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This extended abstract reports on current progress of SMTCoq, a communication tool between the
Coq proof assistant and external SAT and SMT solvers. Based on a checker for generic first-order
certificates implemented and proved correct in Coq, SMTCoq offers facilities both to check external
SAT and SMT answers and to improve Coq’s automation using such solvers, in a safe way. Currently
supporting the SAT solver ZChaff, and the SMT solver veriT for the combination of the theories of
congruence closure and linear integer arithmetic, SMTCoq is meant to be extendable with a reason-
able amount of effort: we present work in progress to supportthe SMT solver CVC4 and the theory
of bit vectors.

1 Introduction

SMTCoq1 [1] is a tool that allows the Coq [2] proof assistant to communicate with external automatic
solvers for Boolean satisfiability (SAT) and SatisfiabilityModulo Theories (SMT). Its twofold goal is to:

• increase the confidence in SAT and SMT solvers: SMTCoq provides an independent and certified
checker for SAT and SMT proof witnesses;

• safely increase the level of automation of Coq: SMTCoq provides starting safe tactics to solve a
class of Coq goals automatically by calling external solvers and checking their answers (following
askepticalapproach).

SMTCoq currently supports the SAT solver ZChaff [19] and theSMT solver veriT [10] for the quantifier-
free fragment of the combined theory of linear integer arithmetic and equality with uninterpreted func-
tions. For this combined theory, SMTCoq’s certificate checker has proved to be as efficient as state-of-
the-art certified checkers [1, 9].

There is a large variety of SAT and SMT solvers, with each solver typically excelling at solving
problems in some specific class of propositional or first-order problems. While the SAT and SMT com-
munities have adopted standard languages for expressinginputproblems (namely the DIMACS standard
for SAT and the SMT-LIB [4] standard for SMT), agreeing on a commonoutputlanguage for proof wit-
nesses has proven to be more challenging. Several formats [11, 21, 6] have been proposed but none has
emerged as a standard yet. Each proof-producing solver currently implements its own variant of these
formats.

1SMTCoq is distributed as free software athttps://github.com/smtcoq/smtcoq.

http://dx.doi.org/10.4204/EPTCS.210.5
https://github.com/smtcoq/smtcoq


22 SMTCoq

Coq checker

formula certificate

yes no

(a)

Coq checker

problem parser witness parser + preprocessor

problem proof witness

yes no

formula certificate

(b)

reification

external prover

parser + preprocessor

Coq checker + soundness

Coq goal

goal solved failure: counter-
example or unknown

formula proof witness

certificate

(c)

Figure 1: SMTCoq’s main checker and its uses

To be able to combine the advantages of multiple SAT and SMT solvers despite the lack of com-
mon standards for representing proof certicates, SMTCoq has been designed to be modular along two
dimensions:

• supporting new theories: SMTCoq’s main checker is an extendable combination of independent
small checkers;

• supporting new solvers: SMTCoq’s kernel relies on a genericcertificate format that can encode
most SAT and SMT reasonings for supported theories; the encoding can be done during aprepro-
cessingphase, which does not need to be certified.

In this abstract, we emphasize the key ideas behind the modularity of SMTCoq, and validate this
by reporting on work in progress on the integration of the SMTsolver CVC4 [3] and the theory of bit
vectors. We simultaneously aim at:

• offering to CVC4 users the possibility to formally check itsanswers in a trusted environment like
Coq;

• bringing the power of a versatile and widely used SMT solver like CVC4 to Coq;

• providing in Coq a decision procedure for bit vectors, a theory widely used, for instance, for
verifying circuits or programs using machine integers.

2 The SMTCoq Tool

2.1 General Idea

The heart of SMTCoq is a checker for a generic format of certificates (close to the format proposed
by Bessonet al. [6]), implemented and proved correct inside Coq (see Figure1a). Taking advantage
of Coq’s computational capabilities the SMTCoq checker is fully executable, either inside Coq or after
extraction to a general-purpose language [18].

The Coq signature of this checker is the following:

checker : formula → certificate → bool
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where the typeformula represents the deep embedding in Coq of SMT formulas, and thetype
certificate represents SMTCoq’s format of certificates.

The checker’s soundness is stated with respect to a translation function from the deep embedding of
SMT formulas into Coq terms:

J•K : formula → bool

that interprets every SMT formula into its Coq Boolean counterpart. The correctness of the checker:

checker_sound : ∀ f c, checker f c = true → JfK

thus means that, given a formula and a certificate for which the checker answers positively, then the
interpretation in Coq of the formula is valid.

The choice of the type of Booleansbool as the codomain of the translation functionJ•K, instead of
the type of (intuitionistic) propositionsProp, allows us to handle the checking of the classical reasoning
made by SMT solvers without adding any axioms. The SSReflect [12] plugin for Coq can be used to
bridge the gap between propositions and Booleans for the theories considered by SMTCoq. The major
shortcoming of this approach is that it does not allow quantifiers inside goals sent to SMT solvers,
although it does not prevent one from feeding these solvers universally quantified lemmas. To increase
the expressivity of SMTCoq with respect to quantifiers, one will need to switch to propositions, and
handle classical logic either by axioms or by restricting attention to decidable atoms of the considered
combined theory.

The first use case of this correct-by-construction checker is to check the validity of a proof witness,
or proofcertificatecoming from an external solver against some input problem (Figure 1b). In this use
case, the trusted base is both Coq and the parser of the input problem. The parse is part of the trusted
based because we need to make sure we are effectively verifying a proof of the problem we sent to the
external solver. However, this parser is fairly straightforward.

The second use case is within a Coq tactic (Figure 1c). We can give a Coq goal to an external solver
and get a proof certificate for it. If the checker can validatethe certificate, the soundness of the checker
allow us to establish a proof of the initial goal. This process is known ascomputational reflectionas it
uses a computation (here, the execution of the checker) inside a proof. In this use case, the trusted base
consists only of Coq: if something else goes wrong (e.g., thechecker cannot validate the certificate), the
tactic will fail, but nothing unsound will be added to the system.

In both cases, a crucial aspect for modularity purposes is the possibility topreprocessproof certifi-
cates before sending them to the SMTCoq checker, without having to prove anything about this prepro-
cessing stage. Again, if the preprocessor is buggy, the checker will fail to validate the proof certificate (by
returningfalse), which means that while nothing is learned, nothing unsafeis added to Coq’s context.
This allows us to easily extend SMTCoq with new solvers: as long as the certificate coming from the
new solver can be logically encoded into SMTCoq’s certificate format, we can implement this encoding
at the preprocessing stage. As a result, SMTCoq’s current support for both ZChaff and veriT is provided
through the implementation of a preprocessor for each solver. Both preprocessors convert to the same
proof format, thus sharing the same checker.

Using a preprocessor is also beneficial for efficiency: proofcertificates may be encoded more com-
pactly before being sent to the SMTCoq checker, which may improve performance.

2.2 The Checker

We now provide more details on the checker of SMTCoq. As presented in Figure 2, it consists of amain
checkerobtained as the combination of severalsmall checkers, each specialized in one aspect of proof
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checking in SMT (e.g., CNF conversion, propositional reasoning, reasoning in the theory of equality,
linear arithmetic reasoning, and so on).
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Figure 2: Internals of the Coq checker

The typecertificate is actually the aggregation of specialized types, one for each small checker.
The role of the main checker is thus to dispatch each piece of the certificate to its dedicated small checker,
until the initial formula is proved.

A small checker is a Coq program that, given a (possibly empty) list of formulas and a certificate
associated with it (which may be just a piece of the input certificate), computes a new formula:

small_checker : list formula → certificate_sc → formula

The soundness of thechecker comes from the soundness of each small checker, stated as follows:

small_checker_sound : ∀ f1 . . . fn c,

Jf1K ∧ . . . ∧ JfnK → Jsmall_checker [f1;...;fn] cK

meaning that the small checker returns a formula which is implied (after translation into Coq’s logic) by
the conjunction of its premises. Note that the list of premises may be empty: in such a case, the small
checker returns a tautology in Coq.

Here are some examples of small checkers.

• For propositional resolution chains, the checker takes as input a list of premises and returns a
resolvent if it exists, or a trivially true clause otherwise. In this case, a certificate is not required as
part of the small checker’s input.

• For the theory of equality with uninterpreted functions (EUF), the checker takes as input a formula
in this theory formulated as a certificate (corresponding toa theory lemma produced by the SMT
solver), and returns the formula if it is able to check it, or atrivially true clause otherwise. In this
case, no premises are given.
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• For linear integer arithmetic (LIA), the checker works similarly to the EUF checker, but checks the
formula using Micromega [5], an efficient decision procedure for this theory implemented in Coq.

The only thing that small checkers need to share is the typeformula, and its interpretation into Coq
Booleans. Each small checker may then reason independently, using separate pieces of the certificate.
Again, this is crucial for modularity: to extend SMTCoq witha new theory, one only has to extend
the typeformula with the signature of this theory and, independently of the already existing checkers,
implement a small checker for this theory and prove its soundness.

Notice that “small checker” can be understood in a very general sense: any function that, given a list
of first-order formulas, returns an implied first-order formula, can be plugged into SMTCoq as a small
checker. In principle, such a checker could even be as complex as an SMT solver, as long as it can be
proved correct in Coq.

3 Work in Progress: Extensions to CVC4 and Bit Vector Arithmetic

3.1 Support for CVC4

CVC4 is a proof-producing SMT solver, whose proof format is based on the Logical Framework with
Side Conditions (LFSC) [21]. LFSC extends the Edinburgh Logical Framework (LF) [14] by allowing
types with computationalside conditions, explicit computational checks defined as programs in a small
but expressive functional first-order programming language. The language has built-in types for arbitrary
precision integers and rationals, ML-style pattern matching over LFSC type constructors, recursion, a
minimal support for exceptions, and a very restricted set ofimperative features. One can define proof
rules in LFSC as typing rules that may optionally include a side condition written in this language. When
checking the application of such proof rules, an LFSC checker computes actual parameters for the side
condition and executes its code; if the side condition fails, the LFSC checker rejects the rule application.
The validity of an LFSC proof witness thus relies on the correctness of the side condition functions used
in the proof. LFSC comes with a set of pre-defined side conditions for various theories, used by the
CVC4 proof production mechanism.

The key differences between LFSC and the SMTCoq format are presented in Table 1.

LFSC SMTCoq
Rules deduction + computation deduction + certificate

Nested proofs supported not supported

Table 1: Main differences between the LFSC and SMTCoq certificate formats

The major difference lies in the presentation of the deduction rules. In SMTCoq, the small checkers
deduce a new formula from already known formulas, possibly with the help of a piece of certificate that
depends on the theory. The LFSC format is more uniform, thanks to the side conditions described above.

To support LFSC, and so CVC4, we are in the process of implementing (in OCaml) an untrusted
preprocessor that transforms LFSC proofs into SMTCoq proofs. To this end, for some theories, we
need to replay parts of the side conditions, in order to produce the corresponding SMTCoq premises,
conclusion and piece of certificate that will be passed to thesmall checkers. This encoding, however, is
relatively straightforward:

• for propositional reasoning, LFSC side conditions use the same logical content as SMTCoq rules;
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• CNF conversion and EUF proofs are nested in LFSC, so they require some processing for the
moment;

• for linear integer arithmetic, since SMTCoq relies on an existing decision procedure in Coq, it
only needs to know what theory lemma is being proved, and can ignore the actual proof steps in
the LFSC certificate.

One difficulty in translating LFSC proofs to the SMTCoq format comes from to the possibility in
LFSC of using natural-deduction-style proofs, where one can nest one proof inside another. For instance,
it is possible to have lemmas inside an LFSC proof whose witnesses are themselves LFSC proofs. The
architecture of the main and small checkers of SMTCoq does not currently allow this sort of nesting:
every clause produced by the small checkers needs to be a direct consequence of input clauses or clauses
that were previously produced. To encode an LFSC proof into SMTCoq, our preprocessor thus linearizes
nested proofs. The LFSC proofs generated by CVC4 are constructed in such a way that this does not
cause a blow-up in practice; however, to support LFSC in general, we plan to extend SMTCoq certificates
with nested proofs. Again, this extension should be made easier by the modularity inside the checker. It
should impact only the main checker, and not the various small checkers already in SMTCoq.

3.2 Support for Bit Vector Arithmetic

CVC4 has been recently extended to produce LFSC proofs for the quantifier-free fragment of the SMT
theory of bit vectors [13]. To check proof certificates in this theory, SMTCoq needs be extended with it.
As explained in Section 2.2, to do that one needs to:

1. extend the Coq representation of formulas with the signature of the bit vector theory and the
interpretation function into Coq terms;

2. implement (new) small checkers and their corresponding certificates for this theory, and prove
their correctness.

Step 1 is a simple extension on the SMTCoq side. The major difficulty is that Coq itself has limited
support for bit vectors. Its bit vector library provides only the implementation of bitwise operations
(and not arithmetic operations), and no proofs. We are thus currently implementing a more complete
library for this theory. Step 2 involves implementing and adding new certified Coq programs (the small
checkers). As mentioned, however, because of SMTCoq’s design, none of the previous small checkers
and their proofs of correctness need to be changed as a resultof this addition.

LFSC proofs for bit vectors produce by CVC4 mainly involve the following two kinds of deduction
steps:

• bit-blastingsteps that reduce the input bit vector formula to an equisatisfiable propositional for-
mula;

• standard propositional reasoning steps (based on resolution).

The propositional steps can be handled directly by previoussmall checkers. For the bit-blasting steps, we
implemented new small checkers that relate terms of the bit vector theory with lists of Boolean formulas
representing their bits; we are currently working on producing proofs of correctness in Coq for these
small checkers.

LFSC proofs generated by CVC4 involve a third kind of step: formula simplifications based on
the equivalence of two bit-vector terms or atomic formulas (for instance, by normalizing inequalities).
Currently, these simplification steps are not provided a detailed LFSC subproof by CVC4, although there
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are plans to do so in the near future. In the current SMTCoq implementation then, we assume those steps,
as in the LFSC proof coming from CVC4, or let the user prove them, in the case of tactics. Since those
steps correspond to applications of CVC4-defined rewritingand simplification rules, we plan for now to
prove the correctness of these rules once and for all at the Coq level, and to pre-process simplification
steps into applications of these rules.

4 Related Work

In addition to related work already discussed throughout the paper, we now briefly mention a few more
notable projects. Heuleet al. implemented an efficient checker for state-of-the-art SAT techniques,
verified in ACL2 [15, 24]. It is mainly based on a generalization of extended resolution [22, 17] and
on reverse unit propagation [11]. SMTCoq currently handlesonly standard extended resolution for its
propositional part.

Efficient proof reconstruction for SAT and SMT solvers has been implemented in proof assistants
based on higher-order logic [23, 9]. Some of these reconstructions also handle the theory of bit vec-
tors [8]. This approach is based on translating SAT/SMT certificates to applications of the inference
rules of the kernels of these proof assistants. In contrast,our approach in Coq is based on computational
reflection: the certificate is directly processed by the reduction mechanism of Coq’s kernel.

Based on an efficient encoding of a large subset of HOL goals into first-order logic, the Sledgeham-
mer tactic [20] allows HOL-based proof assistants to efficiently and reliably help manual proving. Proofs
are replayed using either the proof reconstruction mechanism described above or a built-in first-order
prover. We hope that SMTCoq can help in adding such techniques into Coq and other Type Theory-
based proof assistants, by providing a proof replay mechanism based on certificates.

5 Conclusion and Future Work

SMTCoq has been designed to be modular in such a way that facilities its extension with new solvers
and new theories. In particular, such extensions should notrequire any changes in existing checkers or
in their proofs of soundness. Thus, while it may require someeffort to certify new small checkers or to
translate new proof formats into the SMTCoq format, such extensions require only local changes. Our
current extensions to CVC4 and bit vectors arithmetic validate this goal: indeed, the work so far consisted
mostly in implementing an untrusted preprocessor for certificates and adding new, independent checkers.
One limiting aspect of SMTCoq is the lack of support for nested proofs, which we plan to add. Thanks
to the modularity of the checker, we believe this feature toocan be added locally.

In the future we plan to continue extending the expressivityof SMTCoq, and in particular to offer
support for the SMT theory of arrays (for which CVC4 is also proof-producing). We believe we can
match, and perhaps even improve upon existing work in terms of efficiency.

The current major limitation of SMTCoq resides in its set of tactics: presently, it can only handle
goals that are directly provable by SMT solvers, without much encoding of Coq logic into first-order
logic. Our longer term plan is to combine ongoing work onhammering[7] for proof assistants based on
Type Theory (such as Coq) with the certificate checking capabilities offered by SMTCoq.
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