Γ2 ∪ δ is T2-satisfiable. The correctness of
this reduction relies on the fact that both theories are stably infinite w.r.t. S. In

8 Notice that T ∞Even can be axiomatized using the set {¬ψσ=2n+1 | n ∈ N}.
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contrast, the polite combination method only requires a condition (namely strong
politeness) from one of the theories, while the other theory is unrestricted and,
in particular, not necessarily stably infinite. In polite combination, the T1 ⊕ T2-
satisfiability of Γ1 ∪ Γ2 is again reduced to the existence of an arrangement δ,
but over a different set V ′ = varsS(wit(Γ2)), such that Γ1 ∪ δ is T1-satisfiable
and wit(Γ2) ∪ δ is T2-satisfiable, where wit is a strong witness for T2 w.r.t. S.
Thus, the flexibility offered by polite combination comes with a price. The set
V ′ is potentially larger than V as it contains all variables with sorts in S that
occur in wit(Γ2), not just those that also occur in Γ1. Since the search space
of arrangements over a set grows exponentially with its size, this difference can
become crucial. If T1 happens to be stably infinite w.r.t. S, however, we can fall
back to Nelson-Oppen combination and only consider variables that are shared
by the two sets. But what if T1 is stably infinite only w.r.t. to some proper subset
S′ ⊂ S? Can this knowledge about T1 help in finding some set V ′′ of variables
between V and V ′, such that we need only consider arrangements of V ′′? In this
section we prove that this is possible by taking V ′′ to include only the variables
of sorts in S′ that are shared between Γ1 and wit(Γ2), and all the variables of
sorts in S \ S′ that occur in wit(Γ2). We also identify several weaker conditions
on T2 that are sufficient for the combination theorem to hold.

4.1 Refined Combination Theorem

To put the discussion above in formal terms, we recall the following theorem.

Theorem 3 ([15]). If T2 is strongly polite w.r.t. S with a witness wit, then
the following are equivalent: 1. Γ1 ∪Γ2 is (T1⊕T2)-satisfiable; 2. there exists an
arrangement δV over V , such that Γ1 ∪ δV is T1-satisfiable and wit(Γ2) ∪ δV is
T2-satisfiable, where V =

⋃
σ∈S Vσ, and Vσ = varsσ(wit(Γ2)) for each σ ∈ S.

Our goal is to identify general cases in which information regarding T1 can
help reduce the size of the set V . We extend the definitions of stably infinite,
smooth, and strongly finitely witnessable to two sets of sorts rather than one.
Roughly speaking, in this extension, the usual definition is taken for the first
set, and some cardinality-preserving constraints are enforced on the second set.

Definition 6. Let Σ be a signature, S1, S2 two disjoint subsets of SΣ, and T a
Σ-theory.
T is (strongly) stably infinite w.r.t. (S1, S2) if for every quantifier-free Σ-

formula φ and T -interpretation A satisfying φ, there exists a T -interpretation B
such that B |= φ, |σB| is infinite for every σ ∈ S1, and |σB| ≤ |σA| (|σB| = |σA|)
for every σ ∈ S2.
T is smooth w.r.t. (S1, S2) if for every quantifier-free Σ-formula φ, T -

interpretation A satisfying φ, and function κ from S1 to the class of cardinals
such that κ(σ) ≥

∣∣σA∣∣ for each σ ∈ S1, there exists a T -interpretation B that

satisfies φ, with
∣∣σB∣∣ = κ(σ) for each σ ∈ S1, and with

∣∣σB∣∣ infinite whenever∣∣σA∣∣ is infinite for each σ ∈ S2.
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T is strongly finitely witnessable w.r.t. (S1, S2) if there exists a computable
function wit : QF (Σ) → QF (Σ) such that for every quantifier-free Σ-formula
φ: 1. φ and ∃−→w . wit(φ) are T -equivalent for −→w = vars (wit(φ)) \ vars (φ); and
2. for every T -interpretation A and arrangement δ of any set of variables whose
sorts are in S1, if A satisfies wit(φ) ∧ δ, then there exists a T -interpretation B
that finitely witnesses wit(φ)∧δ w.r.t. S1 and for which

∣∣σB∣∣ is infinite whenever∣∣σA∣∣ is infinite, for each σ ∈ S2.

Our main result is the following.

Theorem 4. Let Ssi ⊆ S and Snsi = S \ Ssi . Suppose T1 is stably infinite
w.r.t. Ssi and one of the following holds:

1. T2 is strongly stably infinite w.r.t. (Ssi , Snsi) and strongly polite w.r.t. Snsi

with a witness wit.
2. T2 is stably infinite w.r.t. (Ssi , Snsi), smooth w.r.t. (Snsi , Ssi), and strongly

finitely witnessable w.r.t. Snsi with a witness wit.
3. T2 is stably infinite w.r.t. Ssi and both smooth and strongly finitely-witnessable

w.r.t. (Snsi , Ssi) with a witness wit.

Then the following are equivalent: 1. Γ1∪Γ2 is (T1⊕T2)-satisfiable; 2. There ex-
ists an arrangement δV over V such that Γ1∪δV is T1-satisfiable, and wit(Γ2)∪δV
is T2-satisfiable, where V =

⋃
σ∈S Vσ, with Vσ = varsσ(wit(Γ2)) for every

σ ∈ Snsi and Vσ = varsσ(Γ1) ∩ varsσ(wit(Γ2)) for every σ ∈ Ssi .

The proof of this theorem is provided in Section 4.2, below. Figure 3 is a
visualization of the claims in Theorem 4. The theorem considers two variants
of strong finite witnessability, two variants of smoothness, and three variants of
stable infiniteness. For each of the three cases of Theorem 4, Figure 3 shows
which variant of each property is assumed. The height of each bar corresponds
to the strength of the property. In the first case, we use ordinary strong finite
witnessability and smoothness, but the strongest variant of stable infiniteness;
in the second, we use ordinary strong finite witnessability with the new variants
of stable infiniteness and smoothness; and for the third, we use ordinary stable
infiniteness and the stronger variants of strong finite witnessability and smooth-
ness. The order of the bars corresponds to the order of their usage in the proof of
each case. The stage at which stable infiniteness is used determines the required
strength of the other properties: whatever is used before is taken in ordinary
form, and whatever is used after requires a stronger form.

Going back to the standard definitions of stable infiniteness, smoothness, and
strong finite witnessability, we get the following corollary by using case 1 of the
theorem and noticing that smoothness w.r.t. S implies strong stable infiniteness
w.r.t. any partition of S.

Corollary 1. Let Ssi ⊆ S and Snsi = S \ Ssi . Suppose T1 is stably infinite
w.r.t. Ssi and T2 is strongly finitely witnessable w.r.t. Snsi with a witness wit
and smooth w.r.t. Ssi ∪ Snsi . Then, the following are equivalent: 1. Γ1 ∪ Γ2 is
(T1⊕T2)-satisfiable; 2. there exists an arrangement δV over V such that Γ1∪ δV

11



Case 1 Case 2 Case 3

regular

medium

strong

strong finite witnessability smoothness stable infiniteness

Fig. 3. Theorem 4. The height of each bar corresponds to the strength of the
property. The bars are ordered according to their usage in the proof.

is T1-satisfiable and wit(Γ2) ∪ δV is T2-satisfiable, where V =
⋃
σ∈S Vσ, with

Vσ = varsσ(wit(Γ2)) for each σ ∈ Snsi and Vσ = varsσ(Γ1)∩ varsσ(wit(Γ2)) for
each σ ∈ Ssi .

Finally, the following result, which is closest to Theorem 3, is directly ob-
tained from Corollary 1, since the strong politeness of T2 w.r.t. Ssi ∪Snsi implies
that it is strongly finitely witnessable w.r.t. Snsi and smooth w.r.t. Ssi ∪ Snsi .

Corollary 2. Let Ssi ⊆ S and Snsi = S \ Ssi . If T1 is stably infinite w.r.t. Ssi

and T2 is strongly polite w.r.t. S with a witness wit, then the following are
equivalent: 1. Γ1 ∪ Γ2 is (T1 ⊕ T2)-satisfiable; 2. there exists an arrangement
δV over V such that Γ1 ∪ δV is T1-satisfiable and wit(Γ2) ∪ δV is T2-satisfiable,
where V =

⋃
σ∈S Vσ, with Vσ = varsσ(wit(Γ2)) for each σ ∈ Snsi and Vσ =

varsσ(Γ1) ∩ varsσ(wit(Γ2)) for each σ ∈ Ssi .

Note that a direct proof of Corollary 2 can be obtained by revising the proof
of Theorem 3 in [15,20], taking into account the stable infiniteness of T1. Here,
we obtain it as a corollary of the more general Theorem 4 and Corollary 1.

Compared to Theorem 3, Corollary 2 partitions S into Ssi and Snsi and
requires that T1 be stably infinite w.r.t. Ssi . The gain from this requirement is
that the set Vσ is potentially reduced for σ ∈ Ssi . Note that unlike Theorem 4
and Corollary 1, Corollary 2 has the same assumptions regarding T2 as the
original Theorem 3 from [15]. We show its potential impact in the next example.

Example 7. Consider the theory TListIntBV4 from Example 3. Let Γ1 be x =
5 ∧ v = 0000 ∧ w = w & v, and let Γ2 be a0 = cons(x, v, a1) ∧

∧n
i=1 ai =

cons(yi, w, ai+1). Using the witness function wit from [21], wit(Γ2) = Γ2. The
polite combination approach reduces the TListIntBV4-satisfiability of Γ1 ∧ Γ2 to
the existence of an arrangement δ over {x, v, w} ∪ {y1, . . . , yn}, such that Γ1 ∧ δ
is TIntBV4-satisfiable and wit(Γ2) ∧ δ is TList-satisfiable. Corollary 2 shows that
we can do better. Since TIntBV4 is stably infinite w.r.t. {int}, it is enough to
check the existence of an arrangement over the variables of sort BV4 that occur
in wit(Γ2), together with the variables of sort int that are shared between Γ1 and

12



Γ2. This means that arrangements over {x, v, w} are considered, instead of over
{x, v, w}∪{y1, . . . , yn}. As n becomes large, standard polite combination requires
considering exponentially more arrangements, while the number of arrangements
considered by our combination method remains the same. ut

4.2 Proof of Theorem 4

The left-to-right direction is straightforward, using the reducts of the satisfy-
ing interpretation of Γ1 ∪ Γ2 to Σ1 and Σ2. We now focus on the right-to-left
direction, and begin with the following lemma, which strengthens Theorem 1,
obtaining a many-sorted Löwenheim-Skolem Theoerm, where the cardinality of
the finite sorts remains the same.

Lemma 8. Let Σ be a signature, T a Σ-theory, ϕ a Σ-formula, and A a T -
interpretation that satisfies φ. Let SΣ = Sfin

A ] S
inf
A , where σA is finite for

every σ ∈ Sfin
A and σA is infinite for every σ ∈ Sinf

A . Then there exists a T -

interpretation B that satisfies ϕ such that
∣∣σB∣∣ =

∣∣σA∣∣ for every σ ∈ Sfin
A and

σB is countable for every σ ∈ Sinf
A .

The proof of Theorem 4 continues with the following main lemma.

Lemma 9 (Main Lemma). Let Ssi ⊆ S and Snsi = S \ Ssi , Suppose T1
is stably infinite w.r.t. Ssi and that one of the three cases of Theorem 4 holds.
Further, assume there exists an arrangement δV over V such that Γ1 ∪ δV is
T1-satisfiable, and wit(Γ2)∪ δV is T2-satisfiable, where V =

⋃
σ∈S Vσ, with Vσ =

varsσ(wit(Γ2)) for each σ ∈ Snsi and Vσ = varsσ(Γ1) ∩ varsσ(wit(Γ2)) for each
σ ∈ Ssi . Then, there is a T1-interpretation A that satisfies Γ1 ∪ δV and a T2-
interpretation B that satisfies wit(Γ2) ∪ δV such that

∣∣σA∣∣ =
∣∣σB∣∣ for all σ ∈ S.

Proof : Let ψ2 := wit(Γ2). Since T1 is stably infinite w.r.t. Ssi , there is a T1-
interpretation A satisfying Γ1 ∪ δV in which σA is infinite for each σ ∈ Ssi .
By Theorem 1, we may assume that σA is countable for each σ ∈ Ssi . We
consider the first case of Theorem 4 (the others are omitted due to space con-
straints). Suppose T2 is strongly stably infinite w.r.t. (Ssi , Snsi) and strongly
polite w.r.t. Snsi . Since T2 is strongly finitely-witnessable w.r.t. Snsi , there
exists a T2-interpretation B that satisfies ψ2 ∪ δV such that σB = V Bσ for
each σ ∈ Snsi . Since A and B satisfy δV , we have that for every σ ∈ Snsi ,∣∣σB∣∣ =

∣∣V Bσ ∣∣ =
∣∣V Aσ ∣∣ ≤ ∣∣σA∣∣. T2 is also smooth w.r.t. Snsi , and so there ex-

ists a T2-interpretation B′ satisfying ψ2 ∪ δV such that
∣∣∣σB′

∣∣∣ =
∣∣σA∣∣ for each

σ ∈ Snsi . Finally, T2 is strongly stably infinite w.r.t. (Ssi , Snsi), so there exists
a T2-interpretation B′′ that satisfies ψ2 ∪ δV such that σB

′′
is infinite for each

σ ∈ Ssi and
∣∣∣σB′′

∣∣∣ =
∣∣∣σB′

∣∣∣ =
∣∣σA∣∣ for each σ ∈ Snsi . By Lemma 8, we may

assume that σB
′′

is countable for each σ ∈ Ssi . Thus,
∣∣∣σB′′

∣∣∣ =
∣∣σA∣∣ for each

σ ∈ S. ut

13



We now conclude the proof of Theorem 4. Lemma 9 gives us a T1 interpre-
tation A such that A |= Γ1 ∪ δV and a T2 interpretation B with B |= ψ2 ∪ δV ,
and

∣∣σA∣∣ =
∣∣σB∣∣ for each σ ∈ S. Now, take Γ ′1 := Γ1 ∪ δV and Γ ′2 := ψ2 ∪ δV .

Then, Vσ = varsσ(Γ ′1) ∩ varsσ(Γ ′2) for each σ ∈ S. Clearly, A |= Γ ′1 ∪ δV and
B |= Γ ′2 ∪ δV . Also, |σA| = |σB| for each σ ∈ S. By Theorem 2, Γ ′1 ∪ Γ ′2 is
T1⊕ T2-satisfiable. In particular, Γ1 ∪ {ψ2} is T1⊕ T2-satisfiable, and hence also
Γ1∪{∃wψ2}, where w = vars (wit(Γ2))\vars (Γ2). Finally, recall that ∃wwit(Γ2)
is T2-equivalent to Γ2, and hence Γ1 ∪ Γ2 is T1 ⊕ T2-satisfiable. ut

5 Preliminary Case Study

The optimization to the polite combination method presented in Section 4 was
motivated by a set of smart contract verification benchmarks. We obtained these
benchmarks by applying the open-source Move Prover verifier [25] to smart
contracts found in the open-source Diem project [12]. The Move prover is a
formal verifier for smart contracts written in the Move language [8] and was
designed to target smart contracts used in the Diem blockchain [1]. It works via
a translation to the Boogie verification framework [17], which in turn produces
SMT-LIB 2 benchmarks that are dispatched to SMT solvers. The benchmarks we
obtained involve datatypes, integers, Booleans, and quantifiers. Our case study
began by running CVC4 [4] on the benchmarks. For most of the benchmarks
that were solved by CVC4, theory combination took a small percentage of the
overall runtime of the solver, accounting for 10% or less in all but 1 benchmark.
However, solving that benchmark took 81 seconds, of which 20 seconds was
dedicated to theory combination.

We implemented an optimization to the datatype solver of CVC4 based on
Corollary 2. With the original polite combination method, every term that orig-
inates from the theory of datatypes with an integer, Boolean, or uninterpreted
sort is shared with the other theories, triggering an analysis of the arrangements
of these terms. In our optimization, we limit the sharing of such terms to those
of Boolean sort. In the language of Corollary 2, T1 is the combined theory of
Booleans, uninterpreted functions, and integers, which is stably infinite w.r.t.
the uninterpreted sorts and the integer sort. T2 is an instance of the theory of
datatypes, which is strongly polite w.r.t its element sorts, which in this case
include all the sorts of T1.

A comparison of an original and optimized run on the difficult benchmark is
shown in Figure 4. As shown, the optimization reduces the total running time
by 75%, and the time spent on theory combination in particular by 91%, from
20 seconds to 3 seconds. To further isolate the effectiveness of our optimization
on this benchmark, we report metrics on the number of terms that each theory
solver involved in this problem considered. In CVC4, constraints are not flat-
tened, and so CVC4 deals with shared terms instead of shared variables. Also,
each theory solver maintains its own data structure for tracking equality and
congruence information. These data structures contain terms belonging to the
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total (s) comb (s) DT INT UFB shared

optimized 34.9 3.4 236.1 212.1 78.4 125.8

original 81.5 20.3 116.0 281.0 123.9 163.5

Fig. 4. Running times (in seconds) and number of terms (in thousands) added to
the equality data structures of different theories (DT, INT, UFB), as well as the
number of shared terms (shared).

theory that either come from the input assertions or are shared (i.e., sent from
another theory). A data structure is also maintained that contains all shared
terms belonging to any theory. The last 4 columns of Figure 4 count the num-
ber of times (in thousands) a term was added to the equality data structure
for the theory of datatypes (DT), integers (INT), and uninterpreted functions
and Booleans (UFB), as well as to the the shared term data structure (shared).
With the optimization, the datatype theory solver keeps more inferred asser-
tions internally, which leads to an increase in the number of additions of terms
to its internal data structure. However, by sharing fewer terms, the number of
terms in the data structures for the other theories is reduced. Moreover, while
the total number of terms considered by the three theories remains roughly the
same (526.7 for optimized and 521.0 for original), the number of shared terms
decreases by 24%, from 163.5 to 125.8. This suggests that in the two runs of this
benchmark, although the workload on the individual theory solvers is roughly
similar, a decrease in the number of shared terms in the optimized run results in
a significant improvement in the overall runtime. Although our evidence is only
anecdotal at the moment, we believe this benchmark is highly representative of
the potential benefits of our optimization.

6 Conclusion

This paper makes two contributions: first, we separated politeness and strong
politeness, which shows that sometimes, the (typically harder) task of finding
a strong witness is necessary. Then, we provided an optimization to the polite
combination method, which is available when one of the theories in the com-
bination is stably infinite. This optimization has the potential to improve the
performance of SMT solvers that implement polite combination, such as CVC4.

We envision several directions for future work. First, the existence of a polite
theory that is not strongly polite demonstrates a need to identify sufficient cri-
teria for the equivalence of these notions — such as, for instance, the additivity
criterion introduced by Sheng et al. [21]. Second, polite combination could be
optimized in a different way: by applying the witness function only to part of
the purified input formula (perhaps the one that involves sorts for which the
other theory is not stably infinite). We plan to pursue both of these directions.
Finally, we plan to extend the initial implementation of this approach in CVC4
and evaluate its impact in practice based on more benchmarks.
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A Appendix

A.1 Theories vs. Classes of Structures

In papers about theory combination, theories are often defined in terms of some
set Ax of sentences (axioms) (see, e.g., [11,22,15]). Specifically, a theory is defined
as the set of all sentences entailed by Ax or, interchangeably, as the class of all
structures that satisfy Ax. This is the approach we take in this paper. The main
reason for this is that the combination theorems we prove and cite here rely on
some forms of the Löwenheim-Skolem theorem, which do not hold for arbitrary
classes of structures, but do hold when defining theories this way. On the other
hand, theories in the SMT-LIB 2 standard, as well as in many SMT papers about
individual theories, are defined more generally as classes of structures without
reference to a set of axioms.

However, this discrepancy is not substantial since the two notions of a theory
as a class of structures are easily interreducible; as mentioned in the introduction,
every theory T in the second, more general sense induces a theory in the first
sense that is equivalent to T for all of our intents and purposes since it entails
exactly the same sentences as T . To be more precise, the combination theorems
that we prove and cite only regard satisfiability of formulas in a theory (though
their proofs may analyze the structures of a theory). The important thing is
that the transformation between the two notions preserves satisfiability, and
therefore interchanging these notions can be done without loss of generality. For
completeness, we prove this fact below:

Lemma 10. Let Σ be a signature, C a class of Σ-structures, Ax the set of Σ-
sentences satisfied by all structures of C, and TC the class of all Σ-structures that
satisfy all sentences of Ax. Then, for every Σ-formula ϕ, ϕ is TC-satisfiable iff
ϕ is satisfied by some Σ-interpretation whose variable-free part is in C.

Proof : Every interpretation whose variable-free part is in C is a TC-interpretation,
and so the right-to-left direction trivially holds. Now, suppose ϕ is not satisfied
by any Σ-interpretation whose variable-free part is in C. Then its existential
closure ∃xϕ is not satisfied by any structure of C, and hence ¬∃xϕ ∈ Ax. Ad
absurdum, suppose that ϕ is TC-satisfiable. Then there is a TC-interpretation A
such that A |= ϕ. In particular, A |= ∃xϕ. But since A is a TC-interpretation,
we must also have A |= ¬∃xϕ, which is a contradiction. ut

A.2 Proof of Lemma 1

Let φ be a quantifier-free Σ2-formula, A a T2,3-interpretation that satisfies φ and
κ a function from {σ1, σ2} to the class of cardinals such that κ(σ1) ≥

∣∣σA1 ∣∣ and

κ(σ2) ≥
∣∣σA2 ∣∣. We construct a Σ2-interpretation A′ as follows. For i ∈ {1, 2}, we

let σA
′

i := σAi ] B for some set B of countable cardinality if κ(σi) is infinite or

of cardinality κ(σi) − |σi|A otherwise. Notice that this is well defined because
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κ(σi) ≥
∣∣σAi ∣∣. As for variables, xA

′
:= xA for each variable in vars (φ). This is

well defined because the domains of σ1 and σ2 were only possibly extended, not
reduced. First, we prove that A′ is a T2,3-interpretation. If κ(σ1) = 2, then since

κ(σ1) ≥
∣∣σA1 ∣∣, we must have that

∣∣σA1 ∣∣ = 2, which means that |σ2|A is infinite,
which in turn means that κ(σ2) is infinite as well. Hence in this case we have∣∣∣σA′

1

∣∣∣ = κ(σ1) = 2 and
∣∣∣σA′

2

∣∣∣ = κ(σ2) = ∞. Otherwise, κ(σ1) ≥ 3, and hence∣∣∣σA′

1

∣∣∣ = κ(σ1) ≥ 3 and also
∣∣∣σA′

2

∣∣∣ = κ(σ2) ≥
∣∣σA2 ∣∣ ≥ 3. Clearly, A′ satisfies φ

as the interpretations of variables did not change. Finally,
∣∣∣σA′

1

∣∣∣ = κ(σ1) and∣∣∣σA′

2

∣∣∣ = κ(σ2) by construction.

ut

A.3 Proof of Lemma 2

Define a function wit by wit(phi) := phi ∧ x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ y1 =
y1 ∧ y2 = y2 ∧ y3 = y3 for fresh variables x1, x2 and x3 of sort σ1 and y1,
y2 and y3 of sort σ2. We prove that wit is a witness for T2,3 w.r.t. {σ1, σ2}. φ
and ∃x1, x2, x3, y1, y2, y3,wit(φ) are trivially logically equivalent and in partic-
ular T2,3-equivalent. We prove that wit(φ) is finitely witnessed for T2,3 w.r.t.
{σ1, σ2}. Suppose that wit(φ) is T2,3-satisfiable and let A be a satisfying T2,3-
interpretation. Define aΣ2-interpretation B simply by σB1 = varsσ1

(φ)A]{a1, a2, a3}
and σB2 = varsσ2

(φ)A ] {b1, b2, b3} for a1, a2, a3 /∈ σA1 and b1, b2, b3 /∈ σA2 . The
interpretations of variables from φ are the same as in A. As for the fresh vari-
ables xBi := ai and yBi := bi for i ∈ {1, 2, 3}. We prove that B finitely witnesses
wit(φ) for T2,3 w.r.t. {σ1, σ2}. First, B is a T2,3-interpretation, as by construc-
tion

∣∣σB1 ∣∣, ∣∣σB2 ∣∣ ≥ 3. Second, B |= φ as the interpretations of variables from φ did
not change, and trivially satisfies the new identities, and so B |= wit(φ). Third,
by construction σB1 = varsσ1(φ)A ] {a1, a2, a3} = varsσ1(φ)B ]

{
xB1 , x

B
2 , x

B
3

}
=

varsσ1(wit(φ))B, and similarly for σ2.
ut

A.4 Proof of Lemma 3

Let wit be a witness for T2,3 w.r.t. {σ1, σ2}. We show that it is not strong. In
particular, we show that wit(v = v) is not strongly finitely witnessed for T2,3
w.r.t. {σ1, σ2}. Consider a T2,3-interpretation A with

∣∣σA1 ∣∣ = 2 and
∣∣σA2 ∣∣ = ℵ0.

Clearly, A |= v = v, and so A |= ∃w. wit(v = v), with w being the variables in
wit(v = v) other than v. This in turn means that there is a T2,3-interpretation
A′ that satisfies wit(v = v), different from A only in the interpretations of w,
if anywhere. Let δ be the arrangement over vars (wit(v = v)) induced by A′.
Then, δ either asserts that all variables in varsσ1(wit(v = v)) are identical, or
it partitions them into two equivalence classes. A′ |= wit(v = v) ∧ δ, and so
wit(v = v)∧δ is T2,3-satisfiable. We show that it does not have a finite witness for
T2,3 w.r.t. S. Suppose for contradiction that B is a finite witness of wit(v = v)∧δ
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for T2,3 w.r.t. S. Then
∣∣σB1 ∣∣ =

∣∣varsσ1
(wit(v = v) ∧ δ)B

∣∣. Now, B |= δ and B is a

T2,3-interpretation, meaning
∣∣σB1 ∣∣ ≥ 2, so if δ requires all variables of sort σ1 to

be equal, we already have a contradiction. On the other hand, if δ partitions the
variables into two equivalence classes, we get that

∣∣σB1 ∣∣ = 2. But since B finitely
witnesses wit(v = v) ∧ δ for T2,3 w.r.t. {σ1, σ2}, we also get that σB2 is finite,
meaning B is not a T2,3-interpretation. ut

A.5 Proof of Lemma 4

Let A be the T -structure with a minimal number of elements, and let n =
∣∣σA∣∣.

To show that every Σ0-structure that satisfies ψσ≥n belongs to T , let B be a

Σ0-structure that satisfies ψσ≥n and let m be the cardinality of σB. Then m ≥ n.
Clearly, A |= x = x and has n elements. Since T is smooth w.r.t. σ, there exists
a T -interpretation (that satisfies x = x) with cardinality m. This interpretation
must be B, as the lack of any symbols means that the only thing that distin-
guishes between Σ0-structures is their cardinality (modulo isomorphism). For
the converse, note that by the choice of n as minimal, every T -structure satisfies
ψσ≥n. ut

A.6 Proof of Proposition 1

x = x is clearly T -satisfiable. Since T is finitely witnessable (say with witness
wit), there is a T -interpretation A that satisfies wit(x = x) such that σA is finite.
T is smooth, and hence, by Lemma 4, it is axiomatized by ψσ≥n for some n. Define

wit ′(φ) := φ ∧ distinct(x1, . . . , xn) for fresh x1, . . . , xn. Since T is axiomatized
by ψσ≥n, φ is T -equivalent to ∃x.wit ′(φ). Further, for any arrangement δ over

some set of variables, and any T -interpretation A′ that satisfies wit ′(φ) ∧ δ, if
the domain of A′ is reduced to contain only the elements in vars (wit ′(φ) ∧ δ)A′

,
the result is still a T -interpretation since wit ′(φ) contains distinct(x1, . . . , xn).
We therefore get that wit ′ is a strong witness for T w.r.t. σ. ut

A.7 Proof of Lemma 5

Let φ be x = x and A be a Σ-interpretation with σA = {1, 2} and xA = 1. Then
A is a T ∞Even-interpretation that satisfies φ. Let κ defined by κ(s) = 3. Then

3 = κ(s) ≥
∣∣σA∣∣ = 2. However, there is no Σ-interpretation A′ with

∣∣∣σA′
∣∣∣ = 3.

ut

A.8 Proof of Lemma 6

Define wit(φ) as follows. Let E be the set of all equivalence relations over
vars (φ)∪{w} for some fresh variable w. Let even(E) be the set of all equivalence
relations in E for which the number of equivalence classes is even. Then, wit(φ)
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is φ ∧
∨
e∈even(E) δe, where for an equivalence relation e ∈ even(E), δe is the

arrangement induced by e:∧
(x,y)∈e

x = y ∧
∧

x,y∈vars (φ)∪{w}∧(x,y) 6∈e

x 6= y

We prove that wit is a witness. Let φ be a Σ-formula. We first prove that it
is T ∞Even-equivalent to ∃w. wit(φ). Since φ is a conjunct of wit(φ) that does not
include w, every A-interpretation that satisfies wit(φ) also satisfies φ. For the
other direction, let A be a T ∞Even-interpretation satisfying φ. Even though A
may have infinitely many elements, the number of elements in vars (φ)A must
be finite. If the number of elements in vars (φ)A is even, then let a be some
arbitrary element of vars (φ)A. Otherwise, let a be an element in A different
from all the elements in vars (φ)A (there must be such an element since A has
an even or infinite number of elements). In either case, the number of elements
in (vars (φ) ∪ {w})A is even. Thus, if we modify A to map w to a, then it must
satisfy one of the disjuncts in wit(φ). Hence, A satisfies ∃w. wit(φ).

Next, if wit(φ) is T ∞Even-satisfiable, then there is a satisfying T ∞Even-interpreta-
tion A satisfying it. A must satisfy one of the disjuncts in wit(φ), which means∣∣vars (wit(φ))A

∣∣ is even. The restriction of A to vars (wit(φ))A is a T ∞Even-inter-
pretation that finitely witnesses wit(φ). ut

A.9 Proof of Lemma 7

Let wit : QF (Σ0) → QF (Σ0). We prove that wit is not a strong witness for
T ∞Even w.r.t. σ, by showing that wit(x = x) is not strongly finitely witnessed for
T ∞Even w.r.t. σ. Consider a T ∞Even-interpretation A with 2 elements, which inter-
prets all the variables in vars (wit(x = x)). Clearly, A |= x = x, and therefore,
A |= ∃w. wit(x = x), where w is vars (wit(x = x)) \ {x}. Hence, there exists a
T ∞Even-interpretation A′, identical to A, except possibly in its interpretation of
variables in vars (wit(x = x)) \ {x}, that satisfies wit(x = x). In particular, A′
has two elements. Let δA′ be the arrangement over vars (wit(x = x)) satisfied
by A′. Then δA′ induces an equivalence relation with either 1 or 2 equivalence
classes. Let v be a variable not in vars (wit(x = x)). Define an arrangement
δ over vars (wit(x = x)) ∪ {v} as follows: If δA′ induces one equivalence class,
δ := δA′ ∧

∧
u∈vars (wit(x=x)) v = u. Otherwise, δ := δA′ ∧

∧
u∈vars (wit(x=x)) v 6= u.

In the first case, δ induces one equivalence class, and in the second, three.
wit(x = x) ∧ δ does not have a finite witness for T ∞Even w.r.t. σ, as any in-
terpretation B that finitely witnesses it has either 1 or 3 elements, and hence it
is not in T ∞Even.

A.10 Proof of Corollary 1

T2 is smooth w.r.t. Ssi∪Snsi . In particular, it is smooth w.r.t. Snsi . We show that
it is also strongly stably infinite w.r.t. (Ssi , Snsi), and then the result follows from
case 1 of Theorem 4. Let φ be a Σ-formula, A a T -interpretation that satisfies
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φ. Define κ(σ) to be ℵ0 for every σ ∈ Ssi such that σA is finite, κ(σ) =
∣∣σA∣∣ for

every σ ∈ Ssi such that σA is infinite, and κ(σ) =
∣∣σA∣∣ for every σ ∈ Snsi . Since

T is smooth w.r.t. Ssi ∪ Snsi , there exists a T -interpretation B that satisfies φ
with

∣∣σB∣∣ = κ(σ) for every σ ∈ Ssi and
∣∣σB∣∣ = κ(σ) =

∣∣σA∣∣ for every σ ∈ Snsi .
ut

A.11 Proof of Lemma 8

Let Ax be the set of sentences that are satisfied by every T -structure. Define
the following sets, based on formulas that are defined in Figure 2:

finA :=
{
ψσ=|σA| | σ ∈ S

fin
A

}
inf A :=

{
¬ψσ=n | σ ∈ S

inf
A , n ∈ N

}
A := Ax ∪ finA ∪ inf A ∪ {φ}

Clearly, A |= A. By Theorem 1, there exists a Σ-interpretation B that satisfies
A in which σB is countable whenever it is infinite, for every σ ∈ SΣ . This in
particular holds for every σ ∈ Sinf

A . Now let σ ∈ Sfin
A , then since B |= finA,∣∣σB∣∣ =

∣∣σA∣∣. Finally, B |= φ and it is a T -interpretation.
ut

A.12 Remaining Cases in The Proof of Lemma 9

Let ψ2 := wit(Γ2). Since T1 is stably infinite w.r.t. Ssi , there is a T1-interpretation
A satisfying Γ1 ∪ δV in which σA is infinite for each σ ∈ Ssi . By Theorem 1, we
may assume that σA is countable for each σ ∈ Ssi .

Case 2 : Suppose T2 is stably infinite w.r.t (Ssi , Snsi), smooth w.r.t. (Snsi , Ssi),
and strongly finitely witnessable w.r.t. Snsi . Then, there exists a T2-inter-
pretation B that satisfies ψ2 ∪ δV such that σB = V Bσ for every σ ∈ Snsi .
Since A and B satisfy δV , we have that for every σ ∈ Snsi ,

∣∣σB∣∣ =
∣∣V Bσ ∣∣ =∣∣V Aσ ∣∣ ≤ ∣∣σA∣∣. T2 is stably infinite w.r.t. (Ssi , Snsi), and so there exists a

T2-interpretation B′ that satisfies ψ2 ∪ δV such that σB
′

is infinite for ev-

ery σ ∈ Ssi and
∣∣∣σB′

∣∣∣ ≤ ∣∣σB∣∣ ≤ ∣∣σA∣∣ for every σ ∈ Snsi . T2 is smooth

w.r.t. (Snsi , Ssi) and so there is a T2-interpretation B′′ satisfying ψ2 ∪ δV
such that

∣∣∣σB′′
∣∣∣ =

∣∣σA∣∣ for every σ ∈ Snsi and
∣∣∣σB′′

∣∣∣ is infinite for ev-

ery σ ∈ Ssi . Using lemma 8, we may assume σB
′′

is countable and hence∣∣∣σB′′
∣∣∣ =

∣∣σA∣∣ for every σ ∈ S.

Case 3 : Suppose T2 is stably infinite w.r.t. Ssi , smooth w.r.t. (Snsi , Ssi), and
strongly finitely witnessable w.r.t. (Snsi , Ssi). Since it is stably infinite w.r.t. Ssi ,
there exists a T2-interpretation B that satisfies ψ2 ∪ δV such that σB is in-
finite for every σ ∈ Ssi . T2 is strongly finitely-witnessable w.r.t. (Snsi , Ssi),
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and hence there exists a T2-interpretation B′ that satisfies ψ2 ∪ δV such that

σB
′

= V B
′

σ for every σ ∈ Snsi and
∣∣∣σB′

∣∣∣ is infinite for every σ ∈ Ssi . Since A

and B′ satisfy δV , we have that for every σ ∈ Snsi ,
∣∣∣σB′

∣∣∣ =
∣∣∣V B′

σ

∣∣∣ =
∣∣V Aσ ∣∣ ≤∣∣σA∣∣. T2 is smooth w.r.t. (Snsi , Ssi), and so there exists a T2-interpretation

B′′ that satisfies ψ2 ∪ δV such that
∣∣∣σB′′

∣∣∣ =
∣∣σA∣∣ for every σ ∈ Snsi and∣∣∣σB′′

∣∣∣ is infinite for every σ ∈ Ssi . By Lemma 8, we may assume that σB
′′

is countable for every σ ∈ Ssi , with the same cardinalities for sorts of Snsi ,

and so we have
∣∣∣σB′′

∣∣∣ =
∣∣σA∣∣ also for every σ ∈ S.
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