
Quantifier Instantiation Techniques
for Finite Model Finding in SMT?

Andrew Reynolds1, Cesare Tinelli1, Amit Goel2,
Sava Krstić2, Morgan Deters3, and Clark Barrett3

1 Department of Computer Science, The University of Iowa
2 Strategic CAD Labs, Intel Corporation

3 New York University

Abstract. SMT-based applications increasingly rely on SMT solvers being able
to deal with quantified formulas. Current work shows that for formulas with quan-
tifiers over uninterpreted sorts counter-models can be obtained by integrating a
finite model finding capability into the architecture of a modern SMT solver. We
examine various strategies for on-demand quantifier instantiation in this setting.
Here, completeness can be achieved by considering all ground instances over the
finite domain of each quantifier. However, exhaustive instantiation quickly be-
comes unfeasible with larger domain sizes. We propose instantiation strategies to
identify and consider only a selection of ground instances that suffices to deter-
mine the satisfiability of the input formula. We also examine heuristic quantifier
instantiation techniques such as E-matching for the purpose of accelerating the
search. We give experimental evidence that our approach is practical for use in
industrial applications and is competitive with other approaches.

1 Introduction

Solvers for satisfiability modulo theories (SMT) are concerned with the problem of
determining the satisfiability of a set of formulas in some first order theory T , which
is possibly the combination of several sub-theories. SMT solvers use sophisticated and
very effective techniques for deciding the satisfiability of ground formulas. While some
of them can reason about quantified formulas, they do so using incomplete methods.
Hence they often report “unknown” when they fail, after some predetermined amount
of effort, to prove a quantified input formula unsatisfiable. For many client applications,
however, it is very useful to know when such formulas are indeed satisfiable. Current
SMT solvers are able to produce models of satisfiable quantified formulas only in fairly
restricted cases [8], which limits their scope and usefulness. To address this limitation,
in previous work we have developed a general method for efficient finite model finding
in SMT [13]. More precisely, since SMT solvers work in sorted logics with both built-in
and free (“uninterpreted”) sorts, the method looks for models that interpret the latter as
finite domains—and so is restricted to SMT formulas with quantifiers ranging only over
the free sorts.

Like finite model finders for standard first-order logic, our method is based on
checking universal quantifiers exhaustively over candidate models with increasingly
? The work of the first two authors was partially funded by a grant from Intel Corporation.



large domains for the free sorts, until an actual model is found. It contrasts with pre-
vious approaches for not relying on the explicit introduction of domain constants for
the free sorts, as done by MACE-style model finders [6], and for being able to reason
modulo more theories than just the theory of equality, contrary to SEM-style model
finders [15]. The model finder described in [13] incorporates into a general architecture
used by many SMT solvers [12] an efficient mechanism for deciding the satisfiability
of a set of ground SMT formulas under finite cardinality constraints for the free sorts.
This is used to find first a candidate model, a model M of a set of ground formulas
generated from the input formula ϕ. To check that M satisfies ϕ as well, the model
finder then checks, by exhaustive instantiation, that all the ground instances of ϕ over
the universe of M are satisfied by M . When this check fails, the model finder looks for
a new candidate model, possibly under extended cardinality bounds for the free sorts.

Contribution The contribution of this paper consists in two major improvements to
work described in [13]: (1) a method for constructing and representing candidate models
efficiently and (2) a model-based instantiation approach that avoids the explicit genera-
tion and checking of all the ground instances of the input formula. The two are strictly
related since the new instantiation approach takes advantage of the way the model is
represented to identify entire sets of instances that do not need to be considered.

Related work The data structure we use to represent candidate models is inspired
by the context data structure introduced in the Model Evolution calculus [2]. The way
we construct these models is similar to the generalization mechanism of the Inst-Gen
calculus [7]. An instance generation approach similar to ours is taken by [10] for the
local theory extensions method. There, the number of generated instances is reduced
by finding an unsatisfiable core of relevant ground literals that are in conflict with a
candidate model. A different model-based instantiation approach is followed by the Z3
SMT solver [8] where the solver itself is used as an oracle for checking the satisfiability
of candidate models.

Formal preliminaries We work in the context of many-sorted first-order logic with
equality. A (many-sorted) signature Σ consists of a set Σs ⊆ S of sort symbols and a set
Σf of (sorted) function symbols, f S1···SnS, where n ≥ 0 and S1, . . . ,Sn,S ∈ Σs. We drop
the sort superscript from function symbols when it is clear from context or unimportant.
Without loss of generality, we use equality, denoted by≈, as the only predicate symbol.

Given a signature Σ, well-sorted terms, atoms, literals, clauses, and formulas are
defined as usual, and referred to respectively as Σ-terms, Σ-atoms and so on. A ground
term (resp. formula) is a Σ-term (resp. formula) with no variables. A Σ-sentence is a
Σ-formula with no free variables. Where x = (x1, . . . ,xn) is tuple of sorted variables we
write ∀xϕ as an abbreviation of ∀x1 · · ·∀xn ϕ. A Σ-formula is universal if it has the form
∀xϕ where ϕ is a quantifier-free formula.

A Σ-structure M maps each S ∈ Σs to a non-empty set SM , the domain of S in M ,
and each f S1···SnS ∈ Σf to a total function f M : SM

1 × ·· ·× SM
n → SM . A satisfiability

relation |= between Σ-structures and Σ-sentences is defined as usual. A Σ-structure M
satisfies (or is a model of ) a Σ-sentence ϕ if M |= ϕ. Entailment between (sets of)
sentences, also denoted by |=, is also defined as usual.



Given a set G of ground formulas, let TG be the set of all terms occurring in G. A
set A of equalities and disequalities between terms in TG is a (complete) arrangement
for G if A is satisfiable and for all s, t ∈ TG of the same sort, s ≈ t or s 6≈ t is in A. An
arrangement A for G satisfies G if A |= G. A set E ⊆ {s≈ t | s, t ∈ TG} is a congruence
(for G) if it is closed under entailment: for all s, t ∈ TG, E |= s ≈ t iff s ≈ t ∈ E. The
congruence closure E∗ of E (wrt. G) is the smallest congruence for G that includes E.
By construction, E∗ is an equivalence relation over TG. For any such relation, we will
assume as fixed for every sort S with terms in G, a set VS = {vS

1, . . . ,v
S
nS
} consisting of

an arbitrary representatives for each equivalence class in E∗’s over terms of sort S. We
call VS the set of S-values for E∗ and say that terms of sort Si have value vS

i in E∗. For
each term t we denote by vE∗(t) its value in E∗. It can be shown (see, e.g., [1]) that E is
satisfied by a structure M that interprets each sort S as VS. We call M a normal model
of E. By reducing G to disjunctive normal form it is easy to show that G is satisfiable
iff it is satisfied by a normal model of some set E of equalities over TG.

A congruence E∗ over TG can be uniquely extended to the arrangement E∗ ∪{s 6≈
t | s ≈ t /∈ E∗} for G. Moreover, that arrangement satisfies G whenever E∗ |= G. So in
the paper we will often identify congruences and their associated arrangements.

A substitution σ is a mapping from variables to terms of the same sort, such that
the set {x | xσ 6= x}, the domain of σ, is finite. Unifying substitutions, most general
unifiers (mgu’s), and term variants are defined as usual. Let� be the usual instantiation
(quasi-)ordering between terms/atoms: s� t iff sσ = t for some substitution σ. If T is a
set of terms and t a term, a most-specific generalization of t in T is any term s ∈ T such
that (1) s� t and (2) for all s′ ∈ T with s� s′ � t, s′ is a variant of s.

2 Quantifier Instantiation for Finite Model Finding

Our finite model finding method has been developed so that it can be tightly inte-
grated into a multi-theory version of the DPLL(T ) architecture [12]. A description of
our model finder in terms of that architecture is provided in [13]. For the purposes of
this paper, it is enough to give a high-level, stand-alone description of the basic model
finding procedure restricted to general satisfiability problems (with no theories).

We can ignore the background theory T in this paper because any set of ground
formulas generated by the model finder can be purified Nelson-Oppen-style into one set
FT of formulas built only with symbols of T and free constants, and one set F built only
with free symbols. After adding to FT and F a suitable set of equality constraints over
their shared free constants, as prescribed by the Nelson-Oppen combination method,
if FT and F are satisfiable their respective models can be always amalgamated into
a model of the original problem. Given our restriction on the quantifiers of the input
problem, the model finder never needs to instantiate over the sorts of the theory T . So
we can focus here just on finding models for non-theory formulas.

Without loss of generality, we consider only input problems that are the union G∪Q
of a set G of ground Σ-formulas and a set Q of non-ground universal Σ-sentences for
some finite signature Σ. Moreover, G contains a term of sort S for each S ∈ Σs. We fix
G, Q and Σ as above for the rest of the section.



Basic model finding procedure A basic version of the procedure, which is parametrized
by a quantifier instantiation heuristic H , works as follows:

1. if G is unsatisfiable return “unsat”; else, find a satisfying arrangement E∗ for G

2. for each sort S ∈ Σs, let VS be the set of S-values of E∗; let V =
⋃

S∈Σs VS

3. using H choose a set Ix of valuations, substitutions from x to V, for each ∀xϕ ∈Q

4. if the union of all sets Ix is empty, return “sat”; otherwise, for each ∀xϕ ∈ Q, add
the instances {ϕσ | σ ∈ Ix} to G, and go to Step 1

Step 1 is achieved in our model finder with a novel satisfiability solver, also de-
scribed in [13], for ground formulas with finite cardinality constraints (FCC) on their
sorts. If G is satisfiable, the FCC solver finds a model of G where each sort has a do-
main of minimal size. As in other model finders, this is done to minimize the number of
possible instances of the formulas in Q. Step 2 is a by-product of the congruence clo-
sure procedure used by the FCC solver: to construct each VS it is enough to collect the
representatives of the congruence classes computed for S. We provide more details on
this in Section 2.1. The heuristic H should be such that whenever

⋃
∀xϕ∈Q Ix is empty

M satisfies Q as well. We discuss how the sets Ix are constructed in Section 2.2.

We represent normal models using the following data structure parametrized by the
sets of S-values VS for some arrangement A.

Definition 1 (Defining map). Let f S1···SnS ∈Σf and let x1, . . . ,xn be distinct variables of
respective sort S1 . . . ,Sn. A defining map for f is a finite set ∆ f of well-sorted (directed)
equations of the form f (t1, . . . , tn) ≈ v with v ∈ VS and ti ∈ {xi}∪VSi for i = 1, . . . ,n,
satisfying the following requirements.

1. If t1≈ v1, t2≈ v2 ∈∆ f with v1 6= v2 and t1 and t2 have an mgu σ, then σ is non-empty
and t1σ = v ∈ ∆ f for some v.

2. f (x1, . . . ,xn)≈ v ∈ ∆ f for some v.

A Σ-map is a set ∆ =
⋃

f∈Σf ∆ f where each ∆ f is a defining map for f .

By construction of ∆, every flat term, i.e., every Σ-term t = f (v1, . . . ,vn) with v1, . . . ,vn ∈⋃
S VS, has exactly one most specific generalization s among the left-hand sides of

equalities in ∆ f . The existence of s is guaranteed by Point 2 in Definition 1; its unique-
ness by Point 1. The value of t in ∆ is the value v in the (unique) equality s≈ v ∈ ∆ f .

Intuitively, a Σ-map ∆ represents a normal model M where each sort S is interpreted
as the term set VS and each function symbol f S1···SnS is interpreted as the function f M

mapping every (v1, . . . ,vn) ∈ SM
1 ×·· ·×SM

n to the value of f (v1, . . . ,vn) in ∆.

Proposition 1. Let ∆ be a Σ-map.

1. ∆ induces a unique Σ-structure M∆ modulo isomorphism.
2. The satisfiability of universal Σ-sentences in M∆ is decidable.
3. Every normal model of G is induced by a Σ-map.



We omit the simple proof of this proposition. For Point 2, we just observe that
ground terms can be evaluated in M∆ bottom-up by computing the value in ∆ of flat
terms f (v1, . . . ,vn). That evaluation allows one to decide ground satisfiability in M∆ in
the obvious way. Since every domain of M∆ is finite, the ground satisfiability procedure
can be extended to universal Σ-sentences by exhaustive instantiation of their quantifiers
by all values of the corresponding sort.

We rely on normal models constructed from Σ-maps to be able to check the satis-
fiability of our problem G∪Q without having to generate all ground instances of its
quantified formulas.

2.1 Constructing Normal Models

Given an arrangement A for the ground portion G of our input problem we wish to
construct a normal model M of G that satisfies the quantified portion Q as well. We
will refer to M as a candidate model (of G∪Q). We do this in concrete by building
a Σ-map from A following a strategy that tries to maximize the number of satisfied
ground instances of formulas in Q. For each function symbol f in Σ, we start building
its defining map ∆ f by putting in ∆ f the equality f (v1, . . . ,vn)≈ v0 for each term t0 of
the form f (t1, . . . , tn) in G where vi = vA(ti) for i = 0, . . . ,n.

Collecting these equalities may produce only a partial definition for f . To complete
it so that the corresponding Σ-structure satisfies G, one can use arbitrary output values
for the remaining input tuples. Previous approaches such as the model-based quantifier
instantiation approach implemented in the Z3 SMT solver [8] choose the same default
values for all input tuples unconstrained by A. Such choices may lead to an infinite
series of model checking steps and subsequent instantiations of Q if the wrong default
values are chosen. We too use default values, but we select them in a more informed
way, inspired by the instantiation heuristics used in the iProver theorem prover [11].
The main idea is to use the valuation of certain ground terms to guide the selection of
default values for function symbols.

Similarly to iProver, we attempt to lift the model of a ground abstraction of quanti-
fied formulas. We first associate to each sort S a distinguished ground Σ-term eS of G,
which we will write ambiguously here just as e when convenient. Let σe be the sub-
stitution mapping all variables of sort S to eS for each sort S. For all f S1···SnS ∈ Σf, fix
n distinct variables x1, . . . ,xn of respective sort S1 . . . ,Sn. Then, for all ground Σ-terms
f (t1, . . . , tn), let

f (t1, . . . , tn)∀ = f (u1, . . . ,un)

where ui = xi if ti = e, and ui = vA(ti) otherwise, for i = 1, . . . ,n. To guide the construc-
tion of a Σ-map, instead of starting with G we start with Ĝ = G∪{ϕσe | ∀yϕ ∈ Q} .

Once we find a satisfying arrangement A for Ĝ, we look at the values it gives to the
terms containing the distinguished terms e in order to determine the choice of default
values for the function symbols. As a simple example, suppose Q = {∀y f (g(y)) ≈
h(a,y)}, Ĝ = G∪{ f (g(e)) ≈ h(a,e)}, and suppose A is a satisfying arrangement for
Ĝ such that vA(g(e)) = v and vA(h(a,e)) = u. To complete the defining map ∆g for
g we use v as the default value for g, that is, we add the equation g(x1) ≈ v to ∆g.
Similarly, we add the equation h(a,x2) ≈ u to ∆h. The rationale for this choice is that,



together with f (v) ≈ u in ∆ f , this will guarantee in this case that the corresponding
normal model satisfies Q. Of course, this heuristic is not always successful in finding a
satisfying model for Q right away. We describe later the corrective measures we take to
find a better model, that is, one that falsifies fewer ground instances of formulas in Q.

The general procedure for constructing a Σ-map is the following.

Model construction procedure Assuming that Ĝ=G∪{ϕσe | ∀yϕ∈Q} is satisfiable,
let A be a satisfying arrangement for it.

1. select a subset T of TĜ.
2. for each f ∈ Σf,

(a) let D1 = { f (vA(t1), . . . ,vA(tn))≈ vA(t) | t ∈ TĜ, t = f (t1, . . . , tn)}
(b) let D2 = { f (t1, . . . , tn)∀ ≈ vA(t) | t ∈ T, t = f (t1, . . . , tn)}
(c) let ∆ f = D1∪D2 and let {ti ≈ vi}0≤i≤m be an arbitrary enumeration of ∆ f ; for

all ti ≈ vi, t j ≈ v j that are unifiable with mgu σ, if tiσ does not already occur as
a left-hand side in ∆ f , add tiσ≈ vi to ∆ f

(d) unless f (x1, . . . ,xn) already occurs as a left-hand side in ∆ f , add f (x1, . . . ,xn)≈
v for some arbitrary value v of the same sort

3. let ∆ =
⋃

f∈Σf ∆ f �

Proposition 2. The set ∆ constructed by the procedure above is a Σ-map. Moreover,
the Σ-structure M induced by ∆ is a normal model of Ĝ.

The first step of the model construction procedure is intended to choose a selection
of terms containing the distinguished terms e. This selection is driven by the arrange-
ment A itself and the way it satisfies the formulas of G. It is currently defined as follows.

Let A be a satisfying arrangement for Ĝ. For all ψ = ∀yϕ ∈ Q, a ground formula ϕ′

is selectable for ψ if A |= ϕ′ and ϕ′ |= ϕσe. We have a strategy that chooses a selectable
formula sel(ϕ) for each ψ = ∀yϕ ∈ Q and then selects all terms in sel(ϕ). The set T in
Step 1 of the model construction procedure is the collection of all these selected terms.
The formula sel(ϕ) is extracted from ϕσe itself. For formulas ϕ in CNF it is simply a
conjuction of literals, with each literal coming from a conjunct of ϕσe.

Example 1. Say Q = {∀y( f (y) 6≈ g(y)∨h(y) 6≈ b)} and

Ĝ = {g(b)≈ a, h(a)≈ b, h(b)≈ b, a≈ f (a)}∪{ f (a) 6≈ g(a)∨h(a) 6≈ b}

where all terms have the same sort and e = a. The congruence closure E∗ of the set E
of equalities in Ĝ extends to an arrangement A that satisfies f (a) 6≈ g(a). With A we
would select f (a) 6≈ g(a) for Q’s only formula, with selected terms f (a) and g(a).

Assuming the values of A are {a, b, g(a)}, a Σ-map constructed from A could be

∆ = {a≈ a}∪{b≈ b}∪{g(a)≈ g(a), g(b)≈ a, g(x1)≈ g(a)}∪
{h(a)≈ b, h(b)≈ b, h(x1)≈ b}∪{ f (a)≈ a, f (x1)≈ a} .

The Σ-structure induced by ∆ almost satisfies Q. It does not for falsifying the instance
f (b) 6≈ g(b)∨h(b) 6≈ b. Adding that instance to Ĝ, we can construct an arrangement like
A but with the additional value f (b). This can lead to a Σ-map ∆′ = ∆∪{ f (b)≈ f (b)}
whose induced Σ-structure does satisfy G∪Q. �



proc eval(∆, t,σ) ≡match t with
| f (t1, . . . , tn) → for j = 1, . . . ,n let (v j,X j) = eval(∆, t j,σ)

choose a critical argument subset C of {1, . . . ,n}
return ( f M∆(v1, . . . ,vn),

⋃
i∈C Xi))

| x → return (σ(x), {x})

Fig. 1. The eval procedure. M∆ is the model induced by ∆.

2.2 Checking Models

As mentioned earlier, once we have a candidate model, i.e., a normal model M sat-
isfying the ground formulas in G, a straightforward way to check that it satisfies the
quantified formulas in Q is to check all of their ground instances over the finitely many
values V of M . Since a universal formula with n quantified variables each ranging over
a domain of size at least k has at least nk such instances, this is feasible in practice only
when both n and k are small.

To increase the scalability of our model finding method we have developed a tech-
nique that identifies entire sets of instances satisfiable in M without actually generating
and checking those instances individually. Since the technique is based on the model M
(actually, on the Σ-map that represents M ), we will refer to it as the model-based ap-
proach, as opposed to the naive approach consisting of generating and checking every
possible ground instances.

The main idea of the model-based approach is to determine the satisfiability in M
of some ground instance ϕσ of a quantified formula ∀xϕ ∈Q, generalize ϕσ to a whole
set of F of instances equisatisfiable with ϕσ in M , and then look for further instances
only outside that set. The set F is computed by identifying which variables of ϕ actu-
ally matter in determining the satisfiability of ϕσ. Technically, for each ψ = ∀xϕ ∈ Q,
valuation σ = {x 7→ v} into V, and ground instance ϕ′ = ϕσ of ψ, if M |= ϕ′ we com-
pute a partition of x into x1 and x2 and a corresponding partition of v into v1 and v2
such that M |= ∀x2 ϕ{x1 7→ v1}; similarly, if M 6|= ¬ϕ′ we compute a partition such
that M 6|= ∀x2¬ϕ{x1 7→ v1}. In either case, we then know that all ground instances of
ϕ{x1 7→ v1} over V are equisatisfiable with ϕ′ in M , and so it is enough to consider
just ϕ′ in lieu of all them. We will refer to the elements of x1 above as a set of critical
variables for ϕ (under σ)—although strictly speaking this is a misnomer as we do not
insist that x1 be minimal.

Checking and generalizing ground instances Treating quantifier-free formulas as
Boolean terms (which evaluate to either true or false in a Σ-structure depending on
whether they are satisfied by the model or not), we developed a general procedure that,
given the Σ-map of a candidate model M , a term t, and a valuation σ of t’s variables,
computes and returns both the value of tσ in M and a set of critical variables for σ.

The procedure, defined recursively over the input term and assuming a prefix form
for the logical operators as well, is sketched in Figure 1. When evaluating a non-variable
term f (t1, . . . , tn), eval determines a critical argument subset C for it. This is a subset of
{1, . . . ,n} such that the term f (s1, . . . ,sn) denotes a constant function in M where each
si is the value computed by eval for ti if i ∈C, and is a unique variable otherwise. If f is



a logical symbol, the choice of C is dictated by the symbol’s semantics. For instance, for
≈(t1, t2), C is {1,2}; for ∨(t1, . . . , tn), it is {1, . . . ,n} if the disjunction evaluates to false;
otherwise, it is {i} if ti is the one with the best set Xi of critical variables among the el-
ements of {t1, . . . , tn} that evaluate to true, where “best” is defined in term of another
heuristic measure. If f is a function symbol of Σ, eval computes C by first constructing
a custom index data structure for interpreting applications of f to values. The key fea-
ture of this data structure is that it uses information on the sets X1, . . .Xn to choose an
evaluation order for the arguments of f . For space constraints, we give just a concrete
example of how this choice is made. Say eval, given the term t = f (g(x,y,z),v2,h(x)),
computes the values v1,v2,v3 and the critical variable sets {x,y,z}, /0, {x} for the three
arguments of f , respectively. With those sets, it will use the evaluation order (2,3,1) for
those arguments—meaning that the second argument is evaluated first, then the third,
etc. Using the index data structure, it will first determine if f (x1,v2,x3) has a constant
interpretation in M . If so, then the evaluation depends on no variables and the returned
set of critical variables for t will be /0. Otherwise, if f (x1,v2,v3) has a constant interpre-
tation in M, then the evaluation depends on {x}, or else it depends on the entire variable
set {x,y,z}.

The next example gives more details on the whole process of generalizing a ground
instance to a set of ground instances equisatisfiable with it in the given model.

Example 2. Let Q = {∀y∀z f (z) ≈ g(y,b)∨ h(y,z) 6≈ b} and Ĝ = { f (a) ≈ a, f (b) ≈
b, g(a,a) ≈ b, h(a,a) ≈ b, f (a) ≈ g(a,b)∨ h(a,a) 6≈ b} where a is the only distin-
guished ground term. Consider a Σ-map ∆ constructed as in Example 1 and containing
the following defining maps:

∆g = {g(a,b)≈ a, g(a,a)≈ b, g(x1,b)≈ a, g(x1,x2)≈ b}
∆ f = { f (b)≈ b, f (a)≈ a, f (x1)≈ a} ∆h = {h(a,a)≈ b, h(x1,x2)≈ b}

The table below shows the bottom-up calculation performed by eval on the formula
ϕ = f (z)≈ g(y,b)∨h(y,z) 6≈ b with ∆ above and σ = {y 7→ a,z 7→ a}.

input output critical arg. subset
z (a,{z}) //
y (a,{y}) //
b (b, /0) //

f (z) (a,{z}) {1}
g(y,b) (a, /0) {2}

input output critical arg. subset
h(y,z) (b, /0) /0

f (z)≈ g(y,b) (true,{z}) {1,2}
h(y,z) 6≈ b (false, /0) /0

f (z)≈ g(y,b)∨h(y,z) 6≈ b (true,{z}) {1}

For most entries in the table the evaluation is straightforward. For a more interesting
case, consider the evaluation of g(y,b). First, the arguments of g are evaluated, respec-
tively to (a,{y}) and (b, /0), but with evaluation order (2,1). After evaluating y to b,
using an indexing data structure built from ∆g for the evaluation order (2,1), eval is
able to quickly determine that the term g(x1,b) has constant value a for all x1. Hence it
returns an empty set of critical variables for g(y,b).

Similarly, the fact that eval returns (true,{z}) for the original input formula ϕ and
the valuation σ = {y 7→ a, z 7→ a}, means that it was able to determine that all ground
instances of ϕ{z 7→ a} = ( f (a) ≈ g(y,b)∨ h(y,a) 6≈ b), not just the instance ϕσ, are
satisfied in M . Our model finder can then use this information to completely avoid
generating and checking those instances. �



proc choose instances(∆,ϕ,x) ≡
Ix := /0; tnext := vmin where vmin is the minimum of Vx
do

t := tnext
(v,{xi1 , . . . ,xim}) := eval(∆,ϕ,{x 7→ t})
if v = false then Ix := Ix∪{{x 7→ t}}
tnext := nexti(t) where i is the minimum of {i1, . . . , im,n+1}

while tnext 6= t
return Ix

Fig. 2. The choose instances procedure. We assume that x = (x1, . . . ,xn).

Collecting ground instances For any given quantified formula ψ, the eval procedure
allows us to identify a set of instances over V that can be represented by a single one,
as far as satisfiability in the candidate model M is concerned. The next question then
is how to generate a set I of instances that together represent all instances of ψ over V
that are falsified by M . This kind of exhaustiveness is crucial because it allows us to
conclude correctly that M |= ψ by just checking that I is empty.

We present a procedure that relies on eval for computing the set I above or, rather,
a set of valuations for generating the elements of I from ψ. The procedure is fairly
unsophisticated and quite conservative in its choice of representative instances, which
makes it very simple to implement and prove correct. Its main shortcoming is that it
does not take full advantage of the information provided by eval, and so may end up
producing more representative instances than needed in many cases. The development
of a more selective procedure is left to future work.

Let ψ = ∀xϕ ∈ Q with x = (x1, . . . ,xn). For i = 1, . . . ,n, let Si be the sort of xi and
let Vx = VS1×·· ·×VSn . For each S ∈ {S1, . . . ,Sn}, let <S be an arbitrary total ordering
over the values VS of sort S. Let < be the reversed lexicographic4 extension of these
orderings to the tuples in Vx and observe that Vx is totally ordered by <.

For every v = (v1, . . . ,vn) ∈ Vx let v[i] denote the ith element of v and let nexti(v)
denote the smallest tuple u wrt. < such that v[ j] <S j u[ j] for some j ≥ i, if such tuple
exists, and denote v itself otherwise (including when i > n). For instance, with n = 3,
S1 = S2 = S3 and VS1 = {a,b} with a <S1 b, we have that next2(a,a,a) = (a,b,a),
next2(a,b,a) = (a,a,b), next3(a,a,b) = (a,a,b), and next3(a,b,b) = (a,b,b). Note
that v≤ nexti(v) for all v.

The instantiation heuristic H used in the model finding procedure presented in Sec-
tion 2 is implemented by the procedure choose instances described in Figure 2, which
takes in a quantifier-free formula ϕ with variables x and returns a set Ix of valuations σ

for x such that M 6|= ϕσ. At each execution of its loop the procedure implicitly deter-
mines with eval a set of I of instances of ϕ that are equisatisfiable with ϕ{x 7→ v} in M ,
where v is the tuple stored in the program variable t. The next value tnext for t is a greater
tuple chosen to maintain the invariant that all the tuples between t and tnext generate in-
stances of ϕ that are in I. To see that, it suffices to observe that these tuples differ from

4 This is defined similarly to the standard lexicographic extension except that the last component
of a tuple is the most significant one, then the last but one, and so on.



t only in positions that correspond to non-critical variables of ϕ, namely those before
position i where xi is the first critical variable of ϕ in the enumeration x1, . . . ,xn. This
observation is the main argument in the proof of the following result.

Proposition 3. Let v0, . . . ,vm be all values successively taken by the variable t in the
loop of choose instances. Let vmax be the maximum element of Vx. Then for all i =
1, . . . ,m,

1. vi−1 < vi,
2. for all u with vi−1 ≤ u < vi, M |= ϕ{x 7→ u} iff M |= ϕ{x 7→ vi−1},
3. for all u with vm ≤ u≤ vmax, M |= ϕ{x 7→ u} iff M |= ϕ{x 7→ vm}.

For this proposition it follows immediately that M |= ∀xϕ if and only if the set Ix
returned by choose instances(∆,ϕ,x) is empty.

We remark that, for our model finding purposes, there is no need for the procedure
choose instances to compute the full set Ix once it contains at least one valuation. Any
non-empty subset would suffice to trigger a (more incremental) revision of the current
candidate model M . That said, our current implementation does compute the whole set
and adds all the corresponding instances to Q before recomputing another model for it.
Our initial experiments show that computing and using one valuation at a time is worse
for overall performance than computing and using the full set Ix.

2.3 Enhancements Based on Heuristic Instantiation

Many SMT solvers rely on heuristic instantiation methods for finding unsatisfiable in-
stances for quantified formulas. These methods typically use E-matching techniques [3]
to generate heuristically relevant instances, which are based on matching distinguished
terms, called triggers, with ground terms in the problems. We found that E-matching
can be helpful in our model finder as well, even for satisfiable problems.

Enhanced model finding procedure Our original heuristic H from Section 2 for
quantifier instantiation can be enhanced with E-matching to a heuristic H ′ as follows:

1. choose a set of triggers Tψ for each ψ ∈ Q, and return valuations based on E-
matching for (Tψ,G)

2. if no such instances exist, apply the original H .

Applying E-matching helps the model finder detect the unsatisfiability of its input
formulas more promptly in cases where a conflict is easily identifiable. Furthermore, it
may also accelerate the discovery of a model for satisfiable input problems, since the
instances it generates can help rule out bad choices of candidate models more quickly.

Recall that in the basic model finding procedure, quantifier instantiation is applied
after finding a model of the ground formulas G of minimal size. By waiting to apply
quantifier instantiation until after model minimization, we also avoid pitfalls common
to E-matching-based procedures such as, for instance, matching loops where certain
terms get generated at every instantiation round. Since only a finite number of terms
exist for a given cardinality bound on a sort, our approach guarantees that E-matching
will eventually rule out the given bound, or terminate with no instances produced.



Most E-matching techniques generate triggers automatically, but in fairly unin-
formed ways, typically choosing every applicable term (or set of terms) in a quantified
formula ψ as a trigger. In our model finding method, the selection heuristic described
in Section 2.1 can be used as a criterion for trigger generation by using first as triggers
the terms that were selected for the construction of the current candidate mode. The
intuition is that if we are basing the satisfiability of ψ on the default values given for a
function symbol f , then we need only be concerned with possible exceptions to those
defaults. Our current implementation follows this criterion.

3 Experimental Results

The model finding method introduced in [13] is implemented within the CVC4 SMT
solver. For the present work, we implemented the naive and the model-based approach
for quantifier instantiation as alternative configurations of CVC4’s finite model finder.
We ran experimental comparisons for these approaches on three sets of benchmarks.

First we considered formulas derived from verification conditions generated by
DVF [9], a tool used at Intel for verifying properties of security protocols and design
architectures, among other applications, comparing configurations of the model finder
against CVC4 in native mode (i.e., not using the model finder) and Z3 version 4.1, which
we previously found to be the best SMT solver besides CVC4 on these benchmarks [13].
Second, we considered benchmarks from the latest version of the TPTP library (5.4.0),
comparing against various automated theorem provers and model finders for first order
logic, as well as the two SMT solvers above. Third, we considered a set of SMT bench-
marks translated from proof obligations generated by the Isabelle prover, comparing
again with CVC4 in native mode and Z3.5

In all experiments we used revision 4751 of CVC4 1.0, both in native mode (indi-
cated here as cvc4) and in finite model finding mode. The default configuration of the
latter (cvc4+f) applies naive quantifier instantiation as described in Section 2.2, and no
heuristic instantiation. The other model finding configurations use either model-based
quantifier instantiation as described in Section 2.2 (cvc4+fm), or just heuristic quantifier
instantiation as described in Section 2.3 (cvc4+fi), or both (cvc4+fmi).

The first set of experiments was run on a Linux machine with an 8-core 2.60GHz
Intel R© Xeon R© E5-2670 processor. The second and third on a cluster of 5 identical Linux
machines with a 2.4 GHz AMD Opteron 250s and 2 GB of available memory.

Intel benchmarks We considered 3 of the 5 classes of benchmarks from [13]; the other
two are uninteresting as their problems can be solved quickly by cvc4+f. The agree
class is from [14] while the apg and bmk classes are verification conditions internal to
Intel. The benchmarks contain a variety of SMT theories, including arithmetic, arrays,
datatypes, free functions over free sorts and built-in sorts, but with quantifiers limited
to free sorts. Both unsatisfiable and satisfiable benchmarks were considered, the latter
produced by manually removing necessary assumptions from verification conditions.
The results are summarized in Figure 3 for various configurations of CVC4 and for Z3.

5 The finite model finder, detailed results, and the non-proprietary benchmarks discussed in this
section are available at http://cvc4.cs.nyu.edu/experiments/CADE24-2013/ .



Sat Unsat
agree apg bmk agree apg bmk
(15) (17) (31) (139) (124) (83)

Solver solved time solved time solved time solved time solved time solved time
z3 0 0 0 0 0 0 139 3.5 124 9.0 83 2.5
cvc4 0 0 0 0 0 0 135 2.9 124 10.0 83 1.7
cvc4+f 15 13.7 16 199.4 30 1200.1 127 3772.4 118 2243.3 81 1496.5
cvc4+fi 15 12.3 17 492.2 30 829.5 139 185.8 122 338.8 83 656.7
cvc4+fm 15 21.3 17 209.9 31 374.2 122 5007.5 120 1114.9 81 827.3
cvc4+fmi 15 13.6 17 220.6 31 175.5 139 183.4 122 336.6 83 664.9

Fig. 3. Results for DVF benchmarks. All times are in seconds. Best performances are in bold font.

We show results for the 412 problems from the previous study that were non-trivial for
CVC4’s model finder.6 All configurations had a 600s timeout per problem.

For the satisfiable benchmarks, CVC4’s model finder is the only tool able to solve
at least one. Additionally, through use of model-based quantifier instantiation, it is now
able to solve all of them within the timeout. Moreover, the best configuration of the
model finder, cvc4+fmi, solves each benchmark within 60s.

For the unsatisfiable benchmarks, Z3 is the overall winner, solving all of them within
the timeout. Pairing heuristic quantifier instantiation with finite model finding (config-
urations with cvc4+*i*) is beneficial, as it even solves four problems that cvc4 can-
not solve. We found that each unsatisfiable problem can be solved by either cvc4 or
cvc4+fmi, and in less than 3s. Configuration cvc4+fmi solves all unsatisfiable bench-
marks within 900s, suggesting that CVC4’s model finder makes consistent progress to-
wards answering unsatisfiable on provable DVF verification conditions. Also, cvc4+fmi
is an order of magnitude faster than cvc4+f on unsatisfiable benchmarks solved by each
of them. From the perspective of verification tools, the results here seem promising. A
feasible strategy for discharging a verification condition would be to first use an SMT
solver hoping that it can quickly find it unsatisfiable with E-matching techniques; and
then resort to finite model finding if needed to either answer unsatisfiable, or produce a
model representing a concrete counterexample for the verification condition.

TPTP benchmarks For these benchmarks we also compared against Paradox [6] and
iProver [11]. Paradox is a MACE-style model finder that uses preprocessing optimiza-
tions such as sort inference and clause splitting, among others, and then encodes to
SAT the original problem together with increasingly looser constraints on the size of
the model. iProver is an automated theorem prover based in the Inst-Gen calculus that
can also run in finite model finding mode (iprover-fm). In that mode, it incrementally
bounds model sizes in a manner similar to MACE-style model finding. However, it en-
codes the whole problem into the EPR fragment, for which it is a decision procedure.
Since these two tools are limited to classical first-order logic with equality, we consid-
ered only the unsorted first-order benchmarks of TPTP.

The results for a 30s timeout per benchmark, are shown in Figure 4. CVC4’s model
finder with exhaustive instantiation (cvc4+f) can find 975 benchmarks to be satisfiable.
That number goes up to 1025 with model-based quantifier instantiation (cvc4+fm).
While better than Z3, which finds 888 satisfiable benchmarks, our model finder still

6 The rest are solved in less than 0.5s by all configurations of the model finder.



paradox iprover iprover-fm z3 cvc4 cvc4+f cvc4+fm cvc4+fmi
Sat 1344 995 1231 888 33 975 1025 955
Unsat 1272 5556 383 5934 5295 2633 2754 3028

Fig. 4. Results for 15561 benchmarks taken from the TPTP library, with a 30s timeout. Of these
benchmarks, 1995 are known to be satistiable, and 12586 are known to be unsatisfiable.

trails the overall performance of the other provers on these problems. Paradox, the best
here, finds 1344 satisfiable benchmarks. We attribute this to the fact that we have im-
plemented none of the advanced preprocessing techniques, such as sort inference and
clause splitting, that have been shown to be critical for finding finite models of TPTP
benchmarks. Nevertheless, CVC4’s model finder is capable solving a handful of bench-
marks that neither Paradox nor iProver can solve. In particular, it solves two satisfiable
benchmarks with 1.0 difficulty rating, which means that no known ATP system had
solved these problems when version of 5.4.0 of the TPTP library was released.

Figure 4 shows also results for unsatisfiable problems. Although these results are
not comparable to those achieved by state-of-art theorem provers, such as Vampire and
E, we note that Z3 solves the most benchmarks, 5924. Interestingly, an additional 35
unsatisfiable problems with difficulty rating 1.0 were found in this study by Z3, cvc4,
iProver and cvc4+fmi, which respectively solve 21, 6, 4, and 1 of these uniquely.

   1000

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

 750  800  850  900  950  1000

#
 
o
f
 
I
n
s
t
a
n
c
e
s

# Solved

cvc4+f
cvc4+fm

Fig. 5. Comparison of satisfiable problems
found with and without model-based quanti-
fier instantiation. A point (x,y) on this graph
says the configuration solves x benchmarks
each with a total of at most y ground prob-
lems of quantified formulas.

To further evaluate the impact of model-based quantifier instantiation on our model
finder, we recorded statistics on the domain size of quantified formulas in benchmarks
solved by its various configurations. We measured the total number of instances for
all quantified formulas occurring in a problem (a quantified formula over n variables
each with domain size k has nk instances). For a problem with d total instances, the
configuration cvc4+f must explicitly generate these d instances, while a model-based
configuration may avoid doing so. For these experiments, cvc4+f was only able to solve
4 problems having more than 100k instances, the maximum having around 325k in-
stances. On the other hand, cvc4+fm was capable of solving 41 problems having more
than 100k instances, with the largest having more than 1.3 billion instances. This in-
formation is plotted in Figure 5, showing how the model-based instantiation approach
improves the scalability of our model finder and allows it to solve benchmarks where
exhaustive instantiation is clearly infeasible. We stress that model finders such as Para-



Sat Arrow Order FFT FTA Hoare NS Shared QEpres StrongNorm TwoSquares TypeSafe TOTAL
z3 3 19 24 46 10 49 1 17 11 180
cvc4 0 9 0 0 0 0 0 8 0 17
cvc4+f 22 138 172 153 56 79 12 59 69 760
cvc4+fm 26 139 171 151 49 80 12 59 69 756
cvc4+fmi 26 151 174 159 60 81 12 60 78 801
Unsat Arrow Order FFT FTA Hoare NS Shared QEpres StrongNorm TwoSquares TypeSafe TOTAL
z3 261 224 765 497 135 236 240 451 325 3134
cvc4 199 217 682 456 97 244 231 486 239 2851
cvc4+f 120 99 298 214 36 105 84 316 132 1404
cvc4+fm 102 91 330 246 26 117 80 310 128 1430
cvc4+fmi 155 170 467 328 42 161 97 411 188 2019

Fig. 6. Results for Isabelle Benchmarks. Numbers of problems solved within 30s.

dox have other ways of handling the explosion in the number of instances, namely by
minimizing the number of variables per clause. We expect that coupling these tech-
niques with the model-based techniques used here will lead to additional improvements
in the scalability of our model finder.

Isabelle benchmarks Recent work has shown that SMT solvers, in particular Z3, are
effective at discharging Isabelle proof obligations whose encoding can be represented
with theories [5]. Model finding can be useful in Isabelle for debugging and for brute-
force proof minimization [4]. More generally, it is useful to interactive theorem provers
that are based on heuristically selecting a set of relevant background axioms which
might be sufficient to prove a conjecture. In this case, a model finder could be used to
quickly identify axiom sets that are not large enough for a given conjecture.

We considered a set of 13,041 benchmarks generated from Isabelle and kindly pro-
vided by Sascha Böhme. The benchmarks in this set correspond to both provable and
unprovable conjectures.7 Most of them contain quantifiers, and a significant portion
contain integer arithmetic. For many, quantifiers are limited to the free sorts, thus mak-
ing our finite model finding approach applicable. Since CVC4 does not yet have support
for non-linear arithmetic, we report results only for the 11,187 benchmarks that do
not contain non-linear arithmetic constraints. Additionally, CVC4 ignored various hints
(such as weight values) that were given to Z3 for quantifier instantiation.

The results are shown in Figure 6. In these experiments, using E-matching acceler-
ates the search for models, as cvc4+fmi finds more satisfiable problems (810) than both
cvc4+f (760) and cvc4+fm (756). All configurations of CVC4’s model finder find many
more satisfiable problems than Z3, which finds only 180 of them overall. For unsatis-
fiable problems, Z3 is the overall winner, solving 3,134 of them, followed by the cvc4
configuration with 2,851. Interestingly, while cvc4+fmi solves only 2,019 unsatisfiable
benchmarks, 244 of them are not solved by Z3, and 164 are not solved by cvc4.

4 Conclusion

We have introduced a few quantifier instantiation techniques for finite model finding in
SMT which drastically improve the scalability of our basic model finding procedure and

7 It is our understanding that these benchmarks are a superset of those discussed in [5].



are useful in various applications. Our experiments show that our model-based quanti-
fier instantiation approach is useful for finding models where exhaustive instantiation
is infeasible, and can be improved further by integrating heuristic instantiation in it,
especially for unsatisfiable problems.

Future research includes improvements to the instance generation technique in Sec-
tion 2.2, and further generalizing the approach to the construction of models for built-in
theories. We are currently investigating ways to modify the selection heuristics of Sec-
tion 2.1 to generate candidate models (in some fragments) of the theory of arrays. We
plan to investigate further approaches for finding models of formulas with quantifiers
ranging over built-in domains such as the integers.

Acknowledgements We would like thank Sascha Böhme for providing the Isabelle
benchmarks and François Bobot for his help in writing a TPTP front end for CVC4.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
2. P. Baumgartner and C. Tinelli. The Model Evolution calculus as a first-order DPLL method.

Artificial Intelligence, 172:591–632, 2008.
3. N. Bjørner and L. de Moura. Efficient E-matching for SMT solvers. In Proceedings of

CADE-21, volume 4603 of LNCS, pages 183–198. Springer, 2007.
4. J. C. Blanchette. Personal communication, 2013.
5. J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT solvers.

In Proceedings of CADE-23, volume 6803 of LNCS, pages 116–130. Springer, 2011.
6. K. Claessen and N. Sörensson. New techniques that improve MACE-style finite model build-

ing. In CADE-19 Workshop: Model Computation – Principles, Algorithms, Applications,
pages 11–27, 2003.

7. H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In
Proceedings of LICS’03, pages 55–64. IEEE Computer Society, 2003.

8. Y. Ge and L. de Moura. Complete instantiation for quantified formulas in sat. modulo theo-
ries. In Proceedings of CAV’09, volume 5643 of LNCS, pages 306–320. Springer, 2009.

9. A. Goel, S. Krstic, and R. L. M. Tuttle. SMT-based system verification with DVF. In
Proceedings of SMT’12, 2012.

10. S. Jacobs. Incremental instance generation in local reasoning. In Proceedings of CAV’09,
volume 5643 of LNCS, pages 368–382. Springer, 2009.

11. K. Korovin. iProver – an instantiation-based theorem prover for first-order logic. In Pro-
ceedings of IJCAR’08, volume 5195 of LNCS, pages 292–298. Springer, 2008.

12. S. Krstić and A. Goel. Architecting solvers for SAT modulo theories: Nelson-Oppen with
DPLL. In Proceeding of FroCoS’07, volume 4720 of LNCS, pages 1–27. Springer, 2007.

13. A. Reynolds, C. Tinelli, A. Goel, and S. Krstić. Finite model finding in SMT. In Proceedings
of CAV’13, LNCS. Springer, 2013. (Accepted).

14. M. R. Tuttle and A. Goel. Protocol proof checking simplified with SMT. In Proceedings of
NCA’12, pages 195–202. IEEE Computer Society, 2012.

15. J. Zhang and H. Zhang. SEM: a system for enumerating models. In Proceedings of IJCAI’95,
pages 298–303, 1995.


