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Abstract. Satisfiability Modulo Theories (SMT) solvers incorporate decision
procedures for theories of data types that commonly occur in software. This
makes them important tools for automating verification problems. A limitation
frequently encountered is that verification problems are often not fully express-
ible in the theories supported natively by the solvers. Many solvers allow the
specification of application-specific theories as quantified axioms, but their han-
dling is incomplete outside of narrow special cases.
In this work, we show how SMT solvers can be used to obtain complete deci-
sion procedures for local theory extensions, an important class of theories that
are decidable using finite instantiation of axioms. We present an algorithm that
uses E-matching to generate instances incrementally during the search, signifi-
cantly reducing the number of generated instances compared to eager instantia-
tion strategies. We have used two SMT solvers to implement this algorithm and
conducted an extensive experimental evaluation on benchmarks derived from ver-
ification conditions for heap-manipulating programs. We believe that our results
are of interest to both the users of SMT solvers as well as their developers.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers are a cornerstone of today’s verification
technology. Common applications of SMT include checking verification conditions
in deductive verification [14, 26], computing program abstractions in software model
checking [1, 9, 27], and synthesizing code fragments in software synthesis [5, 6]. Ulti-
mately, all these tasks can be reduced to satisfiability of formulas in certain first-order
theories that model the semantics of prevalent data types and software constructs, such
as integers, bitvectors, and arrays. The appeal of SMT solvers is that they implement
decision procedures for efficiently reasoning about formulas in these theories. Thus,
they can often be used off the shelf as automated back-end solvers in verification tools.

Some verification tasks involve reasoning about universally quantified formulas,
which goes beyond the capabilities of the solvers’ core decision procedures. Typical
examples include verification of programs with complex data structures and concur-
rency, yielding formulas that quantify over unbounded sets of memory locations or
thread identifiers. From a logical perspective, these quantified formulas can be thought
of as axioms of application-specific theories. In practice, such theories often remain
within decidable fragments of first-order logic [2,7,9,23]. However, their narrow scope



2 Bansal et. al

(which is typically restricted to a specific program) does not justify the implementa-
tion of a dedicated decision procedure inside the SMT solver. Instead, many solvers
allow theory axioms to be specified directly in the input constraints. The solver then
provides a quantifier module that is designed to heuristically instantiate these axioms.
These heuristics are in general incomplete and the user is given little control over the
instance generation. Thus, even if there exists a finite instantiation strategy that yields
a decision procedure for a specific set of axioms, the communication of strategies and
tactics to SMT solvers is a challenge [12]. Further, the user cannot communicate the
completeness of such a strategy. In this situation, the user is left with two alternatives:
either she gives up on completeness, which may lead to usability issues in the verifica-
tion tool, or she implements her own instantiation engine as a preprocessor to the SMT
solver, leading to duplication of effort and reduced solver performance.

The contributions of this paper are two-fold. First, we provide a better understand-
ing of how complete decision procedures for application-specific theories can be re-
alized with the quantifier modules that are implemented in SMT solvers. Second, we
explore several extensions of the capabilities of these modules to better serve the needs
of verification tool developers. The focus of our exploration is on local theory exten-
sions [21, 36]. A theory extension extends a given base theory with additional symbols
and axioms. Local theory extensions are a class of such extensions that can be decided
using finite quantifier instantiation of the extension axioms. This class is attractive be-
cause it is characterized by proof and model-theoretic properties that abstract from the
intricacies of specific quantifier instantiation techniques [15, 20, 36]. Also, many well-
known theories that are important in verification but not commonly supported by SMT
solvers are in fact local theory extensions, even if they have not been presented as such
in the literature. Examples include the array property fragment [8], the theory of reach-
ability in linked lists [25, 32], and the theories of finite sets [39] and multisets [38].

We present a general decision procedure for local theory extensions that relies on
E-matching, one of the core components of the quantifier modules in SMT solvers. We
have implemented our decision procedure using the SMT solvers CVC4 [3] and Z3 [11]
and applied it to a large set of SMT benchmarks coming from the deductive software
verification tool GRASShopper [29,31]. These benchmarks use a hierarchical combina-
tion of local theory extensions to encode verification conditions that express correctness
properties of programs manipulating complex heap-allocated data structures. Guided by
our experiments, we developed generic optimizations in CVC4 that improve the perfor-
mance of our base-line decision procedure. Some of these optimizations required us to
implement extensions in the solver’s quantifier module. We believe that our results are
of interest to both the users of SMT solvers as well as their developers. For users we
provide simple ways of realizing complete decision procedures for application-specific
theories with today’s SMT solvers. For developers we provide interesting insights that
can help them further improve the completeness and performance of today’s quantifier
instantiation modules.

Related work. Sofronie-Stokkermans [36] introduced local theory extensions as a gen-
eralization of locality in equational theories [15, 18]. Further generalizations include
Psi-local theories [21], which can describe arbitrary theory extensions that admit finite
quantifier instantiation. The formalization of our algorithm targets local theory exten-
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sions, but we briefly describe how it can be generalized to handle Psi-locality. The
original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
fragment is not sufficiently expressive for the local theory extensions that appear in our
benchmarks, it includes important fragments such as Effectively Propositional Logic
(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in vari-
ous SMT solvers [10, 16]. In practice, user-provided triggers can be given as hints for
finer grained control over quantifier instantiations in these implementations. More re-
cent work [13] has made progress towards formalizing the semantics of triggers for the
purposes of specifying decision procedures for a number of theories. A more general
but incomplete technique [34] addresses the prohibitively large number of instantiations
produced by E-matching by prioritizing instantiations that lead to ground conflicts.

2 Example

We start our discussion with a simple example that illustrates the basic idea behind local
theory extensions. Consider the following set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.

We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z→ Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {−1 if x ≤ 0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.
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SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = ∀x, y. x ≤ y =⇒ f(x) ≤ f(y), (2)

and then let the SMT solver check ifG∪{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as σ = {x 7→ t1, y 7→ t2} and the
instance of an axiom K with respect to this substitution as Kσ. The quantifier module
iteratively adds the generated ground instancesKσ as lemmas toG until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances ofK, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instancesKσ that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G∪{K}, it is sufficient to consider only those instances Kσ in which all ground terms
already occur inG andK. The monotonicity axiomK is a local theory extension of T0.
The local instances of K and G are:

Kσ1 = a ≤ b =⇒ f(a) ≤ f(b) where σ1 = {x 7→ a, y 7→ b},
Kσ2 = b ≤ a =⇒ f(b) ≤ f(a) where σ2 = {x 7→ b, y 7→ a},
Kσ3 = a ≤ a =⇒ f(a) ≤ f(a) where σ3 = {x 7→ a, y 7→ a}, and
Kσ4 = b ≤ b =⇒ f(b) ≤ f(b) where σ4 = {x 7→ b, y 7→ b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G′ = G ∪ {Kσ1,Kσ2,Kσ3,Kσ4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G ∪ {K} is also satisfiable.

Recognizing Local Theory Extensions. There are two useful characterizations of local
theory extensions that can help users of SMT solvers in designing axiomatization that
are local. The first one is model-theoretic [15, 36]. Consider again the set of ground
clauses G′. When checking satisfiability of G′ in the base theory, the SMT solver may
produce the following model:

a = 0, b = 1, f(x) = {−1 if x = 0, 1 if x = 1, -1 otherwise}. (3)
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This is not a model of the original G ∪ {K}. However, if we restrict the interpretation
of the extension symbol f in this model to the ground terms in G∪ {K}, we obtain the
partial model

a = 0, b = 1, f(x) = {−1 if x = 0, 1 if x = 1, undefined otherwise}. (4)

This partial model can now be embedded into the model (1) of the theory extension.
If such embeddings of partial models of G′ to total models of G ∪ {K} always exist
for all sets of ground literals G, then K is a local theory extension of T0. The second
characterization of local theory extensions is proof-theoretic and states that a set of
axioms is a local theory extension if it is saturated under (ordered) resolution [4]. This
characterization can be used to automatically compute local theory extensions from
non-local ones [20].

Note that the locality property depends both on the base theory as well as the specific
axiomatization of the theory extension. For example, the following axiomatization of a
monotone function f over the integers, which is logically equivalent to equation (2) in
T0, is not local:

K = ∀x. f(x) ≤ f(x+ 1) .

Similarly, if we replace all inequalities in equation (2) by strict inequalities, then the
extension is no longer local for the base theory T0. However, if we replace T0 by a
theory in which ≤ is a dense order (such as in linear real arithmetic), then the strict
version of the monotonicity axiom is again a local theory extension.

In the next two sections, we show how we can use the existing technology im-
plemented in quantifier modules of SMT solvers to decide local theory extensions. In
particular, we show how E-matching can be used to further reduce the number of axiom
instances that need to be considered before we can conclude that a given set of ground
literals G is satisfiable.

3 Preliminaries

Sorted first-order logic. We present our problem in sorted first-order logic with equality.
A signature Σ is a tuple (Sorts, Ω,Π), where Sorts is a countable set of sorts and Ω
andΠ are countable sets of function and predicate symbols, respectively. Each function
symbol f ∈ Ω has an associated arity n ≥ 0 and associated sort s1 × · · · × sn → s0
with si ∈ Sorts for all i ≤ n. Function symbols of arity 0 are called constant symbols.
Similarly, predicate symbols P ∈ Π have an arity n ≥ 0 and sort s1 × · · · × sn.
We assume dedicated equality symbols ≈s ∈ Π with the sort s × s for all sorts s ∈
Sorts, though we typically drop the explicit subscript. Terms are built from the function
symbols inΩ and (sorted) variables taken from a countably infinite setX that is disjoint
from Ω. We denote by t : s that term t has sort s.

A Σ-atom A is of the form P (t1, . . . , tn) where P ∈ Π is a predicate symbol of
sort s1 × · · · × sn and the ti are terms with ti : si. A Σ-formula F is either a Σ-atom
A, ¬F1, F1 ∧ F2, F1 ∨ F2, or ∀x : s.F1 where F1 and F2 are Σ-formulas. A Σ-literal
L is either A or ¬A for a Σ-atom A. A Σ-clause C is a disjunction of Σ-literals. A
Σ-term, atom, or formula is said to be ground, if no variable appears in it. For a set of
formulas K, we denote by st(K) the set of all ground subterms that appear in K.
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A Σ-sentence is a Σ-formula with no free variables where the free variables of a
formula are defined in the standard fashion. We typically omit Σ if it is clear from the
context.

Structures. Given a signature Σ = (Sorts, Ω,Π), a Σ-structure M is a function that
maps each sort s ∈ Sorts to a non-empty set M(s), each function symbol f ∈ Ω of
sort s1 × · · · × sn → s0 to a function M(f) : M(s1) × · · · ×M(sn) → M(s0), and
each predicate symbol P ∈ Π of sort s1×· · ·× sn to a relation M(s1)×· · ·×M(sn).
We assume that all structures M interpret each symbol ≈s by the equality relation on
M(s). For a Σ-structure M where Σ extends a signature Σ0 with additional sorts and
function symbols, we writeM |Σ0 for theΣ0-structure obtained by restrictingM toΣ0.

Given a structure M and a variable assignment ν : X →M , the evaluation tM,ν of
a term t in M,ν is defined as usual. For a structure M and an atom A of the form
P (t1, . . . , tn), (M,ν) satisfies A iff (tM,ν

1 , . . . , tM,ν
n ) ∈ M(P ). This is written as

(M,ν) |= A. From this satisfaction relation of atoms and Σ-structures, we can de-
rive the standard notions of the satisfiability of a formula, satisfying a set of formulas
(M,ν) |= {Fi}, validity |= F , and entailment F1 |= F2. If a Σ-structure M satisfies a
Σ-sentence F , we call M a model of F .

Theories and theory extensions. A theory T over signature Σ is a set of Σ-structures.
We call a Σ-sentence K an axiom if it is the universal closure of a Σ-clause, and
we denote a set of Σ-axioms as K. We consider theories T defined as a class of Σ-
structures that are models of a given set of Σ-sentences K.

Let Σ0 = (Sorts0, Ω0, Π) be a signature and assume that the signature Σ1 =
(Sorts0 ∪Sortse, Ω0 ∪ Ωe, Π) extends Σ0 by new sorts Sortse and function symbols
Ωe. We call the elements of Ωe extension symbols and terms starting with extension
symbols extension terms. Given aΣ0-theory T0 andΣ1-axiomsKe, we call (T0,Ke, T1)
the theory extension of T0 with Ke, where T1 is the set of all Σ1-structures M that are
models ofKe and whose reductsM |Σ0 are in T0. We often identify the theory extension
with the theory T1.

4 Problem

We formally define the problem of satisfiability modulo theory and the notion of local
theory extensions in this section.

Let T be a theory over signature Σ. Given a Σ-formula φ, we say φ is satisfiable
modulo T if there exists a structure M in T and an assignment ν of the variables in φ
such that (M,ν) |= φ. We define the ground satisfiability modulo theory problem as
the corresponding decision problem for quantifier-free formulas.

Problem 1 (Ground satisfiability problem for Σ-theory T ).

input: A quantifier-free Σ-formula φ.
output: sat if φ is satisfiable modulo T , unsat otherwise.
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We say the satisfiability problem for T is decidable if there exists a procedure for the
above problem which always terminates with sat or unsat. We write entailment modulo
a theory as φ |=T ψ.

We say an axiom of a theory extension is linear if all the variables occur under at
most one extension term. We say it is flat if there there is no nesting of terms containing
variables. It is easy to linearize and flatten the axioms by using additional variables and
equality. As an example, ∀x.φ with f(x) and f(g(x)) as terms in F may be written as

∀xyz.x ≈ y ∧ z ≈ g(y) =⇒ F ′

where F ′ is obtained from F by replacing f(g(x)) with f(z). For the remainder of the
paper, we assume that all extension axioms Ke are flat and linear. For the simplicity of
the presentation, we assume that if a variable appears below a function symbol then that
symbol must be an extension symbol.

Definition 2 (Local theory extensions). A theory extension (T0,Ke, T1) is local if for
any set of ground Σ1-literals G: G is satisfiable modulo T1 if and only if G ∪ Ke[G]
is satisfiable modulo T0 extended with free function symbols. Here Ke[G] is the set of
instances of Ke where the subterms of the instantiation are all subterms of G or Ke (in
other words, they do not introduce new terms).

For simplicity, in the rest of this paper, we work with theories T0 which have decision
procedures for not just T0 but also T0 extended with free function symbols. Thus, we
sometimes talk of satisfiability of a Σ1-formula with respect a Σ0-theory T0, to mean
satisfiability in the T0 with the extension symbols in Σ1 treated as free function sym-
bols. In terms of SMT, we only talk of extensions of theories containing uninterpreted
functions (UF).

A naive decision procedure for ground SMT of a local theory extension T1 is thus
to generate all possible instances of the axioms Ke that do not introduce new ground
terms, thereby reducing to the ground SMT problem of T0 extended with free functions.

Hierarchical extensions. Note that local theory extensions can be stacked to form hierar-
chies ((. . . ((T0,K1, T1),K2, T2), . . . ),Kn, Tn). Such a hierarchical arrangement of ex-
tension axioms is often useful to modularize locality proofs. In such cases, the condition
that variables are only allowed to occur below extension symbols (of the current exten-
sion) can be relaxed to any extension symbol of the current level or below. The resulting
theory extension can be decided by composing procedures for the individual extensions.
Alternatively, one can use a monolithic decision procedure for the resulting theory Tn,
which can also be viewed as a single local theory extension (T0,K1 ∪ · · · ∪Kn, Tn). In
our experimental evaluation, which involved hierarchical extensions, we followed the
latter approach.

5 Algorithm

In this section, we describe a decision procedure for a local theory extension, say
(T0,Ke, T1), which can be easily implemented in most SMT solvers with quantifier
instantiation support. We describe our procedure DT1 as a theory module in a typical
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SMT solver architecture. For simplicity, we separate out the interaction between theory
solver and core SMT solver. We describe the procedure abstractly as taking as input:

– the original formula φ,
– a set of extension axioms Ke,
– a set of instantiations of axioms that have already been made, Z, and
– a set of T0 satisfiable ground literals G such that G |= φ ∧ (

∧
ψ∈Z ψ), and

– a set equalities E ⊆ G between terms.

It either returns

– sat, denoting that G is T1 satisfiable; or
– a new set of instantiations of the axioms, Z ′.

For completeness, we describe briefly the way we envisage the interaction mech-
anism of this module in a DPLL(T) SMT solver. Let the input problem be φ. The
SAT solver along with the theory solvers for T0 will find a subset of literals G from
φ ∧ (

∧
ψ∈Z ψ) such that its conjunction is satisfiable modulo T0. If no such satisfying

assignment exists, the SMT solver stops with unsat. One can think ofG as being simply
the literals in φ on the SAT solver trail. G will be sent to DT1

along with information
known about equalities between terms. The set Z can be also thought of as internal state
maintained by the T1-theory solver module, with new instances Z ′ sent out as theory
lemmas and Z updated to Z ∪Z ′ after each call to DT1

. If DT1
returns sat, so does the

SMT solver and stops. On the other hand, if it returns a new set of instances, the SMT
solver continues the search to additionally satisfy these.

E-matching. In order to describe our procedure, we introduce the well-studied E-match-
ing problem. Given a universally quantified Σ-sentence K, let X(K) denote the quan-
tified variables. Define a Σ-substitution σ of K to be a mapping from variables X(K)
toΣ-terms of corresponding sort. Given aΣ-term p, let pσ denote the term obtained by
substituting variables in p by the substitutions provided in σ. Two substitutions σ1, σ2
with the same domain X are equivalent modulo a set of equalities E if ∀x ∈ X.E |=
σ1(x) ≈ σ2(x). We denote this as σ1 ∼E σ2.

Problem 3 (E-matching).

input: A set of ground equalities E, a set of Σ-terms G, and patterns P .
output: The set of substitutions σ over the variables in p, modulo E, such that for all

p ∈ P there exists a t ∈ G with E |= t ≈ pσ.

E-matching is a well-studied problem, specifically in the context of SMT. An algorithm
for E-matching that is efficient and backtrackable is described in [10]. We denote this
procedure by E.

The procedure DT1(φ,Ke, Z,G,E) is given in Fig. 1. Intuitively, it adds all the new
instances along the current search path that are required for local theory reasoning as
given in Definition 2, but modulo equality. For each axiomK inKe, the algorithm looks
for function symbols containing variables. For example, if we think of the monotonicity
axiom in Sect. 2, these would be the terms f(x) and f(y). These terms serve as patterns
for the E-matching procedure. Next, with the help of the E-matching algorithm, all new
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DT1(φ,Ke, Z,G,E)
Local variable: Z′, initially an empty set.

1. For each K ∈ Ke:
(a) Define the set of patterns P to be the function symbols in K containing variables. We

observe that because the axioms are linear and flat, these patterns are always of the form
f(x1, . . . , xn) where f is an extension symbol and the xi are quantified variables.

(b) Run E(E,G, P ) obtaining substitutions S. Without loss of generality, assume that σ ∈
S returned by the algorithm are such that st(Kσ) ⊆ st(G ∪ Ke). For the special case
of the patterns in (a), for any σ not respecting the condition there exists one in the
equivalence class that respects the condition. Formally, ∀σ.∃σ′.σ′ ∼E σ ∧ st(Kσ′) ⊆
st(G∪Ke). We make this assumption only for simplicity of arguments later in the paper.
If one uses an E-matching procedure not respecting this constraint, our procedure will
still be terminating and correct (albeit total number of instantiations suboptimal).

(c) For each σ ∈ S, if there exists no Kσ′ in Z such that σ ∼E σ′, then add Kσ to Z′ as
a new instantiation to be made.

2. If Z′ is empty, return sat, else return Z′.

Fig. 1. Procedure DT1

instances are computed (to be more precise, all instances for the axiom K in Z which
are equivalent modulo ∼E are skipped). If there are no new instances for any axiom
in Ke, and the set G of literals implies φ, we stop with sat. as effectively we have that
G ∪ Ke[G] is satisfiable modulo T0. Otherwise, we return this set.

We note that though the algorithm DT1
may look inefficient because of the presence

of nested loops, keeping track of which substitutions have already happened, and which
substitutions are new. However, in actual implementations all of this is taken care of
by the E-matching algorithm. There has been significant research on fast, incremental
algorithms for E-matching in the context of SMT, and one advantage of our approach
is to be able to leverage this work.

Correctness. The correctness argument relies on two aspects: one, that if the SMT solver
says sat (resp. unsat) then φ is satisfiable (resp. unsatisfiable) modulo T1, and second,
that it terminates.

For the case where the output is unsat, the correctness follows from the fact that Z
only contains instances of Ke. The sat case is more tricky, but the main idea is that the
set of instances made by DT1(φ,Ke, Z,G,E) are logically equivalent to Ke[G]. Thus,
when the solver stops, G ∪ Ke[G] is satisfiable modulo T0. As a consequence, G is
satisfiable modulo T1. Since G |= φ, we have that φ is satisfiable modulo T1.

The termination relies on the fact that the instantiations returned by procedure
DT1(φ,Ke, Z,G,E) do not add new terms, and they are always a subset of Ke[φ].
Since, Ke[φ] is finite, eventually D will stop making new instantiations. Assuming that
we have a terminating decision procedure for the ground SMT problem of T0, we get a
terminating decision procedure for T1.

Theorem 4. An SMT solver with theory module DT1
is a decision procedure for the

satisfiability problem modulo T1.
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Psi-local theories. We briefly explain how our approach can be extended to the more
general notion of Psi-local theory extensions [21]. Sometimes, it is not sufficient to con-
sider only local instances of extension axioms to decide satisfiability modulo a theory
extension. For example, consider the following set of ground literals:

G = {f(a) = f(b), a 6= b}

Suppose we interpret G in a theory of an injective function f : S → S with a partial
inverse g : S → S for some set S. We can axiomatize this theory as a theory extension
of the theory of uninterpreted functions using the axiom

K = ∀x, y. f(x) = y =⇒ g(y) = x .

G is unsatisfiable in the theory extension, but the local instances of K with respect to
the ground terms st(G) = {a, b, f(a), f(b)} are insufficient to yield a contradiction in
the base theory. However, if we consider the local instances with respect to the larger
set of ground terms

Ψ(st(G)) = {a, b, f(a), f(b), g(f(a)), g(f(b))},

then we obtain, among others, the instances

f(a) = f(b) =⇒ g(f(b)) = a and f(b) = f(a) =⇒ g(f(a)) = b .

Together with G, these instances are unsatisfiable in the base theory.
The set Ψ(st(G)) is computed as follows:

Ψ(st(G)) = st(G) ∪ { g(f(t)) | t ∈ st(G) }

It turns out that considering local instances with respect to Ψ(st(G)) is sufficient to
check satisfiability modulo the theory extension K for arbitrary sets of ground clauses
G. Moreover, Ψ(st(G)) is always finite. Thus, we still obtain a decision procedure for
the theory extension via finite instantiation of extension axioms. Psi-local theory exten-
sions formalize this idea. In particular, if Ψ satisfies certain properties including mono-
tonicity and idempotence, one can again provide a model-theoretic characterization of
completeness in terms of embeddings of partial models. We refer the reader to [21] for
the technical details.

To use our algorithm for deciding satisfiability of a set of ground literals G modulo
a Psi-local theory extension (T0,Ke, T1), we simply need to add an additional prepro-
cessing step in which we compute Ψ(st(G)) and define G′ = G ∪ { instclosure(t) |
t ∈ Ψ(st(G)) } where instclosure is a fresh predicate symbol. Then calling our
procedure for T1 with G′ decides satisfiability of G modulo T1.

6 Implementation and Experimental Results

Benchmarks. We evaluated our techniques on a set of benchmarks generated by the
deductive verification tool GRASShopper [19]. The benchmarks encode memory safety
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and functional correctness properties of programs that manipulate complex heap-allo-
cated data structures. The programs are written in a type-safe imperative language with-
out garbage collection. The tool makes no simplifying assumptions about these pro-
grams like acyclicity of heap structures.

GRASShopper supports mixed specifications in (classical) first-order logic and sep-
aration logic (SL) [35]. The tool reduces the program and specification to verification
conditions that are encoded in a hierarchical combination of (Psi-)local theory exten-
sions. This hierarchy of extensions is organized as follows:

1. Base theory: at the lowest level we have UFLIA, the theory of uninterpreted func-
tions and linear integer arithmetic, which is directly supported by SMT solvers.

2. GRASS: the first extension layer consists of the theory of graph reachability and
stratified sets. This theory is a disjoint combination of two local theory extensions:
the theory of linked lists with reachability [25] and the theory of sets over inter-
preted elements [39].

3. Frame axioms: the second extension layer consists of axioms that encode the frame
rule of separation logic. This theory extension includes arrays as a subtheory.

4. Program-specific extensions: The final extension layer consists of a combination of
local extensions that encode properties specific to the program and data structures
under consideration. These include:

– axioms defining memory footprints of SL specifications,
– axioms defining structural constraints on the shape of data structures,
– sorted constraints, and
– axioms defining partial inverses of certain functions, e.g., to express injectivity

of functions and to specify the content of data structures.

We refer the interested reader to [29–31] for further details about the encoding.
The programs considered include sorting algorithms, common data structure oper-

ations, such as inserting and removing elements, as well as complex operations on ab-
stract data types. Our selection of data structures consists of singly and doubly-linked
lists, sorted lists, nested linked lists with head pointers, binary search trees, skew heaps,
and a union find data structure. The input programs comprise 108 procedures with a to-
tal of 2000 lines of code, 260 lines of procedure contracts and loop invariants, and 250
lines of data structure specifications (including some duplicate specifications that could
be shared across data structures). The verification of these specifications are reduced
by GRASShopper to 816 SMT queries, each serves as one benchmark in our experi-
ments. 802 benchmarks are unsatisfiable. The remaining 14 satisfiable benchmarks stem
from programs that have bugs in their implementation or specification. All of these are
genuine bugs that users of GRASShopper made while writing the programs.4 We con-
sidered several versions of each benchmark, which we describe in more detail below.
Each of these versions is encoded as an SMT-LIB 2 input file.

Experimental setup. All experiments were conducted on the StarExec platform [37]
with a CPU time limit of one hour and a memory limit of 100 GB. We focus on the SMT

4 See www.cs.nyu.edu/~kshitij/localtheories/ for the programs and benchmarks used.

www.cs.nyu.edu/~kshitij/localtheories/
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Fig. 2. # of eager instantiations vs. E-matching instantiations inside the solver

solvers CVC4 [3] and Z3 [11]5 as both support UFLIA and quantifiers via E-matching.
This version of CVC4 is a fork of v1.4 with special support for quantifiers.6

In order to be able to test our approach with both CVC4 and Z3, wherever possible
we transformed the benchmarks to simulate our algorithm. We describe these trans-
formations in this paragraph. First, the quantified formulas in the benchmarks were
linearized and flattened, and annotated with patterns to simulate Step 1(a) of our algo-
rithm (this was done by GRASShopper in our experiments, but may also be handled
by an SMT solver aware of local theories). Both CVC4 and Z3 support using these
annotations for controlling instantiations in their E-matching procedures. In order to
handle Psi-local theories, the additional terms required for completeness were provided
as dummy assertions, so that these appear as ground terms to the solver. In CVC4, we
also made some changes internally so as to treat these assertions specially and apply
certain additional optimizations which we describe later in this section.

Experiment 1. Our first experiment aims at comparing the effectiveness of eager in-
stantiation versus incremental instantiation up to congruence (as done by E-matching).
Figure 2 charts the number of eager instantiations versus the number of E-matching
instantiations for each query in a logarithmic plot.7 Points lying on the central line have
an equal number of instantiations in both series while points lying on the lower line
have 10 times as many eager instantiations as E-matching instantiations. (The upper
line corresponds to 1

10 .) Most benchmarks require substantially more eager instantia-
tions. We instrumented GRASShopper to eagerly instantiate all axioms. Subfigure (a)
compares upfront instantiations with a baseline implementation of our E-matching al-

5 We used the version of Z3 downloaded from the git master branch at http://z3.codeplex.
com on Jan 17, 2015.

6 This version is available at www.github.com/kbansal/CVC4/tree/cav14-lte-draft.
7 Figure 2 does not include timeouts for CVC4.

http://z3.codeplex.com
http://z3.codeplex.com
www.github.com/kbansal/CVC4/tree/cav14-lte-draft
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C UD C UL C ULO Z3 UD Z3 UL Z3 ULO
family # # time # time # time # time # time # time
sl lists 139 127 70 139 383 139 17 138 1955 138 1950 139 68
dl lists 70 66 1717 70 843 70 33 56 11375 56 11358 70 2555
sl nested 63 63 1060 63 307 63 13 52 6999 52 6982 59 1992
sls lists 208 181 6046 204 11230 208 3401 182 20596 182 20354 207 4486
trees 243 229 2121 228 22042 239 7187 183 41208 183 40619 236 27095
soundness 79 76 17 79 1533 79 70 76 7996 76 8000 79 336
sat 14 - - 14 670 14 12 - - 10 3964 14 898
total 816 742 11032 797 37009 812 10732 687 90130 697 93228 804 37430

Table 1. Comparison of solvers on uninstantiated benchmarks (time in sec.)

gorithm. Points along the x-axis required no instantiations in CVC4 to conclude unsat.
We have plotted the above charts up to 10e10 instantiations. There were four outlying
benchmarks where upfront instantiations had between 10e10 and up to 10e14 instances.
E-matching had zero instantiations for all four. Subfigure (b) compares against an opti-
mized version of our algorithm implemented in CVC4. It shows that incremental solving
reduces the number of instantiations significantly, often by several orders of magnitude.
The details of these optimizations are given later in the section.

Experiment 2. Next, we did a more thorough comparison on running times and num-
ber of benchmarks solved for uninstantiated benchmarks. These results are in Table 1.
The benchmarks are partitioned according to the types of data structures occurring in the
programs from which the benchmarks have been generated. Here, “sl” stands for singly-
linked, “dl” for double-linked, and “sls” for sorted singly-linked. The binary search
tree, skew heap, and union find benchmarks have all been summarized in the “trees”
row. The row “soundness” contains unsatisfiable benchmarks that come from programs
with incorrect code or specifications. These programs manipulate various types of data
structures. The actual satisfiable queries that reveal the bugs in these programs are sum-
marized in the “sat” row.

We simulated our algorithm and ran these experiments on both CVC4 (C) and Z3
obtaining similar improvements with both. We ran each with three configurations:

UD Default. For comparison purposes, we ran the solvers with default options. CVC4’s
default solver uses an E-matching based heuristic instantiation procedure, whereas
Z3’s uses both E-matching and model-based quantifier instantiation (MBQI). For
both of the solvers, the default procedures are incomplete for our benchmarks.

UL These columns refer to the E-matching based complete procedure for local theory
extensions (algorithm in Fig. 1).8

ULO Doing instantiations inside the solver instead of upfront, opens the room for opti-
mizations wherein one tries some instantiations before others, or reduces the num-
ber of instantiations using other heuristics that do not affect completeness. The
results in these columns show the effect of all such optimizations.

8 The configuration C UL had one memory out on a benchmark in the tree family.
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As noted above, the UL and ULO procedures are both complete, whereas UD is not.
This is also reflected in the “sat” row in Table 1. Incomplete Instantiation-based proce-
dures cannot hope to answer “sat”. A significant improvement can be seen between the
UL and ULO columns. The general thrust of the optimizations was to avoid blowup of
instantiations by doing ground theory checks on a subset of instantiations. Our intuition
is that the theory lemmas learned from these checks eliminate large parts of the search
space before we do further instantiations.

For example, we used a heuristic for Psi-local theories inspired from the observation
that the axioms involving Psi-terms are needed mostly for completeness, and that we
can prove unsatisfiable without instantiating axioms with these terms most of the time.
We tried an approach where the instantiations were staged. First, the instantiations were
done according to the algorithm in Fig. 1 for locality with respect to ground terms from
the original query. Only when those were saturated, the instantiations for the auxiliary
Psi-terms were generated. We found this to be very helpful. Since this required non-
trivial changes inside the solver, we only implemented this optimization in CVC4; but
we think that staging instantiations for Psi-local theories is a good strategy in general.

A second optimization, again with the idea of cutting instantiations, was adding
assertions in the benchmarks of the form (a = b)∨(a 6= b) where a, b are ground terms.
This forces an arbitrary arrangement over the ground terms before the instantiation
procedure kicks in. Intuitively, the solver first does checks with many terms equal to
each other (and hence fewer instantiations) eliminating as much of the search space
as possible. Only when equality or disequality is relevant to the reasoning is the solver
forced to instantiate with terms disequal to each other. One may contrast this with ideas
being used successfully in the care-graph-based theory combination framework in SMT
where one needs to try all possible arrangements of equalities over terms. It has been
observed that equality or disequality is sometimes relevant only for a subset of pairs
of terms. Whereas in theory combination this idea is used to cut down the number of
arrangements that need to be considered, we use it to reduce the number of unnecessary
instantiations. We found this really helped CVC4 on many benchmarks.

Another optimization was instantiating special cases of the axioms first by enforc-
ing equalities between variables of the same sort, before doing a full instantiation. We
did this for axioms that yield a particularly large number of instances (instantiations
growing with the fourth power of the number of ground terms). Again, we believe this
could be a good heuristic in general.

Experiment 3. Effective propositional Logic (EPR) is the fragment of first order-logic
consisting of formulas of the shape ∃x∀y.G with G quantifier-free and where none
of the universally quantified variables y appears below a function symbol in G. The-
ory extensions that fall into EPR are always local. Our third exploration is to see if
we can exploit dedicated procedures for this fragment when such fragments occur in
the benchmarks. For the EPR fragment, Z3 has a complete decision procedure that
uses model-based quantifier instantiation. We therefore implemented a hybrid approach
wherein we did upfront partial instantiation to the EPR fragment using E-matching with
respect to top-level equalities (as described in our algorithm). The resulting EPR bench-
mark is then decided using Z3’s MBQI mode. This approach can only be expect to help
where there are EPR-like axioms in the benchmarks, and we did have some which were
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C PL C PLO Z3 PM Z3 PL Z3 PLO
family # # time # time # time # time # time
sl lists 139 139 664 139 20 139 9 139 683 139 29
dl lists 70 70 3352 70 50 70 41 67 12552 70 423
sl nested 63 63 2819 63 427 63 182 56 7068 62 804
sls lists 208 206 14222 207 3086 208 37 203 17245 208 1954
trees 243 232 7185 243 6558 243 663 222 34519 242 8089
soundness 79 78 156 79 49 79 23 79 2781 79 39
sat 14 14 85 14 22 13 21 12 1329 14 109
total 816 802 28484 815 10213 815 976 778 76177 814 11447

Table 2. Comparison of solvers on partially instantiated benchmarks (time in sec.)

heavier on these. We found that on singly linked list and tree benchmarks this hybrid
algorithm significantly outperforms all other solver configurations that we have tried
in our experiments. On the other hand, on nested list benchmarks, which make more
heavy use of purely equational axioms, this technique does not help compared to only
using E-matching because the partial instantiation already yields ground formulas.

The results with our hybrid algorithm are summarized in Column Z3 PM of Ta-
ble 2. Since EPR is a special case of local theories, we also tried our E-matching based
algorithm on these benchmarks. We found that the staged instantiation improves perfor-
mance on these as well. The optimization that help on the uninstantiated benchmarks
also work here. These results are summarized in the same table.

Overall, our experiments indicate that there is a lot of potential in the design of
quantifier modules to further improve the performance of SMT solvers, and at the same
time make them complete on more expressive decidable fragments.

7 Conclusion

We have presented a new algorithm for deciding local theory extensions, a class of the-
ories that plays an important role in verification applications. Our algorithm relies on
existing SMT solver technology so that it can be easily implemented in today’s solvers.
In its simplest form, the algorithm does not require any modifications to the solver it-
self but only trivial syntactic modifications to its input. These are: (1) flattening and
linearizing the extension axioms; and (2) adding trigger annotations to encode locality
constraints for E-matching. In our evaluation we have experimented with different con-
figurations of two SMT solvers, implementing a number of optimizations of our base
line algorithm. Our results suggest interesting directions to further improve the quan-
tifier modules of current SMT solvers, promising better performance and usability for
applications in automated verification.
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