
Noname manuscript No.
(will be inserted by the editor)

On Solving Quantified Bit-Vector Constraints
using Invertibility Conditions

Aina Niemetz · Mathias Preiner · Andrew
Reynolds · Clark Barrett · Cesare Tinelli

the date of receipt and acceptance should be inserted later

Abstract We present a novel approach for solving quantified bit-vector constraints
in Satisfiability Modulo Theories (SMT) based on computing symbolic inverses of
bit-vector operators. We derive conditions that precisely characterize when bit-vector
constraints are invertible for a representative set of bit-vector operators commonly
supported by SMT solvers. We utilize syntax-guided synthesis techniques to aid in
establishing these conditions and verify them independently by using several SMT
solvers. We show that invertibility conditions can be embedded into quantifier in-
stantiations using Hilbert choice expressions and give experimental evidence that
a counterexample-guided approach for quantifier instantiation utilizing these tech-
niques leads to performance improvements with respect to state-of-the-art solvers for
quantified bit-vector constraints.

This work was partially supported by DARPA under awards FA8750-15-C-0113 and FA8650-18-2-7861
and by the National Science Foundation under award 1656926.

Aina Niemetz
Department of Computer Science,
Stanford University

Mathias Preiner
Department of Computer Science,
Stanford University

Andrew Reynolds
Department of Computer Science,
The University of Iowa

Clark Barrett
Department of Computer Science,
Stanford University

Cesare Tinelli
Department of Computer Science,
The University of Iowa

1 Introduction

Many applications in hardware and software verification rely on Satisfiability Modulo
Theories (SMT) solvers for bit-precise reasoning. In recent years, the quantifier-free
fragment of the theory of fixed-size bit-vectors has received a lot of interest. This is
witnessed by the number of applications that generate problems in that fragment, and
by past editions of the annual SMT competition where the corresponding division
consistently attracts the highest number of solver and benchmark entries. Modeling
properties of programs and circuits, e.g., universal safety properties and program in-
variants, however, often requires the use of quantified bit-vector formulas. Despite a
multitude of applications, reasoning efficiently about such formulas is still a major
challenge for automated tools.

The majority of solvers that support quantified bit-vector logics rely on instantiat-
ion-based techniques [8,20,21,24], which aim to find conflicting quantifier-free in-
stances of universally quantified formulas in the input problem, with the goal of prov-
ing the problem unsatisfiable. For that, it is crucial to select good instantiations for
the quantified variables, or else the solver may be overwhelmed by the number of
quantifier-free instances generated. For example, consider the (unsatisfiable) quanti-
fied formula

ψ = ∀x. (x+ s 6≈ t)

where x, s, and t denote bit-vectors of, say, size 32, and x occurs neither in s nor
in t. To prove that ψ is unsatisfiable we can instantiate x with all 232 possible bit-
vector values. However, ideally, we would like to find a proof that requires much
fewer instantiations. In this example, if we instantiate x with the term t− s, denoting
the unique solution of the equation x+ s ≈ t for the variable x, we can immediately
conclude that ψ is unsatisfiable since (t− s) + s 6≈ t simplifies to false.

If we look at the term x+s above as the bit-vector function λx. x+ s, we observe
that the function is invertible, with inverse λy. y − s. Informally then, we say that
the bit-vector operator + is invertible in its first argument. In particular, it is always
invertible in that argument since the equation x+ s ≈ t is always solvable for x.
Since the same argument applies to the term s+x, the operator + is always invertible
in its second argument as well.

Not all the operators in the theory of bit-vectors are invertible in this sense. How-
ever, it is possible to identify quantifier-free conditions on one of their arguments that
precisely characterize when they are invertible in that argument. For example, the
constraint x · s ≈ t is solvable for x if and only if the constraint (−s | s) & t ≈ t
is satisfiable. This is in fact a general property of bit-vector multiplication that al-
ways holds (for any bit-vector size n) for x, s and t [?]. The invertibility condition
(−s | s) & t ≈ t essentially states that the value of t has at least as many right-most
zeroes in its binary representation as the value of s.

We have identified invertibility conditions for a representative set of operators in
the standard theory of bit-vectors supported by SMT solvers. We present a novel ap-
proach for quantifier instantiation of bit-vector formulas that utilizes those invertibil-
ity conditions to generate symbolic instantiations. As an example, consider the quan-
tified formulaϕ = ∀x. (x·s 6≈ t). If the above invertibility condition (−s | s) & t ≈ t

2

is unsatisfiable, we conclude that ϕ is satisfiable since there is no x that makes its
body x · s 6≈ t false. On the other hand, if the invertibility condition is satisfiable, we
know there is some bit-vector value b such that b · s ≈ t holds. Instantiating x in ϕ
with any term k denoting b to produce the quantifier-free formula k · s 6≈ t suffices to
show that ϕ is unsatisfiable. In general, the term k can be always generated automat-
ically from the invertibility condition by using the Hilbert choice operator. Formally,
we show that invertibility conditions can be embedded into quantifier instantiations
using Hilbert’s choice function in a sound manner. This approach has compelling ad-
vantages with respect to previous approaches, as demonstrated by our experimental
results.

More specifically, this paper makes the following contributions.

– We derive and present invertibility conditions for a representative set of bit-vector
operators that allow us to model all bit-vector constraints in the theory of bit-
vectors defined by the SMT-LIB standard. [3].

– We provide details on how invertibility conditions can be automatically synthe-
sized using syntax-guided synthesis (SyGuS) [1] techniques, and make public 162
available challenge problems for SyGuS solvers that are encodings of this task.

– We prove that our approach can efficiently reduce a class of quantified formulas,
which we call unit linear invertible, to quantifier-free constraints.

– Leveraging invertibility conditions, we implement a novel quantifier instantiation
scheme as an extension of the SMT solver CVC4 [2], which shows substantial
improvements over state-of-the-art solvers for quantified bit-vector constraints.

An earlier version of this work appeared at CAV 2018, held as part of FLOC,
in Oxford, UK [?]. This article extends that work with a more thorough description
and listing of invertibility conditions in Section 3, formal proofs of all lemmas and
theorems throughout, new implementation details in Section 4.2 and further details
on our evaluation in Section 5.

Related work. Quantified bit-vector logics are currently supported by the state-of-
the-art SMT solvers Boolector [16], CVC4 [2], Yices 2 [7], and Z3 [6] and a Binary
Decision Diagram (BDD)-based tool called Q3B [14]. Out of these, only CVC4 and
Z3 provide support for combining quantified bit-vectors with other theories, e.g., the
theories of arrays or real arithmetic. Arbitrarily nested quantifiers are handled by all
but Yices 2, which only supports bit-vector formulas of the form ∃x∀y. Q[x,y] [8].
For quantified bit-vectors, CVC4 employs counterexample-guided quantifier instan-
tiation (CEGQI) [21], where concrete models of a set of quantifier-free instances and
the negation of the input formula (the counterexamples) serve as instantiations for the
universal variables. In Z3, model-based quantifier instantiation (MBQI) [10] is com-
bined with a template-based model finding procedure [24]. In contrast to CVC4, Z3
not only relies on concrete counterexamples as candidates for quantifier instantiation
but generalizes these counterexamples to generate symbolic instantiations by select-
ing quantifier-free terms with the same model value. Boolector employs a syntax-
guided synthesis approach to synthesize interpretations for Skolem functions based
on a set of quantifier-free instances of the formula, and uses a counterexample re-
finement loop similar to MBQI [20]. Other counterexample-guided approaches for

3

quantified formulas in SMT solvers have been considered by Bjørner and Janota [4]
and by Reynolds et al. [22], but they have mostly targeted quantified linear arithmetic
and do not specifically address bit-vectors. Quantifier elimination for a fragment of
bit-vectors that covers modular linear arithmetic has been recently addressed by John
and Chakraborty [13]. We do not explore approaches for quantifier elimination in this
paper.

2 Preliminaries

We assume the usual notions and terminology of many-sorted first-order logic with
equality (denoted by≈) (see, e.g., [?,?]). Let S be a set of sort symbols, and for every
sort σ ∈ S, let Xσ be an infinite set of variables of sort σ. We assume that sets Xσ

are pairwise disjoint and define X as the union of sets Xσ . Let Σ be a signature
consisting of a set Σs ⊆ S of sort symbols and a set Σf of interpreted (and sorted)
function symbols fσ1···σnσ with arity n ≥ 0 and σ1, ..., σn, σ ∈ Σs. We assume
that a signature Σ includes a Boolean sort Bool and the Boolean constants > (true)
and ⊥ (false). A Σ-interpretation maps: each σ ∈ Σs to a non-empty set σI (the
domain of I), with BoolI = {>,⊥}; each x ∈ Xσ to an element xI ∈ σI ; and each
fσ1···σnσ ∈ Σf to a total function fI: σI1 ×...×σIn → σI if n > 0, and to an element
in σI if n = 0. If x ∈ Xσ and v ∈ σI , we denote by I[x 7→ v] the interpretation
that maps x to v and is otherwise identical to I. We assume the usual definition of
well-sorted terms, literals, and formulas (where formulas are terms of sort Bool) with
variables in X and symbols in Σ, and refer to them as Σ-terms, Σ-atoms, and so on.
We also assume the usual definition of free variables of a formula. A closed formula
is a Σ-formula without free variables. We adopt the usual inductive definition of the
meaning, or value, tI of a Σ-term t in a Σ-interpretation I and of the satisfiability
relation |= between Σ-interpretations and Σ-formulas.

2.1 Notation

We denote by Lit(ϕ) the set of Σ-literals that either appear in, or are negations of
atomic formulas appearing in, Σ-formula ϕ. Let x = (x1, ..., xn) be a (possibly
empty) tuple of distinct variables. We write Qx.ϕ with Q ∈ {∀,∃} for a quantified
formula Qx1 · · ·Qxn.ϕ. For a Σ-term or Σ-formula e, we denote the free variables
of e (defined as usual) as FV(e); we write e[x] to indicate that the variables of x
occur free in e (i.e., x ⊆ FV(e)); in addition, if t = (t1, ..., tn) is a tuple of Σ-
terms, e{x 7→ t} denotes the term or formula obtained from e by simultaneously
replacing each occurrence of xi in e by ti for i = 1, . . . , n. Abusing the notation,
when the relevant free variables x of e are clear from context, we write e[t] as an
abbreviation of e{x 7→ t}. When convenient, we identify a finite set of formulas
with the conjunction of its elements.

Given a Σ-formula ϕ[x] with x ∈ Xσ , we use Hilbert’s choice operator ε [12] to
describe values (i.e. domain elements) for x for which ϕ[x] is satisfiable. Formally,
we define a choice term εx. ϕ as a term of sort σ where x is bound by ε. In every

4

interpretation I, εx. ϕ denotes some value v ∈ σI such that I[x 7→ v] satisfies ϕ if
such values exist, and denotes an arbitrary element of σI otherwise. This means that
the formula ∃x. ϕ[x] ⇔ ϕ[εx. ϕ] is satisfied by every interpretation. For example,
in any interpretation I extending the standard interpretation of integer arithmetic,
εx. x > 0 denotes some integer greater than 0; εx. x > y denotes some value greater
than yI . We remark that in the standard definition of the choice binder, the meaning
of εx. ϕ is invariant modulo logical equivalence, that is, the equality εx. ϕ ≈ εx. ψ
is satisfied by every interpretation in which the formulas ϕ and ψ are equivalent.
However, the correctness of the work we present here does not rely on this invariant
property.

We say that a formula is quantifier-free if it contains no quantifiers and is binder-
free if it contains no quantifiers and no choice operators.

2.2 Theories

A theory T is a pair (Σ, I), where Σ is a signature and I is a non-empty class of
Σ-interpretations (the models of T) that is closed under variable reassignment, i.e.,
every Σ-interpretation that only differs from an I ∈ I in how it interprets variables
is also in I . A Σ-formula ϕ is T -satisfiable (resp. T -unsatisfiable) if it is satisfied by
some (resp. no) interpretation in I; it is T -valid if it is satisfied by all interpretations in
I . Two Σ-formulas ϕ and ψ are T -equivalent if the formula ϕ⇔ ψ is T -valid. A set
Γ of Σ-formulas is T -satisfiable (resp., T -unsatisfiable) if there is an interpretation
(resp., no interpretation) in I that satisfies all the formulas in Γ . The set Γ T -entails
ϕ if Γ ∪ {¬ϕ} is T -unsatisfiable. A theory T is a complete theory if for all closed
Σ-formulas ϕ, ϕ is either T -valid or T -unsatisfiable. A choice term εx. ϕ is T -valid
if ∃x. ϕ is T -valid. We refer to a term t as ε-T -valid if all occurrences of choice
terms in t are T -valid. We will sometimes omit T from the definitions above when
the theory T is understood from context.

2.3 The theory of fixed-size bit-vectors

We will focus on the theory TBV = (ΣBV , IBV) of fixed-size bit-vectors as defined
by the SMT-LIB 2 standard [3]. The signature ΣBV includes a unique sort for each
positive bit-vector width n, denoted here as σ[n]. Similarly,X[n] is the set of bit-vector
variables of sort σ[n], and XBV is the union of all sets X[n]. We assume that ΣBV
includes all bit-vector constants of sort σ[n] for each n and represent those constants
as bit-strings of 0s and 1s. All interpretations I ∈ IBV are identical except for the
value they assign to variables.1 They interpret sort and function symbols as specified
in SMT-LIB 2. All function symbols in Σf

BV are overloaded for every σ[n] ∈ Σs
BV .

We denote aΣBV -term (or bit-vector term) t of width n as t[n] when we want to spec-
ify its bit-width explicitly. We use maxs[n] or mins[n] for the maximum or minimum
signed value of width n, e.g., maxs[4] = 0111 and mins[4] = 1000. To simplify the
notation we will sometimes denote bit-vector constants by the corresponding natural

1 Note that this makes this theory complete in the sense of Section 2.2.

5

Symbol SMT-LIB Syntax Sort
≈, <u, >u, <s, >s =, bvult, bvugt, bvslt, bvsgt σ[n] × σ[n] → Bool

∼ , − bvnot, bvneg σ[n] → σ[n]
&, |, <<, >>, >>a bvand, bvor, bvshl, bvlshr, bvashr σ[n] × σ[n] → σ[n]
+, ·, mod, ÷ bvadd, bvmul, bvurem, bvudiv σ[n] × σ[n] → σ[n]
◦ concat σ[n] × σ[m] → σ[n+m]

[u : l] extract σ[n] → σ[u−l+1], 0 ≤ l ≤ u < n

Table 1: Set of considered bit-vector operators with SMT-LIB 2 syntax.

number in {0, . . . , 2n−1} (with a number c corresponding to a bit-string b if b has
value c when seen as a binary number), adding the bit-width as a subscript; e.g., we
will use 2[4] for 0010. The width of a bit-vector sort or term is given by the function κ,
e.g., κ(σ[n]) = n and κ(t[n]) = n. We will omit the bit-width from the notation when
it is clear from the context or not important. We will use the letters s and t to denote
bit-vector terms in general and the letters x and y to denote bit-vector variables.

Without loss of generality, we consider a restricted set of bit-vector function sym-
bols (or bit-vector operators) Σf

BV as listed in Table 1. The selection of operators in
this set is arbitrary but complete in the sense that it suffices to express all bit-vector
operators defined in SMT-LIB 2. This means that our approach is not really restricted
to this particular set of operators as it can be lifted to any other set of bit-vector
operators.

3 Invertibility Conditions for Bit-Vector Constraints

This section formally introduces the concept of an invertibility condition and shows
that such conditions can be used to construct symbolic solutions for a class of quan-
tifier-free bit-vector constraints that satisfy a syntactic condition we call linearity.

Definition 1 (Linear Literal) A ΣBV -literal `[x] is linear in variable x if it has a
single occurrence of x.

Consider a bit-vector literal x+ s ≈ t and assume that we want to solve for x. If
the literal is linear in x, a general solution for x is given by the inverse of bit-vector
addition over equality: x = t− s. Computing the inverse of a bit-vector operation is
not always possible. For example, recalling that the semantics of arithmetic operators
over bit-vectors of size n is that of integer arithmetic modulo n, for literals of the
form x · s ≈ t, an inverse always exists provided that s always evaluates to a bit-
vector denoting an odd integer.2 Otherwise, there are values for s and t where no
such inverse exists, e.g., x · 2 ≈ 3.

Even if a bit-vector operation may admit no unconditional inverse in general, it is
possible to identify the condition under which the operation is invertible. For instance,
as we mentioned earlier, it is possible to prove that the multiplication constraint x·s ≈
t with x /∈ FV(s) ∪ FV(t) is invertible for x exactly when the number of right-most

2 That is, provided that s is equivalent to a term of the form 2[n] · s′ + 1[n].

6

zeroes in s is no greater than the number of right-most zeroes in t. This invertibility
condition can be expressed by the formula (−s | s) & t ≈ t. Note that the operators
−, ∼ , and + for which a general inverse always exists can be seen as having > as
their invertibility condition.

Definition 2 (Invertibility Condition) Let `[x] be a ΣBV -literal. A binder-free ΣBV -
formula φ is an invertibility condition for x in ` if FV(φ) ⊆ FV(`) \ {x} and the
formula φ⇔ ∃x. ` is TBV -valid.

An invertibility condition for a literal `[x] provides the exact conditions under
which ` is solvable for x. We call it an “invertibility” condition because we can use
Hilbert choice terms to express all such conditional solutions with a single symbolic
term, that is, a term whose possible values are exactly the solutions for x in `. Recall
that a choice term εx. ϕ denotes a solution of the formula ϕ[x] for x if the formula
is satisfiable, and denotes an arbitrary value otherwise. We can use the choice term
εx. (φ ⇒ `) to describe inverse solutions of a literal `[x] with invertibility condition
φ. For example, for the general case of bit-vector multiplication over equality the
choice term is defined as εx. ((−s | s) & t ≈ t ⇒ x · s ≈ t). We favor the choice
term εx. (φ⇒ `) over the simpler choice term εx. ` because φ⇒ ` has a solution in
every model of TBV , whereas ` may have no solution.

Lemma 3 Let φ be an invertibility condition for an ε-valid ΣBV -literal `[x] and let
r be the term εx. (φ⇒ `). The term r is ε-valid and `[r]⇔ ∃x. ` is TBV -valid.

Proof First, we show that r = εx. (φ ⇒ `) is ε-valid, where φ is an invertibility
condition for x in `[x]. To do so, since ` is ε-valid, we only need to show that ∃x. φ⇒
` holds in all models of TBV . Since φ is an invertibility condition for `, we have that
x 6∈ FV(φ), and hence, this formula is equivalent to φ ⇒ ∃x. `. Let I be any model
of TBV that satisfies φ. Since φ is an invertibility condition for `, by Definition 2, I
satisfies ∃x. ` as well. Thus, ∃x. φ ⇒ ` holds in all models of TBV , and hence, r is
ε-valid.

To show `[r] ⇔ ∃x. ` where r is εx. (φ ⇒ `), first consider direction ∃x. ` ⇒
`[r]. Let I be any model of TBV that satisfies ∃x. `. By definition of ε, I also satisfies
`[εx. `]. Since φ is an invertibility condition for `, from Def. 2 we have that φ⇔ ∃x. `
holds in all models of TBV , and thus I also satisfies φ. Hence, since I satisfies
`[εx. `], it also satifies `[εx. (φ⇒ `)], which is `[r]. Thus, ∃x. `⇒ `[r] is TBV -valid.
The other direction `[r]⇒ ∃x. ` trivially holds in all models of TBV . ut

Intuitively, when `[x] is satisfiable in some model of the theory, the value of
the choice term εx. (φ ⇒ `) in that model is a value for x that is a solution of `.
Conversely, if ` is satisfiable under no conditions in some model, then the value of
εx. (φ⇒ `) is still a solution for φ⇒ ` because φ is false in that model.

3.1 Solving linear invertible constraints

Now, suppose a ΣBV -literal ` is linear in variable x, but x occurs arbitrarily deep in
it. Consider, for example, a literal s1 ·(s2+x) ≈ twhere x does not occur in s1, s2 or

7

solve(x, e[x] ./ t):

If e = x

If ./ ∈ {≈} then return t
else return εy. (getIC(x, x ./ t) ⇒ y ./ t).

else e = �(e1, . . . , ei[x], . . . , en) with n > 0 and x 6∈ FV(ej) for all j 6= i.

Let d[x′] = �(e1, . . . , ei−1, x
′, ei+1, . . . , en) where x′ is a fresh variable.

If ./ ∈ {≈, 6≈} and � ∈ {∼ ,−,+}
then let t′ = getInverse(x′, d[x′] ≈ t) and return solve(x, ei ./ t′)

else let φ = getIC(x′, d[x′] ./ t) and return solve(x, ei ≈ εy. (φ ⇒ d[y] ./ t)).

Fig. 1: Function solve for constructing a symbolic solution for x given a linear literal
e[x] ./ t.

t. We can solve this literal for x by recursively computing the (possibly conditional)
inverses of all bit-vector operations that involve x. That is, first we solve s1 · x′ ≈ t
for x′, where x′ is a fresh variable abstracting s2 + x, which yields the choice term

x′ = εy. ((−s1 | s1) & t ≈ t⇒ s1 · y ≈ t) .

Then, we solve s2 + x ≈ x′ for x, which yields the solution

x = x′ − s2 = εy. ((−s1 | s1) & t ≈ t⇒ s1 · y ≈ t)− s2 .

Figure 1 describes in pseudocode the procedure to solve for x in an arbitrary
literal `[x] = e[x] ./ t that is linear in x. We assume that e[x] is built over the
set of bit-vector operators listed in Table 1. Function solve recursively constructs
an analytic solution by computing (conditional) inverses as follows. Let function
getInverse(x, `[x]) (see Table 2) return a term t′ that is the inverse of x in `, i.e., such
that the equivalence ` ⇔ x ≈ t′ is valid. Furthermore, let function getIC(x, `[x])
return the invertibility condition φ for x in `. If e[x] has the form �(e1, . . . , en)
with n > 0, x must occur in exactly one of the subterms e1, . . . , en given that
e is linear in x. Let d be the term obtained from e by replacing ei (the subterm
containing x) with a fresh variable x′. We solve for subterm ei[x], treating it as a
variable x′, and compute an inverse getInverse(x′, d[x′] ≈ t), if it exists. Note that
for a disequality e 6≈ t, it suffices to compute the inverse over equality and propa-
gate the disequality down. (For example, for ei[x] + s 6≈ t, we compute the inverse
t′ = getInverse(x′, x′ + s ≈ t) = t − s and recurse on ei[x] 6≈ t′.) If no in-
verse for e[x] ./ t exists, we determine the invertibility condition φ for d[x′] via
getIC(x′, d[x′] ./ t), construct the choice term εy. (φ ⇒ d[y] ./ t), and set it equal
to ei[x], before recursively solving for x. If e = x and the given literal is an equality,
we have reached the base case and return t as the solution for x. Note that in Figure 1,
for simplicity, we omitted one case for which an inverse can be determined, namely
x · c ≈ t where c is an odd constant.

Definition 4 (Linear Invertible Literal) Literal �(e1, . . . , ei[x], . . . , en) ./ t is linear
invertible in x if it is linear in x and if for each function application in ei[x], if one of
its arguments contains x, then the function operator is in {−,+,∼}.

8

In other words, only the topmost function symbol � in a linear invertible literal
may be conditionally invertible. For example, (s+ x) · t ≈ r and s · (t+ x) <u r are
linear invertible in x whereas (s | x) · t ≈ r and (s · x) + t <u r are not. Note that
some equalities such as (x · s) + t ≈ r are not linear invertible by this definition, but
can easily be shown to be equivalent to linear invertible ones, i.e. x · s ≈ r − t.

Lemma 5 If x occurs only beneath operators that are always invertible in e[x], then
for any term t not containing x, ∃x. e[x] ≈ t is equivalent to >.

Proof The proof is by induction on the structure of e[x]. In the base case, if e[x]
is x, then the statement holds trivially. For the inductive case, assume it is true for
some e[x]. Let e′[x] be �(. . . , e[x], . . .). Since � is always invertible, ∃x. e′[x] ≈ t is
equivalent to ∃x. e[x] ≈ t′, for some t′ not containing x. But this is equivalent to >
by the induction hypothesis. ut

The procedure solve is correct in the following sense.

Theorem 6 Let `[x] be an ε-valid ΣBV -literal linear in x, and let r = solve(x, `) be
the term returned by function solve. Then (i) r is ε-valid, (ii) FV(r) ⊆ FV(`) \ {x}
and (iii) `[r]⇔ ∃x. ` is TBV -valid when `[x] is linear invertible in x.

Proof We assume without loss of generality that `[x] is of the form e[x] ./ t. Since
` is linear with respect to x, we have that x 6∈ FV(t). We show all statements of the
theorem by structural induction on the term e[x].

Consider the case when e is x, which implies that e ./ t is linear invertible in
x. If ./ is ≈, then r is t. We have that r is ε-valid, x 6∈ FV(r) since x 6∈ FV(t)
and t ≈ t ⇔ ∃x. x ≈ t holds, i.e. is satisfied, by all models of TBV . Otherwise,
when ./ is not ≈, we have that r is εy. (ψ ⇒ y ./ t) where ψ is getIC(x′, x′ ./ t).
By definition of getIC, we have that FV(ψ) ⊆ FV(t), and hence, FV(r) is a subset
of FV(t), which is equal to FV(`[x]) \ {x}. Furthermore, since ψ is an invertibility
condition for x′ in x′ ./ t, by Lemma 3, r is ε-valid and r ./ t ⇔ ∃x. x ./ t is
TBV -valid.

Otherwise, e must be of the form �(e1, ..., ei[x], ..., en) for n > 0, where x 6∈
FV(ej) for each i 6= j. Let d[x′] be �(e1, ..., ei−1, x′, ei+1, ...en), where notice that
x 6∈ FV(d[x′]). We have that r is solve(x, ei[x] ./i ti) for some relation ./i and term
ti, where ti is getInverse(x′, d[x′] ≈ t) or εy. (getIC(x′, d[x′] ./ t) ⇒ d[y] ./ t).
In both cases, by definition of getInverse (see Table 2) and getIC, we have that ti
is ε-valid due to Lemma 3 and since ` is ε-valid. Also, in both cases, we have that
FV(ti) ⊆ FV(t)∪FV(d[x′])\{x′} ⊆ FV(`)\{x}.Since e ./ t is ε-valid and linear
invertible in x and x 6∈ FV(ti), the literal ei ./i ti is ε-valid and linear invertible
in x as well. Thus, by the induction hypothesis, we have that r is ε-valid, FV(r) ⊆
FV(ei[x] ./i ti) \ {x} and the formula ei[r] ./i ti ⇔ ∃x. ei[x] ./i ti holds in all
models of TBV .

Property (i) holds since r is ε-valid. To show property (ii), sinceFV(r) ⊆ FV(ei ./i
ti) \ {x} and since FV(ei) ⊆ FV(`) and FV(ti) ⊆ FV(`), we have that FV(r) ⊆
FV(`) \ {x}.

It remains to show property (iii), that e[r] ./ t ⇔ ∃x. e ./ t is TBV -valid when
e[x] ./ t is linear invertible in x. In the case that ./ ∈ {≈, 6≈} and � ∈ {∼ ,−,+},

9

we have that ./i is ./ and ti is getInverse(x′, d[x′] ≈ t). By definition of getInverse
and since ./ ∈ {≈, 6≈}, we have that ei ./ ti and d[ei] ./ t are equivalent. Since
d[ei] = e, the latter literal is e ./ t. Thus, since ei[r] ./ ti ⇔ ∃x. ei ./ ti, we
have that e[r] ./ t ⇔ ∃x. e ./ t. Otherwise, let ψ = getIC(x′, d[x′] ./ t); we have
that ./i is ≈ and ti is εy. (ψ ⇒ d[y] ./ t). Since ψ is an invertibility condition
for x′ in d[x′] ./ t, by Lemma 3, we have that d[ti] ./ t ⇔ ∃x′. d[x′] ./ t holds
in all models of TBV . Clearly e[r] ./ t ⇒ ∃x. e ./ t holds in all models of TBV .
To show the other direction of the implication, consider any model I of TBV that
satisfies ∃x. e ./ t. Since e = d[ei], we have that I satisfies ∃x′. d[x′] ./ t as well.
Thus, since d[ti] ./ t ⇔ ∃x′. d[x′] ./ t holds in all models of TBV , we have that I
satisfies d[ti] ./ t. Since e[x] is linear invertible in x, we have that x occurs only under
operators that are always invertible in ei[x], and thus by Lemma 5, ∃x. ei[x] ≈ ti is
equivalent to>. Since ei[r] ≈ ti ⇔ ∃x. ei[x] ≈ ti holds by the induction hypothesis,
we have that I satisfies ei[r] ≈ ti. Since I satisfies d[ti] ./ t, we have that it also
satisfies d[ei[r]] ./ t, which is e[r] ./ t. Thus, e[r] ./ t ⇐ ∃x. e ./ t holds in all
models of TBV . ut

We will use solve for choosing terms for quantifier instantiation, where the above
properties are important for the correctness and completeness properties of our al-
gorithm. Notice that this method may be applied to any literal that is linear in x,
although it only has the third property when that literal is linear invertible. In the
context of quantifier instantiation, the solve method is generally only effective when
used on literals that are linear invertible.

3.2 Invertibility conditions

Table 2 shows the rules for inverse computation for bit-vector operators −, ∼ , +,
and · over equality. Note that for the first three operators, these inverses are general
inverses. For bit-vector multiplication, however, the given inverse is not, since it is
tied to the condition that s evaluates to an odd value.

Tables 3-7 list the invertibility conditions for linear literals in x with bit-vector
operators from the set {−,∼ ,+, ·,mod,÷,&, |, >>,>>a, <<, ◦} and relational op-
erators ./ from the set {≈, 6≈, <u, >u,≤u,≥u, <s, >s,≤s,≥s}. Some invertibility
conditions are >, meaning that the literal is always solvable for x. Others have an
invertibility condition that is the same as the literal itself but with x replaced by a
term not containing x. For example, the invertibility condition for equality with di-
vision x ÷ s ≈ t is (s · t) ÷ s ≈ t. In other words, x ÷ s ≈ t is solvable for x
if and only if (s · t) is a solution. Other invertibility conditions have no structural
similarities with their corresponding literal. For example, the invertibility condition
for multiplication with equality does not itself involve multiplication. A majority of
the invertibility conditions for disequalities state explicit corner cases where the con-
straint is not solvable, whereas for inequalities the majority encode boundary checks.
We discuss in Subsection 3.3 how we determined these invertibility conditions.

The idea of computing the inverse of bit-vector operators has been used suc-
cessfully in a recent local search approach for solving quantifier-free bit-vector con-
straints by Niemetz et al. [17]. There, target values are propagated via inverse value

10

`[x] −x ≈ t ∼x ≈ t x+ s ≈ t x · s ≈ t with s odd

getInverse(x, `[x]) −t ∼t t− s t · s−1 with s · s−1 ≈ 1

Table 2: Inverse computation for bit-vector operators {−,∼ ,+, ·} over equality
(given modulo commutativity for addition and multiplication).

`[x] ≈ 6≈

x ./ t

> >−x ./ t
∼x ./ t

x+ s ./ t

x · s ./ t (−s | s) & t ≈ t s 6≈ 0 ∨ t 6≈ 0

x mod s ./ t ∼(−s) ≥u t s 6≈ 1 ∨ t 6≈ 0

s mod x ./ t (t+ t− s) & s ≥u t s 6≈ 0 ∨ t 6≈ 0

x÷ s ./ t (s · t)÷ s ≈ t s 6≈ 0 ∨ t 6≈ ∼0

s÷ x ./ t s÷ (s÷ t) ≈ t
{
s & t ≈ 0 for κ(s) = 1

> otherwise

x & s ./ t t & s ≈ t s 6≈ 0 ∨ t 6≈ 0

x | s ./ t t | s ≈ t s 6≈ ∼0 ∨ t 6≈ ∼0
x>>s ./ t (t<<s)>>s ≈ t t 6≈ 0 ∨ s <u κ(s)

s>>x ./ t
κ(s)∨
i=0

s>> i ≈ t s 6≈ 0 ∨ t 6≈ 0

x>>a s ./ t (s <u κ(s) ⇒ (t<<s)>>a s ≈ t) ∧ >
(s ≥u κ(s) ⇒ (t ≈ ∼0 ∨ t ≈ 0))

s>>a x ./ t
κ(s)∨
i=0

s>>a i ≈ t (t 6≈ 0 ∨ s 6≈ 0) ∧
(t 6≈ ∼0 ∨ s 6≈ ∼0)

x<<s ./ t (t>>s)<<s ≈ t t 6≈ 0 ∨ s <u κ(s)

s<<x ./ t
κ(s)∨
i=0

s<< i ≈ t s 6≈ 0 ∨ t 6≈ 0

x ◦ s ./ t s ≈ t[κ(s)− 1 : 0] >
s ◦ x ./ t s ≈ t[κ(t)− 1 : κ(t)− κ(s)] >

Table 3: Conditions for the invertibility of bit-vector operators over equality and dis-
equality (given modulo commutativity for operators +, ·, & and |).

computation. In contrast, our approach does not determine single inverse values based
on concrete assignments, but rather aims at finding analytic, i.e., symbolic, solu-
tions through the generation of conditional inverses. In an extended version of that
work [18], the same authors present rules for inverse value computation over equal-
ity but they provide no proof of correctness for them. Here, we define invertibility
conditions not only over equality but also disequality and (un)signed inequality, and
verify their correctness up to a certain bit-width.

11

`[x] <u >u

x ./ t

t 6≈ 0 t 6≈ ∼0−x ./ t
∼x ./ t

x+ s ./ t

x · s ./ t t 6≈ 0 t <u −s | s
x mod s ./ t t 6≈ 0 t <u ∼(−s)
s mod x ./ t t 6≈ 0 t <u s

x÷ s ./ t 0 <u s ∧ 0 <u t ∼0÷ s >u t

s÷ x ./ t 0 <u ∼(−t & s) ∧ 0 <u t t <u ∼0
x & s ./ t t 6≈ 0 t <u s

x | s ./ t s <u t t <u ∼0
x>>s ./ t t 6≈ 0 t <u ∼s>>s
s>>x ./ t t 6≈ 0 t <u s

x>>a s ./ t t 6≈ 0 t <u ∼0
s>>a x ./ t (s <u t ∨ s ≥s 0) ∧ t 6≈ 0 s <s (s>>∼t) ∨ t <u s

x<<s ./ t t 6≈ 0 t <u ∼0<<s

s<<x ./ t t 6≈ 0
κ(s)∨
i=0

(s<< i) >u t

x ◦ s ./ t tx ≈ 0 ⇒ s <u ts tx ≈ ∼0 ⇒ s >u ts

where tx = t[κ(t)− 1 : κ(t)− κ(x)], ts = t[κ(s)− 1 : 0]

s ◦ x ./ t s ≤u ts ∧ (s ≈ ts ⇒ tx 6≈ 0) s ≥u ts ∧ s ≈ ts ⇒ tx 6≈ ∼0
where tx = t[κ(x)− 1 : 0], ts = t[κ(t)− 1 : κ(t)− κ(s)]

Table 4: Conditions for the invertibility of bit-vector operators over unsigned inequal-
ities <u and >u (given modulo commutativity for operators +, ·, & and |).

3.3 Synthesizing Invertibility Conditions

We have identified invertibility conditions for all bit-vector operators in ΣBV where
no general inverse exists (162 in total). A noteworthy aspect of this work is that we
were able to leverage syntax-guided synthesis (SyGuS) technology [1] to help us do
that. The reason is that the problem of finding invertibility conditions for a literal of
the form x � s ./ t (or, symmetrically, s � x ./ t) linear in x can be recast as a SyGuS
problem by asking whether there exists a binary Boolean function C such that the
(second-order) bit-vector formula

∃C∀s∀t. (∃x. x � s ./ t)⇔ C(s, t)

is satisfiable. If a SyGuS solver succeeds in synthesizing the function C, we can use
it as the invertibility condition for x � s ./ t. To simplify the SyGuS problem we
chose a bit-width of 4 for x, s, and t and eliminated the quantification over x in the
formula above by by expanding it to

∃C∀s∀t. (
15∨
i=0

i � s ./ t)⇔ C(s, t) (1)

12

`[x] ≤u ≥u

x ./ t

> >−x ./ t
∼x ./ t

x+ s ./ t

x · s ./ t > −s | s ≥u t

x mod s ./ t > ∼(−s) ≥u t

s mod x ./ t > (t+ t− s) & s ≥u t ∨ t <u s

x÷ s ./ t s | t ≥u ∼(−s) (s · t)÷ t & s ≈ s
s÷ x ./ t 0 <u ∼s | t >
x & s ./ t > s ≥u t

x | s ./ t t ≥u s >
x>>s ./ t > (t<<s)>>s ≈ t
s>>x ./ t > s ≥u t

x>>a s ./ t > >
s>>a x ./ t s <u mins ∨ t ≥u s s ≥u ∼s ∨ s ≥u t

x<<s ./ t > ∼0<<s ≥u t

s<<x ./ t >
κ(s)∨
i=0

(s<< i) ≥u t

x ◦ s ./ t tx ≈ 0 ⇒ s ≤u ts tx ≈ ∼0 ⇒ s ≥u ts

where tx = t[κ(t)− 1 : κ(t)− κ(x)], ts = t[κ(s)− 1 : 0]

s ◦ x ./ t s ≤u ts s ≥u ts

where tx = t[κ(x)− 1 : 0], ts = t[κ(t)− 1 : κ(t)− κ(s)]

Table 5: Conditions for the invertibility of bit-vector operators over unsigned inequal-
ities ≤u and ≥u (given modulo commutativity for operators +, ·, & and |).

Since the search space for SyGuS solvers heavily depends on the input grammar
(which defines the solution space for C), we decided to use two grammars with the
same set of Boolean connectives but different sets of bit-vector operators:

Or = {¬,∧,≈, <u, <s, 0,mins,maxs, s, t,∼ ,−,&, |}
Og = {¬,∧,∨,≈, <u, <s,≥u,≥s, 0,mins,maxs, s, t,∼ ,+,−,&, |, >>,<<}

Note that s and t, which we have used until now as metavariables denoting arbitrary
terms, as in (1), are to be understood as free (i.e., uninterpreted) constants in the two
sets above. We call Or the restricted grammar and Og the general grammar.

The selection of bit-vector constants in the grammar turned out to be crucial for
finding solutions; for example, by adding mins and maxs we were able to synthesize
substantially more invertibility conditions for signed inequalities. For each of the two
sets of operators, we generated 140 SyGuS problems,3 one for each combination
of bit-vector operator � ∈ {·, mod, ÷, &, |, >>, >>a, <<} over relation ./ ∈ {≈,
6≈, <u, ≤u, >u, ≥u, <s, ≤s, >s, ≥s}, and used the SyGuS extension of the CVC4
solver [?] to solve these problems.

3 Available at https://cvc4.cs.stanford.edu/papers/CAV2018-QBV/

13

https://cvc4.cs.stanford.edu/papers/CAV2018-QBV/

`[x] <s >s

x ./ t

t 6≈ mins t 6≈ maxs
−x ./ t
∼x ./ t

x+ s ./ t

x · s ./ t ∼(−t) & (−s | s) <s t t <s t− ((s | t) | −s)
x mod s ./ t ∼t <s (−s | −t) (s >s 0 ⇒ t <s ∼(−s)) ∧

(s ≤s 0 ⇒ t 6≈ maxs) ∧
(t 6≈ 0 ∨ s 6≈ 1)

s mod x ./ t s <s t ∨ 0 <s t (s ≥s 0 ⇒ s >s t) ∧
(s <s 0 ⇒ ((s− 1)>> 1) >s t)

x÷ s ./ t t ≤s 0 ⇒ mins ÷ s <s t ∼0÷ s >s t ∨ maxs ÷ s >s t

s÷ x ./ t s <s t ∨ t ≥s 0


s >s t for κ(s) = 1

(s ≥s 0 ⇒ s >s t) ∧ otherwise
(s <s 0 ⇒ s>> 1 >s t)

x & s ./ t ∼(−t) & s <s t t <s s & maxs
x | s ./ t ∼(s− t) | s <s t t <s (s | maxs)
s | x ./ t

x>>s ./ t ∼(−t)>>s <s t t <s (maxs<<s)>>s

s>>x ./ t s <s t ∨ 0 <s t (s <s 0 ⇒ s>> 1 >s t) ∧
(s ≥s 0 ⇒ s >s t)

x>>a s ./ t mins>>a s <s t t <s maxs>>s

s>>a x ./ t s <s t ∨ 0 <s t t <s s & maxs ∧ t <s s | maxs
x<<s ./ t (mins>>s)<<s <s t t <s (maxs<<s) & maxs

s<<x ./ t mins<<s <u t+ mins
κ(s)∨
i=0

(s<< i) >s t

x ◦ s ./ t tx ≈ mins ⇒ s <u ts tx ≈ maxs ⇒ s >u ts

where tx = t[κ(t)− 1 : κ(t)− κ(x)], ts = t[κ(s)− 1 : 0]

s ◦ x ./ t (s ≤s ts) ∧ (s ≈ ts ⇒ tx 6≈ 0) (s ≥s ts) ∧ (s ≈ ts ⇒ tx 6≈ ∼0)
where tx = t[κ(x)− 1 : 0], ts = t[κ(t)− 1 : κ(t)− κ(s)]

Table 6: Conditions for the invertibility of bit-vector operators over signed inequali-
ties <s and >s (given modulo commutativity for operators +, ·, & and |).

Using operators Or (Og) we were able to synthesize 98 (116) out of 140 invert-
ibility conditions, with 118 unique solutions overall. When we found more than one
solution for a condition (either with operators Or and Og , or manually) we chose the
one that involved the smaller number of operator applications. Thus, we ended up
using 79 out of 118 synthesized conditions and 83 manually crafted conditions.

In some cases, the SyGuS approach was able to synthesize invertibility conditions
that were smaller, in the sense of containing a smaller number of operator applica-
tions, than those we had manually crafted. For example, we manually defined the
invertibility condition for x · s ≈ t as (t ≈ 0) ∨ ((t & −t) ≥u (s & −s) ∧ (s 6≈ 0)).
With SyGuS we obtained ((−s | s) & t) ≈ t. For some other cases, however, the
synthesized solution involved more bit-vector operators than needed. For example,

14

`[x] ≤s ≥s

x ./ t

> >−x ./ t
∼x ./ t

x+ s ./ t

x · s ./ t ∼(s ≈ 0 ∧ t <s s) (−s | s) & maxs ≥s t

x mod s ./ t ∼0 <s −s & t t <s s ∨ 0 ≥s s

s mod x ./ t t <u mins ∨ t ≥s s (s ≥s 0 ⇒ s ≥s t) ∧
((s <s 0 ∧ t ≥s 0) ⇒ s− t >u t)

x÷ s ./ t ((s · t)÷ s ≈ t) ∨ (∼0÷ s ≥s t) ∨ (maxs ÷ s ≥s t)

(t ≤s 0 ⇒ mins ÷ s <s t)

s÷ x ./ t t ≥s ∼0 ∨ t ≥s s (s ≥s 0 ⇒ s ≥s t) ∧
(s <s 0 ⇒ s>> 1 ≥s t)

x & s ./ t s ≥u t & mins s & t ≈ t ∨ t <s (t− s) & s

x | s ./ t t ≥s s | mins s ≥s s & t

x>>s ./ t t ≥s t>>s s 6≈ 0 ⇒ ∼0>>s ≥s t

s>>x ./ t t <u mins ∨ t ≥s s (s <s 0 ⇒ s>> 1 ≥s t) ∧
(s ≥s 0 ⇒ s ≥s t)

x>>a s ./ t t ≥s ∼(maxs>>s) maxs>>s ≥s t

s>>a x ./ t t ≥s 0 ∨ t ≥s s t ≥u ∼t ∨ s ≥s t

x<<s ./ t t>>(t>>s) <u mins (maxs<<s) & maxs ≥s t

s<<x ./ t t>>s <u mins
κ(s)∨
i=0

(s<< i) ≥s t

x ◦ s ./ t tx ≈ mins ⇒ s ≤u ts tx ≈ maxs ⇒ s ≥u ts

where tx = t[κ(t)− 1 : κ(t)− κ(x)], ts = t[κ(s)− 1 : 0]

s ◦ x ./ t s ≤s ts s ≥s ts

where tx = t[κ(x)− 1 : 0], ts = t[κ(t)− 1 : κ(t)− κ(s)]

Table 7: Conditions for the invertibility of bit-vector operators over signed inequali-
ties ≤s and ≥s (given modulo commutativity for operators +, ·, & and |).

for x mod s 6≈ t we manually defined the invertibility condition (s 6≈ 1) ∨ (t 6≈ 0),
whereas SyGuS produced the solution ∼(−s) | t 6≈ 0. For the majority of invert-
ibility conditions, finding a solution did not require more than one hour of CPU time
on an Intel Xeon E5-2637 with 3.5GHz and a memory limit of 8GB. Interestingly,
the most time-consuming synthesis task (over 107 hours of CPU time) was finding
the condition ((t + t) − s) & s ≥u t for s mod x ≈ t. A small number of syn-
thesized solutions were correct only for bit-width 4 (we explain how solutions were
checked in Section 3.4 below). An example incorrect solution is (∼s<<s)<<s <s t
for x ÷ s <s t. In total, we found 6 width-dependent synthesized solutions, all of
them for bit-vector operators ÷ and mod. For those, we used the manually crafted
invertibility conditions instead.

15

3.4 Verifying Invertibility Conditions

We verified the correctness of all 162 invertibility conditions for bit-widths from 1
to 65 by checking, for each bit-width, the TBV -unsatisfiability of the (quantified)
formula

¬(φ⇔ ∃x. `[x])

where ` ranges over the literals in Tables 3–7 with s and t replaced by fresh variables,
and φ is the corresponding invertibility condition.

In total, we generated 12,980 verification problems. To verify them we used all
participating solvers of the quantified bit-vector division of SMT-competition 2017,
namely Boolector [16], CVC4, Q3B [14], and Z3 [6]. For each solver/benchmark
pair we used a CPU time limit of one hour and a memory limit of 8GB on the same
machines as those mentioned in the previous section. All solvers that did not time
out on a given benchmark agreed on the satisfiability status of that benchmark. We
considered an invertibility condition to be verified for a certain bit-width if at least one
of the solvers was able to report unsatisfiable for the corresponding formula within the
given time limit. Out of the 12,980 instances, we were able to verify 12,277 (94.6%).

Overall, all verification tasks (including timeouts) required a total of 275 days
of CPU time. The success rate of each individual solver was 91.4% for Boolector,
85.0% for CVC4, 50.8% for Q3B, and 92% for Z3. We observed that on 30.6%
of the problems, Q3B exited with a Python exception without returning any result.
For bit-vector operators {∼ , −, +, &, |, >>, >>a, <<, ◦}, over all relations, and
for operators {·, ÷, mod} over relations {6≈,≤u,≤s}, we were able to verify all
invertibility conditions for all bit-widths in the range 1–65. Interestingly, no solver
was able to verify the invertibility conditions for x mod s <s t with a bit-width of
54 and s mod x <u t with bit-widths 35-37 within the allotted time. We attribute
this to the underlying heuristics used by the SAT solvers in these systems. All other
conditions for <s and <u were verified for all bit-vector operators up to bit-width
65. The remaining conditions for operators {·, ÷, mod} over relations {≈, >u, ≥u,
>s, ≥s} were verified up to at least a bit-width of 14. We discovered 3 conditions for
s÷ x ./ t with ./ ∈ {6≈, >s,≥s} that were not correct for a bit-width of 1. For each
of these cases, we added an additional invertibility condition that correctly handles
that case.

Further work Formally proving that our invertibility conditions are correct for all
bit-widths is beyond the scope of this paper. We have tackled this challenge in other
work [?] by recasting the problem to that of checking the unsatisfiability of certain
quantified formulas over the combined theory of non-linear integer arithmetic and
uninterpreted functions, based on several encodings of bit-vectors in that theory. In
that work too, we used SMT solvers to prove the generated formulas. The approach
was only partially successful as it failed to verify about a quarter of the invertibility
conditions. Most of these remaining conditions, however, were later verified interac-
tively in the Coq proof assistant by Ekici et al. [?], leveraging previous work [9] that
had developed a formalization in Coq of the SMT-LIB theory of bit-vectors.

16

CEGQIS(∀x. ψ[x])
Γ := ∅
Repeat:

1. If Γ is T -unsatisfiable, then return “unsat”.

2. Otherwise, let Γ ′ = Γ ∪ {¬ψ}.
If Γ ′ is T -unsatisfiable, then return “sat”.

3. Otherwise, let I be a model of T and Γ ′ and let t = S(x, ψ, I, Γ).
Γ := Γ ∪ {ψ[t]}.

Fig. 2: A counterexample-guided quantifier instantiation procedure CEGQIS , param-
eterized by a selection function S, for determining the T -satisfiability of ∀x. ψ with
ψ binder-free.

4 Counterexample-Guided Instantiation for Bit-Vectors

In this section, we define a novel instantiation-based technique for quantified bit-
vector formulas. At a high level, we are interested in determining the satisfiability
of a quantified formula ϕ in some background theory T . We use a counterexample-
guided approach for quantifier instantiation [21] that adds new instances of ϕ to a
set of quantifier-free clauses based on models for the negation of ¬ϕ. The procedure
terminates if it constructs a set of instances that is T -unsatisfiable or is T -satisfiable
and entails ϕ.

Approaches for quantifier instantiation crucially depend on having a good strat-
egy for choosing terms to be used in instantiations. We leverage techniques from the
previous section to develop one such strategy for the theory of bit-vectors. Specifi-
cally, recall that the procedure solve in Figure 1 returns a symbolic solution to a (lin-
ear) bit-vector literal. This procedure uses invertibility conditions for expressing the
conditions under which such a solution exists. Intuitively, our quantifier instantiation
procedure identifies literals whose solved forms correspond to relevant instantiations,
and uses the terms returned by solve to instantiate quantified formulas. These sym-
bolic instantiations are combined as necessary with other instantiation techniques.

Our counterexample-guided approach for quantifier instantiation is exemplified
by the procedure CEGQIS in Figure 2. To simplify the exposition here, we focus on
input problems expressed as a single formula in prenex normal form and with up
to one quantifier alternation. We stress, though, that the approach applies in general
to arbitrary sets of quantified formulas in any theory T with signature Σ and a de-
cidable binder-free (and hence quantifier-free) fragment. The procedure checks via
instantiation the T -satisfiability of a quantified input formula ϕ of the form ∀x. ψ[x]
where ψ is binder-free.4 It maintains an evolving set Γ , initially empty, of binder-free
instances of the input formula.

During each iteration of the procedure’s loop, there are three possible cases:

4 Note that ψ may have free variables besides those in x which are then also free variables of ϕ.

17

1. Γ is T -unsatisfiable: then the input formula ϕ is also T -unsatisfiable and “unsat”
is returned;

2. Γ is T -satisfiable but not together with ¬ψ, the negated body of ϕ: then Γ T -
entails ϕ, hence ϕ is T -satisfiable and “sat” is returned;

3. Γ ∪ {¬ψ} is T -satisfiable: Γ is extended with an instance of ψ obtained by re-
placing the variables x with some terms t, and the computation continues.

The procedure CEGQI is parametrized by a selection function S that generates the
terms t.

Definition 7 (Selection Function [22]) A selection function takes as input a tuple of
variables x, a model I of T , a binder-freeΣ-formula ψ[x], and a set Γ ofΣ-formulas
such that x∩FV(Γ) = ∅ and I |= Γ ∪ {¬ψ}. It returns a tuple t of ε-valid terms of
the same type as x such that FV(t) ⊆ FV(ψ) \ x.

Definition 8 Let ψ[x] be a binder-free Σ-formula. A selection function is:

1. Finite for x and ψ if there is a finite set S∗ such that S(x, ψ, I, Γ) ∈ S∗ for all
legal inputs I and Γ .

2. Monotonic for x and ψ if for all legal inputs I and Γ , S(x, ψ, I, Γ) = t only if
ψ[t] 6∈ Γ .

Above, we refer to a legal input as one where I is a model for T ∧ Γ ∧ ¬ψ, and
Γ does not contain any free variables in x. An invariant of the procedure CEGQIS is
that it calls S only with legal inputs. This procedure is refutation-sound and model-
sound for any selection function S , and terminating for selection functions that are
finite and monotonic.5 The following theorem is adapted from previous work [22].

Theorem 9 (Correctness of CEGQIS) Let S be a selection function and let ϕ =
∀x. ψ with ψ-binder-free. Then the following hold.

1. If CEGQIS(ϕ) returns “unsat”, then ϕ is T -unsatisfiable.
2. If CEGQIS(ϕ) returns “sat” for some final Γ , then ϕ is T -satisfiable and T -

equivalent to Γ .
3. If S is finite and monotonic for x and ψ, then CEGQIS(ϕ) terminates.

Proof We show each part of the theorem below. Let y = FV(ψ) \ x. Note that by
the definition of CEGQIS and since S is a selection function, all inputs I and Γ given
to S in the loop of this function are legal inputs. Also note that for the first two parts,
we have that CEGQIS(ϕ) terminates in a state where Γ is a set of instances of ψ[x]
of the form ψ[t] where, since S is a selection function, t is a tuple of ε-valid terms
and FV(t) ⊆ y.

Part 1) By definition of CEGQIS , if CEGQIS(ϕ) returns “unsat,” then Γ is T -
unsatisfiable. By construction, Γ consists of instances ψ[t] of ψ. Since Γ is T -
unsatisfiable, it follows by the semantics of ∀ that ∀x. ψ[x] is T -unsatisfiable.

5 Note that in order for a selection function that is finite on x and ψ to also be monotonic on the same,
it must be the case that

∧
t∈S∗ ψ[t] T -entails ψ, so that no more legal inputs exist by the time the set S∗

is exhausted.

18

SBVc (x, ψ, I, Γ) where c ∈ {m,k, s,b}

Let M = {` | I |= `, ` ∈ Lit(ψ)} and N = {projectc(I, `) | ` ∈M}
For i = 1, . . . , n where x = (x1, . . . , xn):

Let Ni =
⋃
`[x1,...,xi−1]∈N linearize(xi, I, `[t1, . . . , ti−1])

Let ti =

{
solve(xi, choose(Ni)) if Ni is non-empty
k otherwise, with k bit-vector constant s.t. kI = xIi

For j = 1, . . . , i− 1:

tj := tj{xi 7→ ti}
Return (t1, . . . , tn).

projectm(I, s ./ t) = >
projectk(I, s ./ t) = s ./ t

projects(I, s ./ t) = s ≈ t+ k with k bit-vector constant s.t. k = (s− t)I

projectb(I, s ./ t) =


s ≈ t if sI = tI

s ≈ t+ 1 if sI > tI

s ≈ t− 1 if sI < tI

Fig. 3: Selection functions SBVc for binder-free bit-vector formulas. The procedure
is parameterized by a configuration c, one of either m (model value), k (keep), s
(slack), or b (boundary).

Part 2) By definition of CEGQIS , if CEGQIS(ϕ) returns “sat,” then Γ is T -satis-
fiable and Γ ′ = Γ ∪ {¬ψ[x]} is T -unsatisfiable. The latter implies that Γ T -entails
ψ[x]. Since, by construction of Γ , no variables of x occur in Γ we have that Γ T -
entails ∀x. ψ[x]. The equivalence between the two follows from the fact that, again
by construction of Gamma, ∀x. ψ[x] T -entails Γ .

Part 3) Assume S is monotonic and finite for ψ[x]. Since it is finite, let S∗ be a
finite set such that S(x, ψ, I, Γ) ∈ S∗ for all valid inputs I, Γ . Since it is monotonic,
each iteration of the loop adds a new formula from S∗ to Γ . Since S∗ is finite, the
number of iterations of this loop is bounded by the size of S∗. Hence, CEGQIS(ϕ)
terminates. ut

Thanks to this theorem, it suffices to define a selection function satisfying the criteria
of Definitions 7 and 8 to define a T -satisfiability procedure for quantifiedΣ-formulas.
We do that in the following section for TBV .

4.1 Selection Functions for Bit-Vectors

In this subsection, we provide several selection functions to be used for bit-vector
formulas in the framework described above. Some of these selection functions may
return terms containing choice terms based on the procedure solve from Section 3.
Recall that this procedure uses invertibility conditions to express symbolic solutions

19

to bit-vector literals. There are several possible strategies that one can use in the
design of a selection function; we discuss a few alternatives next.

Figure 3 describes a class of selection functions SBVc for binder-free bit-vector
formulas depending on a configuration c. The parameter c ranges over the enumera-
tion type {m, k, s, b} whose values are short respectively for “model value”, “keep”,
“slack”, and “boundary.” We consider multiple configurations because there are many
possible choices of terms to use for quantifier instantiation.6

The selection function of Figure 3 collects in the setM all the literals occurring in
ψ that are satisfied by I. Then, it collects in the set N a projected form of each literal
inM . This form is computed by the function projectc, parameterized by configuration
c, which transforms its input literal into a form suitable for procedure solve from
Figure 1. We discuss the intuition for projection operations in more detail below.

Example 10 Consider theΣBV -literal a ≥u b and the interpretation I, where aI = 5
and bI = 3. With input I and a ≥u b, the function projectc returns the literals: > for
c = m; a ≥u b for c = k; a ≈ b+2 for c = s; and a ≈ b+1 for c = b. In the context
of Figure 3, the above choices impact whether a solved form can be computed for a
in the literals returned above, and what that solved form is. In the case of c = m, the
literal > cannot be solved for a, and hence its model value must be selected in the
function SBVc . On the other hand, in the case of c = b, the literal a ≈ b+ 1 leads to
the solved form b+ 1 for a. 4

After constructing set N , the selection function computes a term ti for each variable
xi in tuple x, which we call the solved form of xi. To do that, it first constructs a set
of literalsNi all linear in xi. It considers literals ` fromN and replaces all previously
solved variables x1, . . . , xi−1 by their respective solved forms to obtain the literal
`′ = `[t1, . . . , ti−1]. It then calls function linearize on literal `′ which returns a set of
literals, each obtained by replacing all but one occurrence of xi in ` with the value of
xi in I.7

Example 11 Consider an interpretation I where xI = 1, and ΣBV -terms a and b
with x 6∈ FV(a) ∪ FV(b). We have that linearize(x, I, x · (x + a) ≈ b) returns the
set {1 · (x + a) ≈ b, x · (1 + a) ≈ b}; linearize(x, I, x ≥u a) returns the singleton
set {x ≥u a}; linearize(x, I, a 6≈ b) returns the empty set. 4

If the set Ni is non-empty, the selection function heuristically chooses a literal from
Ni, indicated in Figure 3 with choose(Ni). It then computes a solved form ti for xi
by solving the chosen literal for xi with the function solve described in the previous
section. By construction of Ni, the chosen literal is guaranteed to be linear in xi; our
heuristic is most effective if the chosen literal is moreover linear invertible in xi. If
Ni is empty, ti is simply (the constant denoting) the value of xi in the given model
I. After that, xi is eliminated from all the previous terms t1, . . . , ti−1 by replacing it
with ti. After processing all n variables of x, the tuple (t1, . . . , tn) is returned.

6 We evaluate the effectiveness of these configurations in Section 5.
7 This is a simple heuristic to generate literals that can be solved for xi. More elaborate heuristics could

be used in practice.

20

The configuration of selection function SBVc determines how literals in M are
modified by the projectc function prior to computing solved forms, based on the
current model I. With the model value configuration m, the selection function ef-
fectively ignores the structure of all literals in M and (because the set Ni is empty)
ends up choosing the value xIi as the solved form of variable xi, for each i. On the
other end of the spectrum, the configuration k keeps all literals in M unchanged. The
remaining two configurations have an effect on how disequalities and inequalities are
handled by projectc. They are are inspired by quantifier elimination techniques for
linear arithmetic [5,15]. With configuration s, projectc normalizes any kind of literal
(equality, inequality or disequality) s ./ t to an equality by adding the slack value
(s − t)I to t. With configuration b it maps equalities to themselves and inequalities
and disequalities to an equality corresponding to a boundary point of the relation be-
tween s and t based on the current model. Specifically, it adds 1 to t if s is greater
than t in I, it subtracts 1 if s is smaller than t, and returns s ≈ t if their value is
the same. In the following, we provide an end-to-end example of our technique for
quantifier instantiation that makes use of selection function SBVc .

Example 12 Consider formula ϕ = ∀x1. (x1 · a ≤u b) where a and b are terms with
no free occurrences of x1. To determine the satisfiability of ϕ, we invoke
CEGQISBV

c
on ϕ for some configuration c. Say that in the first iteration of the loop,

we find that Γ ′ = ∅ ∪ {x1 · a >u b}8 is satisfied by some model I of TBV
such that xI1 = 1, aI = 1, and bI = 0. We invoke SBVc ((x1), ψ, I, Γ), where
ψ = (x1 · a ≤u b), and first compute M = {x1 · a >u b}, the subset of Lit(ψ) that
is satisfied by I. The table below summarizes the values of the internal variables of
SBVc for the various configurations:

config N1 t1

m ∅ 1
k {x1 · a >u b} εz. (b <u −a | a)⇒ z · a >u b
s,b {x1 · a ≈ b+ 1} εz. ((−a | a) & b+ 1 ≈ b+ 1)⇒ z · a ≈ b+ 1

In each case, SBVc returns tuple (t1), and we add instance t1 · a ≤u b to Γ . Consider
configuration k where t1 is the choice expression εz. ((b <u −a | a)⇒ z · a >u b).
Since t1 is ε-valid, due to the semantics of ε, this instance is equisatisfiable with

((b <u −a | a)⇒ v · a >u b) ∧ v · a ≤u b (2)

where v is a fresh variable. This formula is TBV -satisfiable if and only if literal ` =
¬(b <u −a | a) is TBV -satisfiable. In the second iteration of the loop in CEGQISBV

c
,

set Γ contains formula (2) above.
We have two possible outcomes, depending on the satisfiability of `: (i) if ` is

TBV -unsatisfiable, then (2) and hence Γ are TBV -unsatisfiable, and the procedure
terminates with “unsat”; (ii) if ` is satisfied by some model J of TBV , then the
formula ∃z.z · a >u b is false in J , since the invertibility condition of z · a >u b
is false in J . Hence, Γ ′ = Γ ∪ {x1 · a >u b} is unsatisfiable, and the algorithm
terminates with “sat”.

8 We are using x1 · a >u b here instead of ¬(x1 · a ≤u b) for conciseness.

21

As we argue later, quantified bit-vector formulas like ϕ above, which contain only
one occurrence of a universal variable in a linear invertible literal, require at most
one instantiation before CEGQISBV

k
terminates. The same guarantee does not hold

with the other configurations, however. In particular, configuration m generates the
instance where t1 is 1, which simplifies to a ≤u b. This may not be sufficient to show
that Γ or Γ ′ is unsatisfiable in the second iteration of the loop, and the algorithm may
resort to enumerating a repeating pattern of instantiations, such as x1 7→ 1, 2, 3, . . .
and so on. This obviously does not scale for problems with large bit-widths. 4

Example 13 As the previous example demonstrates, CEGQISBV
k

may terminate af-
ter one instance for input formulas whose body has just one literal and a single
occurrence of each universal variable. However, consider extending the quantified
formula from that example to a disjunction of two literals for some literal `[x1]:
∀x1. (x1 · a ≤u b ∨ `[x1]). Assume that our selection function chooses the same
t1 as in the previous example. The corresponding instance is equisatisfiable with:

((b <u −a | a)⇒ v · a >u b) ∧ (v · a ≤u b ∨ `[v]) (3)

with v a fresh variable. In contrast to Example 12, the second iteration of the loop
from Figure 2 is now not guaranteed to terminate. Formula (3) may be satisfied by a
model J where v · a >u b and `[v] hold. Note that J may also satisfy b <u −a | a,
meaning it may still be the case that ¬(x1 ·a ≤u b) together with the above instance is
satisfied by J . In such a case, we may invoke CEGQISBV

k
again, which may produce

the same solved form for x1 if it constructs a solved form for x1 again based on
the literal x1 · a ≤u b. By the terminology from Definition 8, this means that the
selection function SBVk is not monotonic for quantified formulas with more than one
occurrence of a universal variable. 4

If the literals of the input formula have multiple occurrences of x1, then multiple
instances may be returned by the selection function, since the literals returned by
linearize in Figure 3 depend on the model value of x1, and hence more than one
possible instance may be considered in loop in Figure 2.

The following theorem summarizes the properties of our selection functions. In
the following, we say a quantified formula is unit linear invertible if it is of the form
∀x. `[x] where ` is a linear invertible literal with respect to x. We say a selection
function is n-finite for a quantified formula if the number of possible instantiations it
returns is at most n for some positive integer n.

Theorem 14 Let ψ[x] be a binder-free formula in the signature of TBV .

1. SBVc is a finite selection function for x and ψ for all c ∈ {m,k, s,b}.
2. SBVm is monotonic.

3. SBVk is 1-finite if ∀x. ψ is unit linear invertible.

4. SBVk is monotonic if ∀x. ψ is unit linear invertible.

Proof Let x = (x1, . . . , xn) be a tuple of variables and let ψ be a binder-free TBV -
formula. We show each part for the case where n = 1; the arguments below can

22

be lifted to n > 1 in a straightforward way. Let Γ be a set of formulas such that
x1 6∈ FV(Γ), let I be a model of TBV such that I |= Γ ∪ {¬ψ}, and let t1 be
SBVc ((x1), I, ψ, Γ).

Part 1) To show that SBVc is a selection function, we must show that t1 is ε-
valid and FV(t1) ⊆ FV(ψ) \ {x1}. Notice that for all configurations, the value (t1)
returned by SBVc is either of the form xI1 or solve(x1, `′) where `′ is the result of
calling linearize and projectc on some ` ∈ Lit(ψ). In the former case, we have that t1
is clearly ε-valid and FV(t1) = ∅. In the latter case, as a consequence of Theorem 6,
and since `′ is ε-valid and linear by definition of linearize and projectc, we have that
t1 is ε-valid and FV(t1) ⊆ FV(`′) \ {x1}. By the definition of linearize and projectc
for each configuration c, and since each element of M is from Lit(ψ), we have that
FV(`′) ⊆ FV(ψ). Thus, in either case, we have FV(t1) ⊆ FV(ψ) \ {x1}. Hence,
SBVc is a selection function for c = m, k, s, b. To show these selection functions are
finite for ψ, note that the number of terms of form xI1 is finite (because a bit-vector
sort only has a finite number of possible values). Also note that the number of literals
in Lit(ψ) is finite. For c and ` ∈ Lit(ψ), the set of literals of the form projectc(I, `),
call this set N ′, is finite. Now, for any specific N ⊆ N ′, consider the loop in Fig. 3.
The loop consists of substitutions, calls to linearize, choices from Ni, and calls to
solve. Given that we start with a finite set, each of these opearations still has only a
finite number of possible outcomes. The number of possible return values of SBVc is
thus finite for (x1) and ψ for c = m, k, s, b.

Part 2) Assume that projectm is not monotonic for (x1), meaning that ψ[t1] ∈
Γ . Since projectm is a selection function by Part 1, and I, Γ are legal inputs to
projectm, it must be the case that I |= Γ ∧ ¬ψ. So I |= ψ[t1]. However, since
projectm(I, `) = >, it must be the case that t1 = xI1 , and we have that I |= ¬ψ[x1],
which is a contradiction. Hence, projectm is monotonic for ψ.

Part 3) Assume ψ is the linear invertible literal `. Since I |= ¬`, and by the
definition of projectk, we must have that M = N = {¬`}. Then, by definition of
linearize, and since ` is linear with respect to x1, we have that t1 must be the term
returned by solve(x1,¬`). Hence, SBVk has only one possible return value and hence
is 1-finite.

Part 4) Assume ψ is the linear invertible literal `[x1]. The return value of SBVk is
the tuple (t1), where by the reasoning in Part 3, we have that t1 is the term returned
by solve(x1,¬`[x1]). Note that the negation of a linear invertible literal is still linear
invertible as the set of relational operators we are using is closed under negation.
Thus, by Theorem 6, and since ` is linear invertible with respect to x1, we have that
¬`[t1] ⇔ ∃z.¬`[z] holds in all models of TBV . Now, assume that projectk is not
monotonic for (x1) and `[x1], meaning that `[t1] ∈ Γ . Since projectk is a selection
function by Part 1 and I, Γ are legal inputs to projectk, it must be the case that
I |= Γ ∧ ¬ψ. So, I |= `[t1]. But then, since ¬`[t1] ⇐ ∃z.¬`[z] holds in all models
of TBV , we have that I must satisfy ¬∃z.¬`[z], which is ∀z. `[z]. However, we also
have that I |= ¬`[x1], which is a contradiction. Hence, it must instead be the case
that `[t1] 6∈ Γ and thus projectk is monotonic for ψ. ut

Theorem 14 implies that the application of counterexample-guided instantiation to
arbitrary bit-vector formulas using selection function SBVm is a decision procedure

23

for quantified bit-vectors. Unfortunately, the worst-case number of instances consid-
ered for a variable x[n] by this selection function is proportional to the number of
its possible values (2n), which makes the decision procedure impractical for suffi-
ciently large n. More interestingly, counterexample-guided instantiation using selec-
tion function SBVk is a decision procedure for quantified formulas that are unit linear
invertible. Moreover, using this selection function has the guarantee that at most one
instantiation is returned. Hence, formulas in this fragment can be effectively reduced
to quantifier-free bit-vector constraints in at most two iterations of the loop of proce-
dure CEGQIS in Figure 2. This was demonstrated by the use of this selection function
in Example 12.

4.2 Implementation

We implemented the new instantiation techniques described in this section as an ex-
tension of CVC4, a DPLL(T)-based SMT solver [19] with support for quantifier-
free bit-vector constraints, (arbitrarily nested) quantified formulas, and choice expres-
sions. In CVC4, all choice terms εx. ϕ[x] are eliminated from assertions by replacing
them with a fresh variable v of the same type and adding ϕ[v] as a new assertion. This
is sound since all choice expressions we consider are ε-valid. We point out that, since
v is fresh, this treatment does not enforce that choice terms are unique up to logi-
cal equivalence. In other words, εx. ϕ[x] and εx. ψ[x] may be replaced by distinct
variables even when ϕ and ψ are logically equivalent. This is done for performance
reasons since the correctness of our procedure does not rely on this property. In the
following, we discuss important implementation details of this extension.

4.2.1 Handling Duplicate Instantiations

The selection functions SBVs and SBVb are not guaranteed to be monotonic and nei-
ther is SBVk for quantified formulas that are not unit linear invertible. Hence, when
applying these strategies to arbitrary quantified formulas, we use a two-tiered strategy
that invokes SBVm as a second resort if the instance returned by a selection function
already exists in Γ .

4.2.2 Linearizing Rewrites

Our selection function in Figure 3 uses the function linearize to compute literals that
are linear in the variable xi. The way we presently implement linearize makes those
literals dependent on the value of xi in the current model I, with the risk of overfit-
ting to that model. To address this limitation, we use a set of equivalence-preserving
rewrite rules, which apply basic algebraic manipulations with the goal of reducing,
when possible, the number of occurrences of xi to one.

As a trivial example, consider a literal xi + xi ≈ a, which can be rewritten to
2 · xi ≈ a. The rewritten literal is linear in xi if a does not contain xi. If that is the
case, there exists an invertibility condition for this literal as discussed in Section 3.

24

4.2.3 Variable Elimination

We use procedure solve from Section 3 not only for selecting quantifier instantiations,
but also for eliminating variables from quantified formulas. In particular, for a quan-
tified formula of the form ∀xy. `⇒ ϕ[x,y], if ` is linear in x and solve(x, `) returns
a term s not containing ε-expressions, we can replace this formula by ∀y. ϕ[s,y].
When ` is an equality, this is known as destructive equality resolution (DER) in the
literature and is an important implementation-level optimization in state-of-the-art
bit-vector solvers [24].

As shown in Figure 1, we use the getInverse function to increase the likelihood
that solve returns a term that contains no ε-expressions. A common example is a
literal x · c ≈ t where c is an odd constant and κ(c) = w. The only solution for x
in this case is c−1 · t, with c−1 the (unique) multiplicative inverse of c modulo 2w,
which can be determined with the Extended Euclidean algorithm.

4.2.4 Handling Extract

Consider formula ∀x[32]. (x[31 : 16] 6≈ a[16] ∨ x[15 : 0] 6≈ b[16]). Since all invertibil-
ity conditions for the extract operator are>, rather than producing choice expressions,
we have found it more effective to eliminate extracts via rewriting. As a consequence,
we independently solve constraints for regions of quantified variables when they ap-
pear underneath applications of extract operations. In this example, we let the solved
form of x be y[16] ◦ z[16] where y and z are fresh variables, and subsequently solve
for these variables in y ≈ a and z ≈ b. Hence, we may instantiate x with a ◦ b, a
term that we would not have found by considering the two literals independently in
the negated body of the formula above.

4.2.5 Handling Propositional Structure and Nested Quantifiers

Figure 2 describes counterexample-guided quantifier instantiation for universal for-
mulas of the form ∀x. ψ with ψ quantifier-free. Since ψ can contain additional free
variables besides those in x, this means effectively that the procedure can deal with
formulas with one level of quantifier alternation; specifically, of the form ∃y.∀x. ψ
where x ∪ y = FV(ψ). However, in practice, our techniques can be extended to
problems with more than one level of quantifier alternation, and to problems not in
prenex normal form. A thorough description of this is beyond the scope of this paper.
In the following, we thus only provide some high level details. Further details can be
found in Section 6 of [22].

In the DPLL(T) setting, the SMT solver incrementally builds a truth assignment
with the goal of finding a set M of literals that is T -satisfiable and, when seen as
a truth assignment, propositionally satisfies all the formulas in the input set ∆. The
SMT solver considers all quantified formulas ∀x. ψ[x] in the current set M , and for
each of these formulas, it may add formulas of these forms to ∆:

(i) instantiation clauses A⇒ ψ[t]

(ii) Skolemization clauses B ⇒ ¬ψ[v], with v a tuple of fresh variables, and

25

(iii) connecting clauses ∀x. ψ[x]⇒ A and ¬∀x. ψ[x]⇒ B,

where A and B are fresh Boolean constants, which we call the positive and negative
instantiation guards of ∀x. ψ. Note that none of these clauses changes the satisfia-
bility of ∆. The second and third kinds of clauses are added once, at the time the
quantified formula first occurs in an assignment M . From then on, every occurrence
of ∀x. ψ in a formula of ∆ or M is treated abstractly, as if it were a propositional
variable. The solver detects that the negation of a quantified formula along with the
current set of clauses ∆ is T -unsatisfiable by checking which negative guards must
be assigned ⊥ (false). In practice, this is determined by a decision heuristic which,
when faced with the choice of guessing the value of a negative instantiation guard,
always tries > first. When a quantified formula ∀x. ψ and its corresponding nega-
tive guard both end up being assigned value >, the SMT solver adds an instantiation
lemma to∆ for ∀x. ψ based on the selection function from Figure 3. The process ter-
minates as usual when the set ∆ is proved T -unsatisfiable, or when the solver finds a
T -satisfiable satisfying assignment where either the quantified formula or its negative
guard are assigned ⊥.

This scheme allows us to handle multiple quantified formulas simultaneously. It
further allows us to handle quantified formulas with arbitrary nesting by simply al-
lowing formulas like ψ[x] above to contain quantifiers. The resulting quantifiers in
instantiation and Skolemization lemmas A ⇒ ψ[t] and B ⇒ ¬ψ[v] are recursively
handled by introducing instantiation and Skolemization lemmas for quantified formu-
las that appear in subsequent satisfying assignments as a result of processing those
lemmas.

4.2.6 Negating the Input Formula

Our version of counterexample-guided quantifier instantiation is most effective for
checking the T -satisfiability of closed universal formulas of the form ∀x. ψ[x]. In
the theory of bit-vectors TBV , for a formula of the form ∃y.∀x. ψ[x,y] (with y
non-empty) we consider instead the (closed) universal formula corresponding to its
negation ∀y.∃x.¬ψ[x,y]. Although this does not permit Skolemization of the top-
level quantification on y, the negated version of this formula may be significantly
easier to solve, since our techniques may find an instantiation for y that quickly leads
to a proof of unsatisfiability.

Note that checking the satisfiability of the negated input formula is meaningful
because TBV is complete, which guarantees that either the formula or its negation is
TBV -unsatisfiable. This means that if our procedure determines the negation of a for-
mula is TBV -unsatisfiable, we can conclude the original formula is TBV -satisfiable,
and vice versa.

5 Evaluation

We implemented our techniques in the solver CVC4 and considered four configura-
tions CVC4c with c one of {m, k, s, b}, corresponding to the four selection function
configurations described in Section 4. Out of these four configurations, CVC4m is

26

unsat Boolector CVC4 Q3B Z3 CVC4m CVC4k CVC4s CVC4b

h-uauto 14 12 93 24 10 103 105 106
keymaera 3917 3790 3781 3923 3803 3798 3888 3918

psyco 62 62 49 62 62 39 62 61
scholl 57 36 13 67 36 27 36 35
tptp 55 52 56 56 56 56 56 56

uauto 137 72 131 137 72 72 135 137
ws-fixpoint 74 71 75 74 75 74 75 75
ws-ranking 16 8 18 19 15 11 12 11

Total unsat 4332 4103 4216 4362 4129 4180 4369 4399

sat Boolector CVC4 Q3B Z3 CVC4m CVC4k CVC4s CVC4b

h-uauto 15 10 17 13 16 17 16 17
keymaera 108 21 24 108 20 13 36 75

psyco 131 132 50 131 132 60 132 129
scholl 232 160 201 204 203 188 208 211
tptp 17 17 17 17 17 17 17 17

uauto 14 14 15 16 14 14 14 14
ws-fixpoint 45 49 54 36 45 51 49 50
ws-ranking 19 15 37 33 33 31 31 32

Total sat 581 418 415 558 480 391 503 545

Total (5151) 4913 4521 4631 4920 4609 4571 4872 4944

Table 8: Results of the four CVC4 configurations {m, k, s, b} and the SMT solvers
Boolector, CVC4, Q3B, and Z3 on all 5151 BV benchmarks with a 300 second time
limit. The results are grouped by sat/unsat answers, where each row corresponds to a
benchmark family. Bold numbers indicate the solver that solved the most instances.

the only one that does not employ our new techniques but uses only model values for
instantiation. It can thus be considered our base configuration. All configurations en-
able the optimizations described in Section 4.2 when applicable. We compared them
against all entrants of the quantified bit-vector division of the 2017 SMT competition
SMT-COMP: Boolector [16], CVC4 [2], Q3B [14] and Z3 [6]. With the exception
of Q3B, all solvers are related to our approach since they are instantiation-based.
However, none of these solvers utilizes invertibility conditions when constructing in-
stantiations. We ran all experiments on the StarExec logic solving service [23] with a
300 second CPU and wall clock time limit, and a 100 GB memory limit. None of the
solvers hit the memory limit on any benchmark.

We evaluated our approach on all 5,151 benchmarks from the quantified bit-vector
logic (BV) of SMT-LIB [3]. The results are summarized in Table 8 and Figures 4-
5. Configuration CVC4b solves the highest number of unsatisfiable benchmarks
(4, 399), which is 30 more than the next best configuration CVC4s and 37 more
than the next best external solver, Z3. Compared to the instantiation-based solvers
Boolector, CVC4 and Z3, the performance of CVC4b is particularly strong on the h-
uauto family, which consists of verification conditions from the Ultimate Automizer
tool [11]. For satisfiable benchmarks, Boolector solves the most (581), which is 36
more than our best configuration CVC4b.

Overall, our best configuration CVC4b solved 335 more benchmarks than our
base configuration CVC4m. A more detailed runtime comparison between all con-
figurations is provided by the scatter plots in Figure 6. We add that CVC4b solved
24 more benchmarks than the best external solver, Z3. Looking at uniquely solved

27

4000 4200 4400 4600 4800 5000

0
5
0

1
0
0

1
5
0

2
0
0

2
5

0
3

0
0

T
im

e
 [
s
]

Benchmarks

SMT−LIB BV (all)

Boolector

CVC4

Q3B

Z3

CVC4_m

CVC4_k

CVC4_s

CVC4_b

Fig. 4: Results on all BV benchmarks with a 300 second time limit.

instances, CVC4b was able to solve 139 benchmarks that were not solved by Z3,
whereas Z3 solved 115 benchmarks that CVC4b did not. Overall, CVC4b was able
to solve 21 of the 79 benchmarks (26.6%) not solved by any of the other solvers. For
18 of these 21 benchmarks, it terminated after considering no more than 4 instanti-
ations. These cases indicate that using symbolic terms for instantiation solves prob-
lems for which other techniques, such as those that enumerate instantiations based on
model values, do not scale.

Interestingly, configuration CVC4k, despite having the strong guarantees given
by Theorem 14, performed relatively poorly on this set (with 4, 571 solved instances
overall). We attribute this to the fact that most of the quantified formulas in this set
are not unit linear invertible. In total, we found that only 25.6% of the formulas con-
sidered during solving were unit linear invertible. However, only a handful of bench-
marks were such that all quantified formulas in the problem were unit linear invert-
ible. This might explain the superior performance of CVC4s and CVC4b which
use invertibility conditions but in a less monolithic way.

For some intuition on this, consider the problem ∀x. (x > a ∨ x < b) where a
and b are such that a > b is TBV -valid. Intuitively, to show that this formula is
unsatisfiable requires the solver to find an x between b and a. This is apparent when
considering the dual problem ∃x. (x ≤ a∧x ≥ b). Configuration CVC4b is capable
of finding such an x, for instance, by considering the instantiation x 7→ a when
solving for the boundary point of the first disjunct. Configuration CVC4k, on the
other hand, would instead consider the instantiation of x for two terms that witness
ε-expressions: some k1 that is never smaller than a, and some k2 that is never greater
that b. Neither of these terms necessarily resides in between a and b since the solver
may subsequently consider models where k1 > b and k2 < a. This points to a

28

200 300 400 500 600

0
5
0

1
0
0

1
5
0

2
0
0

2
5

0
3

0
0

T
im

e
 [
s
]

Benchmarks

SMT−LIB BV (sat)

Boolector

CVC4

Q3B

Z3

CVC4_m

CVC4_k

CVC4_s

CVC4_b

4000 4100 4200 4300 4400

0
5
0

1
0
0

1
5
0

2
0
0

2
5

0
3
0
0

T
im

e
 [
s
]

Benchmarks

SMT−LIB BV (unsat)

Boolector

CVC4

Q3B

Z3

CVC4_m

CVC4_k

CVC4_s

CVC4_b

Fig. 5: (Un)satisfiable results on all BV benchmarks with a 300 second time limit.

29

CVC4_m Runtime [s]

C
V

C
4

_
b

R

u
n

ti
m

e
 [

s
]

0.01 0.1 1 10 100

0.01

0.1

1

10

100

10x faster (61) 100x faster (245) 1000x faster (51)

(a) Configuration CVC4m vs. CVC4b.

CVC4_m Runtime [s]
C

V
C

4
_

s

R
u

n
ti
m

e
 [

s
]

0.01 0.1 1 10 100

0.01

0.1

1

10

100

10x faster (104) 100x faster (147) 1000x faster (37)

(b) Configuration CVC4m vs. CVC4s.

CVC4_m Runtime [s]

C
V

C
4

_
k

R
u

n
ti
m

e
 [

s
]

0.01 0.1 1 10 100

0.01

0.1

1

10

100

10x faster (31) 100x faster (39) 1000x faster (23)

(c) Configuration CVC4m vs. CVC4k.

Fig. 6: Runtime comparison of base configuration CVC4m against configurations
CVC4b, CVC4s, and CVC4k.

potential use for invertibility conditions that solve multiple literals simultaneously,
something we are currently investigating.

6 Conclusion

We have presented a new class of strategies for solving quantified bit-vector formulas
based on invertibility conditions. We have derived invertibility conditions for the ma-
jority of operators in a standard theory of fixed-width bit-vectors. An implementation
based on this approach solves over 25% of previously unsolved verification bench-

30

marks from SMT LIB and outperforms all other state-of-the-art bit-vector solvers
overall.

In future work, we plan to work on deriving invertibility conditions that are op-
timal for linear constraints, in the sense of admitting the simplest propositional en-
coding. We also intend to investigate conditions that cover additional bit-vector op-
erators, some cases of non-linear literals, as well as conditions that cover multiple
constraints. While this is a challenging task, we believe that efficient syntax-guided
synthesis solvers can continue to help push progress in this direction. Finally, we
plan to investigate the use of invertibility conditions for quantifier elimination in bit-
vector constraints. This will most likely require a procedure for generating concrete
witnesses from choice expressions.

References

1. Alur, R., Bodı́k, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A., Singh, R., Solar-
Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pp. 1–8 (2013)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli,
C.: CVC4. In: Proceedings of the 23rd International Conference on Computer Aided Verification,
CAV’11, pp. 171–177. Springer-Verlag (2011). URL http://dl.acm.org/citation.cfm?
id=2032305.2032319

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: A. Gupta, D. Kroening
(eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
UK) (2010)

4. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: 20th International Conferences on
Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations, LPAR 2015,
Suva, Fiji, November 24-28, 2015., pp. 15–27 (2015)

5. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: B. Meltzer, D. Michie (eds.)
Machine Intelligence, vol. 7, pp. 91–100. Edinburgh University Press (1972)

6. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pp. 337–340. Springer-Verlag (2008). URL http://dl.acm.
org/citation.cfm?id=1792734.1792766

7. Dutertre, B.: Yices 2.2. In: Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings, pp. 737–744 (2014)

8. Dutertre, B.: Solving exists/forall problems in Yices. Workshop on Satisfiability Modulo Theories
(2015)

9. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., Barrett, C.: SMTCoq: A plug-in
for integrating SMT solvers into Coq. In: R. Majumdar, V. Kunčak (eds.) Computer Aided Verifica-
tion, Lecture Notes in Computer Science, vol. 10427, pp. 126–133. Springer International Publishing
(2017)

10. Ekici, B., Viswanathan, A., Zohar, Y., Barrett, C., Tinelli, C.: Verifying bit-vector invertibility con-
ditions in Coq (extended abstract). In: G. Reis, H. Barbosa (eds.) Proceedings Sixth Workshop
on Proof eXchange for Theorem Proving, Electronic Proceedings in Theoretical Computer Sci-
ence, vol. 301, pp. 57–89. Open Publishing Association (2019). DOI 10.4204/EPTCS.301. URL
https://doi.org/10.4204/EPTCS.301

11. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press (2001)
12. Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in satisfiabiliby modulo the-

ories. In: A. Bouajjani, O. Maler (eds.) Computer Aided Verification, 21st International Confer-
ence, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, Lecture Notes in Com-
puter Science, vol. 5643, pp. 306–320. Springer (2009). URL https://doi.org/10.1007/
978-3-642-02658-4_25

31

http://dl.acm.org/citation.cfm?id=2032305.2032319
http://dl.acm.org/citation.cfm?id=2032305.2032319
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.4204/EPTCS.301
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25

13. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Nutz, A., Musa, B., Schätzle, C., Schilling,
C., Schüssele, F., Podelski, A.: Ultimate automizer with an on-demand construction of floyd-hoare
automata - (competition contribution). In: A. Legay, T. Margaria (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part II, Lecture Notes in Computer Science, vol. 10206, pp. 394–398
(2017). URL https://doi.org/10.1007/978-3-662-54580-5_30

14. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. Die Grundlehren der mathematischen Wis-
senschaften. Verlag von Julius Springer (1934)

15. John, A.K., Chakraborty, S.: A layered algorithm for quantifier elimination from linear modular con-
straints. Formal Methods in System Design 49(3), 272–323 (2016). URL https://doi.org/
10.1007/s10703-016-0260-9

16. Jonás, M., Strejcek, J.: Solving quantified bit-vector formulas using binary decision diagrams. In:
Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference, Bor-
deaux, France, July 5-8, 2016, Proceedings, pp. 267–283 (2016)

17. Loos, R., Weispfenning, V.: Applying linear quantifier elimination (1993)
18. Manzano, M.: Introduction to many-sorted logic. In: Many-sorted logic and its applications, pp. 3–86.

John Wiley & Sons, Inc., New York, NY, USA (1993)
19. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal on Satisfiability,

Boolean Modeling and Computation 9, 53–58 (2014 (published 2015))
20. Niemetz, A., Preiner, M., Biere, A.: Precise and complete propagation based local search for satisfia-

bility modulo theories. In: Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I, pp. 199–217 (2016)

21. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise reasoning. For-
mal Methods in System Design 51(3), 608–636 (2017). URL https://doi.org/10.1007/
s10703-017-0295-6

22. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified bit-vectors using
invertibility conditions. In: Proceedings of the 30th International Conference on Computer Aided
Verification (CAV 2018), Oxford, UK, pp. 236–255 (2018). DOI 10.1007/978-3-319-96142-2\ 16.
URL https://doi.org/10.1007/978-3-319-96142-2_16

23. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C.W., Tinelli, C.: Towards bit-width-
independent proofs in SMT solvers. In: P. Fontaine (ed.) Proceedings of the 27th International Con-
ference on Automated Deduction (CADE-27), Lecture Notes in Computer Science, vol. 11716, pp.
366–384. Springer (2019). DOI 10.1007/978-3-030-29436-6\ 22. URL https://doi.org/
10.1007/978-3-030-29436-6_22

24. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from an abstract
Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), 937–977
(2006)

25. Preiner, M., Niemetz, A., Biere, A.: Counterexample-guided model synthesis. In: Tools and Algo-
rithms for the Construction and Analysis of Systems - 23rd International Conference, TACAS 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, pp. 264–280 (2017)

26. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: CVC4SY: Smart and fast term
enumeration for syntax-guided synthesis. In: I. Dillig, S. Tasiran (eds.) Proceedings of the 31st
International Conference on Computer Aided Verification (CAV 2019), Lecture Notes in Computer
Science, vol. 11562, pp. 74–83. Springer (2019). DOI 10.1007/978-3-030-25543-5\ 5. URL
https://doi.org/10.1007/978-3-030-25543-5_5

27. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.W.: Counterexample-guided quantifier
instantiation for synthesis in SMT. In: Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, pp. 198–216 (2015)

28. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by counterexample-guided
instantiation. Formal Methods in System Design 51(3), 500–532 (2017). URL https://doi.
org/10.1007/s10703-017-0290-y

29. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: A cross-community infrastructure for logic solving. In:
S. Demri, D. Kapur, C. Weidenbach (eds.) Proceedings of the 7th International Joint Conference on
Automated Reasoning, Lecture Notes in Computer Science, vol. 8562, pp. 367–373. Springer (2014)

30. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified bit-vector formulas.
Formal Methods in System Design 42(1), 3–23 (2013)

32

https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/s10703-016-0260-9
https://doi.org/10.1007/s10703-016-0260-9
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/s10703-017-0290-y

	Introduction
	Preliminaries
	Invertibility Conditions for Bit-Vector Constraints
	Counterexample-Guided Instantiation for Bit-Vectors
	Evaluation
	Conclusion

