
Journal of Automated Reasoning (2023) 67:19
https://doi.org/10.1007/s10817-023-09664-4

Synthesising Programs with Non-trivial Constants

Alessandro Abate1 · Haniel Barbosa2 · Clark Barrett3 · Cristina David4 ·
Pascal Kesseli5 · Daniel Kroening6 · Elizabeth Polgreen7 · Andrew Reynolds8 ·
Cesare Tinelli8

Received: 29 April 2021 / Accepted: 2 March 2023
© The Author(s) 2023

Abstract
Program synthesis is the mechanised construction of software. One of the main difficulties
is the efficient exploration of the very large solution space, and tools often require a user-
provided syntactic restriction of the search space. While useful in general, such syntactic
restrictions provide little help for the generation of programs that contain non-trivial con-
stants, unless the user is able to provide the constants in advance. This is a fundamentally
difficult task for state-of-the-art synthesisers. We propose a new approach to the synthesis of
programs with non-trivial constants that combines the strengths of a counterexample-guided
inductive synthesiser with those of a theory solver, exploring the solution space more effi-
ciently without relying on user guidance. We call this approach CEGIS(T), where T is a
first-order theory. We present two exemplars, one based on Fourier-Motzkin (FM) variable
elimination and one based on first-order satisfiability. We demonstrate the practical value of
CEGIS(T) by automatically synthesising programs for a set of intricate benchmarks. Addi-
tionally, we present a case study where we integrate CEGIS(T) within the mature synthesiser
CVC4 and show that CEGIS(T) improves CVC4’s results.

Keywords Program synthesis · Automated reasoning · Satisfiability modulo theories ·
Counterexample guided inductive synthesis

1 Introduction

Program synthesis [25] is the problem of finding a program that meets a correctness spec-
ification given as a logical formula. This is an active area of research in which substantial
progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and thus, the
research community has explored pragmatic restrictions. One particularly successful direc-
tion is Syntax-Guided Program Synthesis (SyGuS) [3]. The key idea of SyGuS is that the
user supplements the logical specification with a syntactic template for the solution, defined

B Cristina David
cristina.david@bristol.ac.uk

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09664-4&domain=pdf
http://orcid.org/0000-0002-9106-934X

 19 Page 2 of 25 A. Abate et al.

as a context-free grammar. Leveraging the user’s intuition, SyGuS reduces the size of the
solution space substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many practical applica-
tions. A very obvious exemplar of the limits of the syntax-guided approach are programs that
require non-trivial constants. In such a scenario, the syntax-guided approach requires that
the user provides the exact value of the constants in the solution.

For illustration, let’s consider a user who wants to synthesise a program that rounds up a
given 32-bit unsigned number x to the next highest power of two. If we refer to the function
computed by the program as f (x), then the specification can be written as

x<231⇒ f (x)&(− f (x))= f (x) ∧ f (x)≥x ∧ 2x≥ f (x)

The first conjunct forces f (x) to be a power of two, the others require it to be the next highest.
A possible solution for this is given by the following C program:

1 x=x-1;
2 x |= x >> 1;
3 x |= x >> 2;
4 x |= x >> 4;
5 x |= x >> 8;
6 x |= x >> 16;
7 x=x+1;

It is improbable that the user knows that the constants in the solution are exactly 1, 2,
4, 8, 16, and thus, she will be unable to effectively restrict the solution space. As a result,
synthesisers are very likely to enumerate possible combinations of constants, which is highly
inefficient.

In this paper we propose a new approach to the synthesis of programs with non-trivial
constants that combines the strengths of a counterexample-guided inductive synthesiser with
those of a solver for a first-order theory in order to perform a more efficient exploration
of the solution space, without relying on user guidance. Our inspiration for this proposal
is CDCL(T) [22, 31, 39] (also known as DPLL(T)), which has boosted the performance
of solvers for many fragments of quantifier-free first-order logic. The CDCL(T) framework
combines reasoning about the Boolean structure of a formula with reasoning about theory
facts to decide satisfiability of a given first-order formula.

Similarly, we attempt to separate reasoning about a program’s structure and its constants.
For this purpose, we propose a new algorithm called CounterExample-Guided Inductive
Synthesis(T), where T is a given first-order theory for which we have a specialised solver.
Analogous to its counterpart CDCL(T), the CEGIS(T) architecture features communication
between a synthesiser and a theory solver, which results in a much more efficient exploration
of the search space (i.e., the space of all possible programs).

While standard CEGIS architectures [27, 41] alreadymake use of SMT solvers, the typical
role of the SMT solver in existing algorithms is restricted to validating candidate solutions and
providing concrete counterexamples that direct subsequent search. By contrast, CEGIS(T)
allows the theory solver to communicate generalised constraints back to the synthesiser, thus
enabling more significant pruning of the search space.

There are instances of more sophisticated collaboration between a program synthesiser
and theory solvers. The most obvious such instance is the program synthesiser for single
invocation conjectures [35] inside the CVC4 SMT solver [34]. This approach features a very
tight coupling between the two components (i.e., the synthesiser and the theory solvers) that

123

Synthesising Programs with Non-trivial Constants Page 3 of 25 19

takes advantage of the particular strengths of the SMT solver by reformulating the synthesis
problem as the problem of refuting a universally quantified formula (SMT solvers are better at
refuting universally quantified formulae than at finding models for them). By contrast, in our
approach we maintain a clear separation between the synthesiser and the theory solver while
performing comprehensive and well-defined communication between the two components.
This enables the flexible combination of CEGIS with a variety of theory solvers, which excel
at reasoning about different kinds of constraints.

Contributions

– We propose CEGIS(T), a program synthesis architecture that facilitates the communi-
cation between an inductive synthesiser and a solver for a first-order theory, with the
objective of separating reasoning about a program’s structure and its constants.

– We present two exemplars of this architecture, one based on Fourier-Motzkin (FM)
variable elimination [10] and one using an off-the-shelf SMT solver.

– As a case study, we present an integration of CEGIS(T) within the synthesiser CVC4,
winner of four out of five tracks of the Syntax-Guided Synthesis (SyGuS) competition
2019. We show that CEGIS(T) improves CVC4’s performance.

– We have implemented CEGIS(T) and compared it with state-of-the-art program synthe-
sisers on benchmarks that require intricate constants in the solution.

2 Preliminaries

2.1 The Program Synthesis Problem

Program synthesis is the task of automatically generating programs that satisfy a given logical
specification. For non-recursive programs a program synthesiser can be viewed as a solver
for formulae with existential second-order quantifiers.1

The input specification provided to a program synthesiser is of the form

∃P.∀�x . σ (P, �x) (1)

where P ranges over functions (where a function is represented by the program computing
it), �x is a tuple of variables ranging over the function’s inputs, and σ is a quantifier-free
formula.

2.2 CounterExample Guided Inductive Synthesis

CounterExample-Guided Inductive Synthesis (CEGIS) is a popular approach to program
synthesis. It is an iterative process that maintains at all times a candidate program P∗ for
the specification ∃P.∀�x . σ (P, �x). Each iteration performs inductive generalisation based on
counterexamples provided by a verification oracle, that is, concrete input values �c that falsify
σ(P∗, �c). Essentially, the inductive generalisation uses information about a limited number
of inputs to make claims about all the possible inputs in the form of candidate solutions.

1 Existential second-order logic allows existential quantification over second-order (i.e., function) variables
in addition to quantification over (first-order) variables [38].

123

 19 Page 4 of 25 A. Abate et al.

Fig. 1 CEGIS block diagram
synthesise

verify

no solution

solution P ∗

UNSAT

UNSAT

�c

SA
TP ∗

SA
T

The CEGIS process is illustrated in Figure 1 and consists of two phases: the synthesis
phase and the verification phase. Given the specification σ of the desired program, the induc-
tive synthesis procedure generates a candidate program P∗ that satisfies σ(P∗, �x) for a subset
I of all possible inputs. The candidate program P∗ is passed to the verification phase, which
checks whether it satisfies σ(P∗, �x) for all possible inputs. This is done by checking whether
¬σ(P∗, �x) is unsatisfiable. If so, ∀x .σ (P∗, �x) is valid, meaning that we have successfully
synthesised a solution, and the algorithm terminates. Otherwise, the verifier produces a coun-
terexample �c from the satisfying assignment for ¬σ(P∗, �x), which is then added to the set I
of inputs passed to the synthesiser, and the loop repeats.

The methods used in the synthesis and verification blocks vary in different CEGIS imple-
mentations. We give details of the algorithms used in CVC4 in Sect. 5.1 as an exemplar.

2.3 CDCL(T)

To improve the performance of the traditional CEGIS process, we have devised an extension
of it, CEGIS(T), inspired by the CDCL(T) framework. The latter is an extension of the
CDCL algorithm used by most propositional SAT solvers [39], by a theory T . We give a
brief overview of CDCL(T) and compare CDCL(T) with CEGIS(T) next.

Given a formula F from a theory T , a propositional formula Fp is created from F in
which the theory atoms are replaced by Boolean variables (the “propositional skeleton”).
The standard CDCL algorithm, comprisingDecide, Boolean Constraint Propagation (BCP),
Analyze- Conflict and BackTrack components as illustrated in Figure 2, generates an
assignment to the Boolean variables in Fp . The theory solver then checks whether this
assignment is still consistent when the Boolean variables are replaced by their original atoms.
If so, a satisfying assignment for F has been found. Otherwise, a constraint over the Boolean
variables in Fp is passed back to Decide, and the process repeats.

In the very first SMT solvers, the SAT solver first obtained a full assignment to the
Boolean variables that comprise the abstraction of the input. Subsequently, the theory solver
would determine whether or not this assignment was satisfiable according to the background
theory. If not, the next Boolean assignment was then checked. Such SMT solvers were prone
to enumerating all possible candidate solutions at the Boolean level in the worst case. The
key improvement in CDCL(T) was the ability to pass back a more general constraint over the
variables in the formula as a conflict clause [22],which could block not only the failed solution
but a whole set of them. Furthermore, modern variants of CDCL(T) call the theory solver
on partial assignments to the variables in Fp , which helps detect conflicts and propagations
eagerly. Our proposed, new synthesis algorithm offers equivalents of both of these ideas. As
we describe in Sect. 4, our implementation of CEGIS(T) may establish that the synthesis
specification has no solution of a particular syntactic shape, that is, matching a particular
template, regardless of the choices made to instantiate the template.

123

Synthesising Programs with Non-trivial Constants Page 5 of 25 19

Decide

BCP

BackTrack

Analyze
Conflict

Deduction Add Clauses

SAT

UNSAT

all assigned

conflict

theory

propagation

no
th

in
g
to

pr
op

ag
at
e

Theory
Solver

CDCL

Fig. 2 CDCL(T) with theory propagation

2.4 Fourier–Motzkin Elimination

Fourier–Motzkin elimination is a mathematical algorithm for eliminating variables from a
system of linear inequalities. In particular, given a system of linear inequalities of the form

a1x1 + a2x2 + . . . + anxn ≤ bi , i=1 . . .m

we eliminate xn as described next. For each inequality a1x1 + a2x2 + . . . + anxn ≤ bi , we
get

xn ≤ (bi − a1x1 − . . . − an−1xn−1)/an

or

xn ≥ (bi − a1x1 − . . . − an−1xn−1)/an

depending on whether an > 0 or an < 0, respectively.
This gives us a collection of upper bounds

xn ≤ U1(x1, . . . , xn−1), . . . , xn ≤ Ul(x1, . . . , xn−1)

and lower bounds

xn ≥ L1(x1, . . . , xn−1), . . . , xn ≥ L p(x1, . . . , xn−1)

.
The initial system of inequalities is equivalent to

max(L1(x1, . . . , xn−1), . . . , L p(x1, . . . , xn−1))

≤ min(U1(x1, . . . , xn−1), . . . ,Ul(x1, . . . , xn−1))

which is equivalent to p · l inequalities of the form
Uk(x1, . . . , xn−1) ≤ L j (x1, . . . , xn−1) k = 1 · · · l, j = 1 · · · p

.
We transformed the original system of linear inequalities into another system where xn is

eliminated.

123

 19 Page 6 of 25 A. Abate et al.

3 Motivating Examples

3.1 CEGIS on a Simple Example

In each iteration of a standard CEGIS loop, the communication from the verification phase
back to the synthesis phase is restricted to concrete counterexamples. This is particularly
detrimental when synthesising programs that require non-trivial constants. In such a setting,
it is typical that a counterexample provided by the verification phase only eliminates a sin-
gle candidate solution and, consequently, the synthesiser ends up enumerating all possible
constants.

For illustration, let’s consider the trivial problem of synthesising a function f (x) where
f (x) < 0 if x < 334455 and f (x) = 0, otherwise. One possible solution is f (x) = ite (x <

334455) −1 0, where ite stands for if then else.
In order tomake the synthesis task even simpler,we are going to assume thatweknowapart

of this solution, namely we know that it must be of the form f (x) = ite (x < ?) −1 0, where
“?” is a placeholder for the missing constant that we must synthesise. A plausible scenario
for a run of CEGIS is presented next: the synthesis phase guesses f (x) = ite (x < 0) −1 0,
for which the verification phase returns x = 0 as a counterexample. In the next iteration of
the CEGIS loop, the synthesis phase guesses f (x) = ite (x < 1) −1 0 (which works for
x = 0) and the verifier produces x = 1 as a counterexample. Following the same pattern,
the synthesis phase will enumerate all the candidates

f (x) = ite (x < 2) −1 0

. . .

f (x) = ite (x < 334454) −1 0

before finding the solution. This is caused by the fact that each of the concrete counterex-
amples 0, . . . , 334454 eliminates one candidate only from the solution space. To avoid this
behavior we need to propagate more information from the verifier to the synthesis phase in
each iteration of the CEGIS loop.

3.2 Proving Properties of Programs

Synthesis engines can be used as reasoning engines in program analysers, and constants
are important for this application. In such a case, the synthesised program computes the
program proof of interest (e.g., program invariant [13] for safety proving, counter-model
[11] for bug finding, ranking function [21] for termination proving, recurrence set [26] for
non-termination). In the examples given in the rest of this section, we refer directly to the
formula corresponding to each program proof computed by a synthesised program.
Proving safety

Let’s start by considering the very simple program below, which increments a variable x
from 0 to 100000 and asserts that its value is less than 100005 on exit from the loop.

1 int x=0;
2 while (x <=100000) x++;
3 assert(x <100005);

Proving the safety of such a program, i.e., that the assertion at line 3 is not violated in
any execution of the program requires the generation of a loop invariant, a task well-suited
for synthesis (the Syntax Guided Synthesis Competition [6] has had a track dedicated to

123

Synthesising Programs with Non-trivial Constants Page 7 of 25 19

synthesising safety invariants since 2015). For this example, a safety invariant is x < 100002,
which holds on entrance to the loop, is inductive with respect to the loop’s body, and implies
the assertion on exit from the loop.

While it is very easy for a human to find this invariant, the need for a non-trivial constant
makes it exceedingly difficult for state-of-the-art synthesisers: both CVC4 (version 1.5) [35]
and EUSolver (version 2017-06-15) [4] fail to find a solution in an hour.
Proving termination Next, let’s look at the following terminating program:

1 int x=0;
2 while (x <1000) {
3 x++;
4 }

Its termination argument can be encoded as the following formula, where R is a ranking
function, i.e., an injective function that has a well-founded set D with order ≺ as co-domain
and is injective andmonotonically decreasingwith respect to the program’s transition relation:

∀x . x<1000 → 0 ≺ R(x) ∧ R(x + 1) ≺ R(x)

A possible ranking function is R(x) = 1000− x with (D,≺) = (N,<), which also requires
a non-trivial constant.
Proving non-termination One way of proving non-termination is by finding a recurrence set,
i.e., a nonempty set of states S such that for each state s ∈ S there exists a transition to
some s′ ∈ S [26]. As an example, let us investigate the termination behaviour of the program
below:

1 unsigned int i,j;
2 while(i<UINT_MAX || j<UINT_MAX) {
3 i++;
4 j++;
5 }

For bit-vectors, the initial state (i0, j0) = (!UINT_MAX!, !UINT_MAX! − 1) leads to
an infinite loop since i and j will overflow and be reset to 0 in subsequent loop iterations. The
corresponding recurrence set S has to satisfy the following formula of bitvector arithmetic,
which encodes that S must be reachable from an initial state and, for each state in S, at least
one successor must be in S. Note that, as the program is deterministic, all successors of a
state in S must be in S.

∃i0, j0.∀i, j .S(i0, j0) ∧
S(i, j) → (i<U I NT _MAX ∨ j<U I NT _MAX) ∧
S(i, j) → S(i + 1, j + 1)

A possible recurrence set is S(i, j) = i<U I NT _MAX ∨ j<U I NT _MAX , which again
requires large constants.
Bug findingNext, let’s look at the buggy example below, where we increment x and y in each
loop iteration, maintaining the same initial difference of 10 between them. Consequently, the
assertion at line 6 fails.

123

 19 Page 8 of 25 A. Abate et al.

1 int x=0, y=10;
2 while(x <100000) {
3 x++;
4 y++;
5 }
6 assert(y==x+11);

We can prove that this program has a bug by finding a danger invariant [14], which can
be seen as a compact representation of an error trace. A danger invariant D(x, y) must hold
in some initial state, be inductive with respect to the transition relation and, on exit from the
loop, imply the negation of the assertion:

∃x0, y0.x0=0 ∧ y0=10 ∧ D(x0, y0) ∧
∀x, y.D(x, y) ∧ x<100000 → D(x + 1, y + 1) ∧
∀x, y.D(x, y) ∧ x≥100000 → y �=x+11

For our example, a possible danger invariant is D(x, y) = (y=x+10). However this is
not quite enough to conclude that the assertion does fail, since we have not yet established
that the loop terminates from any D-state — thus we are in the situation where the danger
invariant denotes either an assertion violation or the presence of a recurrence set.

If we want to prove only an assertion violation, an additional part of the danger invariant
is a ranking function R(x, y) proving that the loop does terminate making the assertion at
line 6 reachable.

∃x0, y0.x0=0 ∧ y0=10 ∧ D(x0, y0) ∧
∀x, y.D(x, y) ∧ x<100000 → D(x + 1, y + 1) ∧ R(x, y) > 0 ∧

R(x, y) > R(x + 1, y + 1) ∧
∀x, y.D(x, y) ∧ x≥100000 → y �=x+11

In this case, a ranking function is R(x, y) = 100000 − x . As we can see, both D(x, y) and
R(x, y) require non-trivial constants.

4 CEGIS(T)

4.1 Overview

In this section, we describe the architecture of CEGIS(T), which is obtained by augmenting
the standard CEGIS loop with a theory solver. Since we are particularly interested in the
synthesis of programs with constants, we present CEGIS(T) from this particular perspective.
In such a setting,CEGIS is responsible for synthesising programskeletons,whereas the theory
solver generates constraints over the literals that denote constants. These constraints are then
propagated back to the synthesiser.

To explain the main ideas behind CEGIS(T) in more detail, it is useful to differentiate
between a candidate solution, a candidate solution skeleton, a generalised candidate solution
and a finalised solution.

Definition 1 (Candidate solution) Using the notation from Sect. 2.2, a program P∗ is a
candidate solution of ∀�x .σ (P, �x) if the set {σ(P∗, �e) | �e ∈ Einputs} is satisfiable where
Einputs is a set of possible values for �x .

123

Synthesising Programs with Non-trivial Constants Page 9 of 25 19

synthesise

verify

no solution

solution P ∗

Constant
RemovalDeduction

UNSAT

UNSAT

concrete
counterexample

SA
T

P ∗

SA
T

SA
T

program has
constants

pr
op

ag
at
e
co

ns
tr
ai
nt
s

Theory
Solver

CEGIS

Fig. 3 CEGIS(T)

The set {σ(P∗, �e) | �e ∈ Einputs} in Definition 1 contains the ground instances of σ(P, �x)
obtained by instantiating the vector �x with each vector in Einputs. Such instances do not have
any free variables other than the second-order variable P . If this set is satisfiable for some
value (i.e., program) P∗ for P then P∗ meets the specification for each input from Einputs

(i.e., ∀ �x ∈ Einputs.σ (P, �x)).
Definition 2 (Candidate solution skeleton) Given a candidate solution P∗, the skeleton of
P∗, denoted by P∗[?], is obtained by replacing each constant in P∗ with a distinguished
symbol ?, representing a hole.

Definition 3 (Generalised candidate solution) Given a candidate solution skeleton P∗[?],
we obtain a generalised candidate P∗[�v] by filling each hole in P∗[?] with a distinct logical
variable, i.e., variable vi will correspond to the i-th hole (in some arbitrary but fixed ordering
of the hole occurrences in P∗). Then �v = [v1, . . . , vn], where n denotes the number of holes
in P[?].
Definition 4 (Finalised solution) A candidate solution P∗ is afinalised solution if the formula
∀�x .σ (P∗, �x) is valid.
Example 1 (Candidate solution, candidate solution skeleton, generalised candidate solution,
finalised solution) Given the example in Sect. 3.1, if Einputs = {0}, then f (x) = −2 is a
candidate solution. The corresponding candidate skeleton is f [?](x) = ? and the generalised
candidate is f [v1](x) = v1. A finalised solution for this example is f (x) = ite (x <

334455) −1 0.

Figure 3 illustrates the communication between the synthesiser and the theory solver in
CEGIS(T). The interaction can be described as follows:

– TheCEGIS architecture (enclosed in a dotted rectanglewith the label “CEGIS”) generates
the candidate solution P∗, which is provided to the theory solver.

– The theory solver (enclosed in a dashed rectangle with the label “Theory Solver”) obtains
the skeleton P∗[?] of P∗ and generalises it to P∗[�v] in the box marked constant
removal. Subsequently, Deduction attempts to find a constraint over �v describing

123

 19 Page 10 of 25 A. Abate et al.

those values for which P∗[�v] is a finalised solution.
This constraint is propagated back to CEGIS. Whenever there is no valuation of �v for
which P∗[�v] becomes a finalised solution, the constraint needs to block the current
skeleton P∗[?].

The CEGIS(T) algorithm is given as Algorithm 1 and proceeds as follows:

– Before entering the while loop, Einputs is initialized with the empty set. This means that,
in the first iteration of CEGIS(T), there are no inputs to be considered and any program
will trivially obey the specification.

– CEGIS synthesis phase: checks the satisfiability of {σ(P, �e) | �e ∈ Einputs}, where
Einputs is a subset of all possible values for �x , and obtains a candidate solution P∗. If this
set is unsatisfiable, then the synthesis problem has no solution.

– CEGIS verification phase: checks whether there exists a concrete counterexample for
the current candidate solution P∗ by checking the satisfiability of the formula¬σ(P∗, �x).
If the result is UNSAT, then P∗ is a finalised solution to the synthesis problem. If the result
is SAT, a concrete counterexample �c can be extracted from the satisfying assignment.

– Theory solver: if P∗ contains constants, then they are eliminated, resulting in the skele-
ton P∗[?], which is afterwards generalised to P∗[�v]. The goal of the theory solver is
to find T -implied literals and communicate them back to the CEGIS part in the form
of a constraint, C(P, P∗, �v). In Algorithm 1, this is done by Deduction(σ, P∗[�v]).
The result of Deduction(σ, P∗[�v]) is of the following form: whenever there exists a
valuation of �v for which the current skeleton P∗[?] is a finalised solution, res=true
and C(P, P∗, �v)= ∧

i=1·n vi=ci , where ci are constants; otherwise, res=false and
C(P, P∗, �v) needs to block the current skeleton P∗[?], i.e., C(P, P∗, �v)=P[?]�=P∗[?].
In our CEGIS implementation, this amounts to placing constraints over the boolean
selector variables in the synthesis formula, which choose the sequence of operators and
operands in the candidate program P∗.

– CEGIS learning phase: adds new information to the problem specification. If we did
not use the theory solver (i.e., the candidate P∗ found by the synthesiser did not contain
constants or the problem specification was out of the theory solver’s scope), then the
learning would be limited to adding the concrete counterexample �e obtained from the
verification phase to the set Einputs. However, if the theory solver is used and returns
res=true, then the second element in the tuple contains valuations for �v such that P∗[�v]
is a finalised solution. If res=false, then the second element blocks the current skeleton
and needs to be added to σ .

4.2 CEGIS(T) with a Theory Solver Based on FM Elimination

In this section we describe a theory solver based on FM variable elimination. In our case,
we call the FM theory solver whenever the specification σ belongs to linear arithmetic.
Otherwise, the FM theory solver is not called.

As mentioned above, we need to produce a constraint over variables �v describing the
situation when P∗[�v] is a finalised solution. For this purpose, we consider the formula
∃�x .¬σ(P∗[�v], �x),where �v is a satisfiability witness if the specification σ admits a counterex-
ample �x for P∗. Let E(�v) be the formula obtained by eliminating �x from ∃�x .¬σ(P∗[�v], �x).
If ¬E(�v) is satisfiable, any satisfiability witness gives us the necessary valuation for �v:

C(P, P∗, �v) =
∧

i=1·n
vi = ci .

123

Synthesising Programs with Non-trivial Constants Page 11 of 25 19

ALGORITHM 1: CEGIS(T)

1 function CEGIS(T)(specification σ)
2 Einputs = ∅
3 while true do
4 /* CEGIS synthesis phase */
5 if {σ(P, �e) | �e ∈ Einputs)} is UNSAT then
6 return Failure;
7 end
8 else
9 P∗ = satisfiability witness for {σ(P, �e) | �e ∈ Einputs)};

10 /* CEGIS verification phase */
11 if ¬(σ (P∗, �x)) is UNSAT then
12 return Finalised solution P∗;
13 end
14 else
15 �e = satisfiability witness for ¬σ(P∗, �x);
16 /* Theory solver */
17 if P∗ contains constants then
18 Obtain P∗[?] from P∗;
19 Generalise P∗[?] to P∗[�v];
20 (res,C(P, P∗, �v)) = Deduction(σ, P∗[�v]);
21 end
22 end
23 end
24 /* CEGIS learning phase */
25 if res then
26 // C(P, P∗, �v) is of the form

∧
i=1...n vi = ci

27 return Finalised solution P∗[�c];
28 end
29 else
30 σ(P, �x) = σ(P, �x) ∧ C(P, P∗, �v);
31 Einputs = Einputs ∪ {�e};
32 end
33 end
34

If ¬E(�v) is UNSAT, then the current skeleton P∗[?] needs to be blocked. This reasoning is
supported by Lemma 1 and Corollary 1.

Lemma 1 Let E(�v) be the formula obtained by eliminating �x from ∃�x .¬σ(P∗[�v], �x). Then,
any witness �v# to the satisfiability of ¬E(�v) gives us a finalised solution P∗[�v#] to the
synthesis problem.

Proof From the fact that E(�v) is obtained by eliminating �x from ∃�x .¬σ(P∗[�v], �x), we get
that E(�v) is equivalent with ∃�x .¬σ(P∗[�v], �x) (we use ≡ to denote equivalence):

E(�v) ≡ ∃�x .¬σ(P∗[�v], �x) .

Then:

¬E(�v) ≡ ∀�x . σ (P∗[�v], �x) .

Consequently, any �v# satisfying¬E(�v) also satisfies∀�x . σ (P∗[�v], �x). From∀�x . σ (P∗[�v#], �x)
and Definition 4 we get that P∗[�v#] is a finalised solution.

��

123

 19 Page 12 of 25 A. Abate et al.

Corollary 1 Let E(v) be the formula that is obtained by eliminating �x from ∃�x .¬σ(P∗[�v], �x).
If¬E(�v) is unsatisfiable, then the corresponding synthesis problem does not admit a solution
for the skeleton P∗[?].
Proof Given that¬E(�v) ≡ ∀�x . σ (P∗[�v], �x), if¬E(�v) is unsatisfiable, so is ∀�x . σ (P∗[�v], �x),
meaning that there is no valuation for �v such that the specification σ is obeyed for all inputs
�x . ��

For the current skeleton P∗[?], the constraint E(�v) generalises the concrete counterexam-
ple �e (found during the CEGIS verification phase) in the sense that the instantiation �v# of �v
for which �e failed the specification, i.e., ¬σ(P∗[�v#], �e), is a satisfiability witness for E(�v).
This is true as E(�v) ≡ ∃�x .¬σ(P∗[�v], �x), which means that the satisfiability witness (�v#, �e)
for ¬σ(P∗[�v], �x) projected on �v is a satisfiability witness for E(�v).

4.2.1 Disjunction

The specification σ and the candidate solution may contain disjunctions. However, most
theory solvers (and in particular the FM variable elimination [10]) work on conjunctive
fragments only. A naïve approach could use case-splitting, i.e., transforming the formula
into Disjunctive Normal Form (DNF) and then solving each clause separately. This can
result in a number of clauses exponential in the size of the original formula. Instead, we
handle disjunction using the Boolean Fourier-Motzkin procedure [28, 43]. As a result, the
constraints we generate may be non-clausal.

4.2.2 Applying CEGIS(T) with FM to the Motivational Example

We recall the example in Sect. 3 and apply CEGIS(T). The problem is

∃ f .∀x . x < 334455 → f (x) < 0 ∧ x≥334455 → f (x) = 0

which gives us the following specification:

σ(f , x) = (x ≥ 334455 ∨ f (x) < 0) ∧ (x<334455 ∨ f (x) = 0) .

The first synthesis phase generates the candidate f ∗(x)=0 for which the verification phase
returns the concrete counterexample x=0. As this candidate contains the constant 0, we
generalise it to f ∗[v1](x) = v1, for which we get

σ(f ∗[v1], x) = (x ≥ 334455 ∨ v1 < 0) ∧ (x<334455 ∨ v1 = 0) .

Next, we use FM to eliminate x from f ∗:

∃x .¬(σ (f ∗[v1], x)) = ∃x .(x < 334455 ∧ v1 ≥ 0) ∨ (x≥334455 ∧ v1 �= 0) .

Note that, given that formula¬σ(f ∗[v1], x) is in DNF, for conveniencewe directly apply FM
to each disjunct and obtain E(v1) = v1≥0 ∨ v1 �=0, which characterises all the values of v1
for which there exists a counterexample. When negating E(v1) we get v1<0 ∧ v1=0, which
is UNSAT. As there is no valuation of v1 for which the current f ∗ is a finalised solution,
the result returned by the theory solver is (false, f [?]�= f ∗[?]), which is used to augment
the specification. Subsequently, a new CEGIS(T) iteration starts. The learning phase has
changed the specification σ to

σ(f , x) = (x≥334455 ∨ f (x)<0) ∧ (x<334455 ∨ f (x)=0) ∧ f [?]�=? .

123

Synthesising Programs with Non-trivial Constants Page 13 of 25 19

This forces the synthesis phase to pick a new candidate solution with a different skeleton.
The new candidate solution we get is f ∗(x) = ite (x<100) − 3 1, which works for the
previous counterexample x=0. However, the verification phase returns the counterexample
x=100. Again, this candidate contains constants which we replace by symbolic variables,
obtaining

f ∗[v1, v2, v3](x) = ite (x<v1) v2 v3 .

Next, we use FM to eliminate x from

∃x .¬(σ (f ∗[v1, v2, v3], x)) =
∃x .¬(x≥334455 ∨ (x<v1 → v2<0 ∧ x≥v1 → v3<0)∧
x<334455 ∨ (x<v1 → v2=0 ∧ x≥v1 → v3=0)) =

∃x .¬((x≥334455 ∨ x≥v1 ∨ v2<0) ∧ (x≥334455 ∨ x<v1 ∨ v3<0)∧
(x<334455 ∨ x≥v1 ∨ v2=0) ∧ (x<334455 ∨ x<v1 ∨ v3=0)) =

∃x .(x<334455 ∧ x<v1 ∧ v2≥0) ∨ (x<334455 ∧ x≥v1 ∧ v3≥0)∨
(x≥334455 ∧ x<v1 ∧ v2 �=0) ∨ (x≥334455 ∧ x≥v1 ∧ v3 �=0) .

As we work with integers, we can rewrite x<334455 to x≤334454 and x<v1 to x≤v1−1.
Then, we obtain the following constraint E(v1, v2, v3) (as aforementioned, we applied FM
to each disjunct in ¬σ(f ∗[v1, v2, v3], x))

E(v1, v2, v3) = v2≥0 ∨ (v1≤334454 ∧ v3≥0) ∨ (v1≥334456 ∧ v2 �=0) ∨ v3 �=0

whose negation is

¬E(v1, v2, v3) = v2<0 ∧ (v1>334454 ∨ v3<0) ∧ (v1<334456 ∨ v2=0) ∧ v3=0

A satisfiability witness is v1=334455, v2= − 1 and v3=0. Thus, the result returned by the
theory solver is (true, v1=334455 ∧ v2= − 1 ∧ v3=0), which is used by CEGIS to obtain
the finalised solution

f ∗(x) = ite (x<334455) −1 0 .

4.3 CEGIS(T) with an SMT-Based Theory Solver

For our second variant of a theory solver, we make use of an off-the-shelf SMT solver that
can solve first-order formulae with quantifiers. This approach is more general than the one
described in Sect. 4.2, as there are solvers for a broad range of theories.

Recall that our goal is to obtain a constraint C(P, P∗, �v) that either characterises the
valuations of �v for which P∗[�v] is a finalised solution or blocks P∗[?] whenever no such
valuation exists. Consequently, we use the SMT solver to check the satisfiability of the
formula

Φ = ∃�v ∀�x . σ (P∗[�v], �x) .

If Φ is satisfiable, then any satisfiability witness �c gives us a valuation for �v such that P∗ is
a finalised solution: C(P, P∗, �v) = ∧

i=1·n vi = ci . Conversely, if Φ is unsatisfiable, then
C(P, P∗, �v) must block the current skeleton P∗[?]: C(P, P∗, �v) = P[?] �= P∗[?].

The formula passed to theSMTsolver is still a non-trivial formula containing an alternating
quantifier, except now both quantifier prefixes are first-order, that is quantify over domain
values not over functions. It would not be uncommon for an SMT solver to take substantially

123

 19 Page 14 of 25 A. Abate et al.

Table 1 Learned constraints for each SMT result combination (✗: unsat, �: sat, ∅: timeout, ∗: any result)
Φ ∧ v < K ✗ ✗ ∅ ∅ � ∗
Φ ∧ v > K ✗ ∅ ✗ ∅ ∗ �
C(P, P∗, �v) P[?]�=P∗[?] P[?]�=P∗[?] ∧ v<K P[?]�=P∗[?] ∧ v>K K v=c v=c

longer to solve this formula than the synthesis step of CEGIS takes. To avoid that, we impose a
heuristically chosen timeout of 2 s on the verification step. If the solver exceeds the timeout,
CEGIS(T) defaults to the behaviour of a standard CEGIS loop for the current iteration,
and returns the concrete counterexample found by the CEGIS verification phase (i.e., the
satisfiability witness for ¬σ(P∗, �x)).

To reduce the number of timeouts, we produce several formulae, each of which constrains
Φ in a different way. These formulae are then passed to the SMT solver sequentially with a
timeout. For each variable v in �v, we produce two formulae: the first, Φ ∧ v<K , constrains
v to be smaller than the value K it took in the original candidate program found by the
CEGIS synthesis phase (i.e., its corresponding value in P∗ found by the CEGIS synthesis
phase); the second,Φ∧v>K , constrains it to be greater than K . Table 1 captures the possible
outcomes in terms of the resulting C(P, P∗, �v). In column 2, both Φ ∧ v<K and Φ ∧ v>K
are unsatisfiable, meaning that the current program skeleton P∗[?] is blocked. In column 3
and 4, only one of the formulae is proved to be unsatisfiable, meaning that the skeleton is
only blocked for the corresponding subdomain of v. If both SMT calls time out, as captured
by column 5, then, for the current iteration, CEGIS(T) defaults to the behavior of a standard
CEGIS loop and returns the concrete counterexample found by the CEGIS verification phase.
The last two columns capture the scenariowhere one of the SMT calls returnswith a valuation
for v.

4.3.1 Applying SMT-Based CEGIS(T) to the Motivational Example

Again, we recall the example in Sect. 3. We will solve it by using SMT-based CEGIS(T) for
the theory of linear arithmetic. For this purpose, we assume that the synthesis phase finds the
same sequence of candidate solutions as in Sect. 3. Namely, the first candidate is f ∗(x)=0,
which gets generalised to f ∗[v1](x)=v1. Then, we invoke SMT twice for Φv1< and Φv1>,
where

Φv1< = ∀x .(x≥334455 ∨ v1<0) ∧ (x<334455 ∨ v1=0) ∧ v1<0

Φv1> = ∀x .(x≥334455 ∨ v1<0) ∧ (x<334455 ∨ v1=0) ∧ v1>0 .

The SMT solver returns UNSAT for both, which means that C(f , f ∗, v1) = f [?]�=?. The
second candidate is f ∗(x) = ite (x < 100) − 3 1, which generalises to f ∗[v1, v2, v3](x) =
ite (x < v1) v2 v3. The corresponding base constraint for the SMT solver is ∀x . σ ((ite (x <

v1) v2 v3), x), for which one SMT invocation obtains the satisfiability witness v1 = 334455,
v2 = −1 and v3 = 0. Then C(f , f ∗, v1, v2, v3) = v1=334455 ∧ v2= − 1 ∧ v3=0, which
gives us the same finalised solution we obtained when using FM in Sect. 3.

5 Case Study: CEGIS(T) Within CVC4

In this section, we discuss the use of CEGIS(T) to improve the search of the solution space
of an existing and mature synthesiser, CVC4, winner of four out of five tracks of the Syntax-

123

Synthesising Programs with Non-trivial Constants Page 15 of 25 19

Guided Synthesis (SyGuS) competition 2019 [44]. We start by giving a general description
of the internals of CVC4, followed by discussing the actual embedding of CEGIS(T). For
an in-depth description see [34].

5.1 Enumerative Synthesis in CVC4

CVC4 makes use of several strategies for solving synthesis problems [35]. In this paper, we
focus on its enumeration-based techniques [34].Wehave integrated twovariants ofCEGIS(T)
as extensions of these techniques. Both are based on incorporating a theory solver for finding
values of holes in candidate solutions. Before describing these extensions, we introduce
necessary background details of how term enumeration is encoded inside an SMT solver.

Term Enumeration via Deep Embedding CVC4 uses a specialised technique for
enumeration-based synthesis that is based on encoding a given SyGuS grammar as an alge-
braic data type [37]. Each value of this datatype can be understood as the Abstract Syntax
Tree (AST) of a program generated by the grammar, as illustrated by the following example.

Example 2 Given a program represented as a function P : (x : Int) × (y : Int) → Int and
the context-free grammar R below, specifying which integer (I) and Boolean (B) terms can
appear in candidate solutions for P:

I ::=0 | 1 | x | y | I + I | I − I | ite(B, I , I)

B::=B ≥ B | I � I | ¬B | B ∧ B

CVC4 generates the following mutually recursive datatypes:

I = 0 | 1 | x | y | plus(I, I) | minus(I, I) | ite(B, I, I)

B = geq(I, I) | eq(I, I) | not(B) | and(B,B)

Each datatype constructor corresponds to a production rule of R, e.g., plus corresponds to
the rule I ::=I + I . A datatype term such as plus(x, y) represents the arithmetic term x + y.

In the context of SyGuS, the given grammar captures the user-provided syntax restrictions.
In the absence of such restrictions, CVC4 generates a default grammar that, roughly speaking,
generates all possible programs of the specified type — for instance of type Int × Int → Int
for the programs in the example above. Since the aim of CEGIS(T) is to perform efficient
search space exploration without relying on syntax restrictions (see Sect. 1), CVC4 with
CEGIS(T) uses a default grammar in a similar way.

The correspondence between the ASTs and their denotational semantics is achieved by
a deep embedding, constructed automatically by CVC4, of the new algebraic data type into
CVC4’s (combined) background theory. Concretely, CVC4’s background theory is extended
with evaluation operators eD , for each generated datatype D, whose semantics is to interpret
the datatype values of sort D in the theory of the type represented by D. For instance, eI ,
which takes as input a value of type I and two integer values for the variables x and y,
respectively, is defined axiomatically so that eI(plus(x, y), 3, 4) ≡ 7. This way, determining
whether a datatype value denotes an actual solution to the synthesis problem (1) amounts to
checking the satisfiability of

∀z. ∃�x .¬σ(eS(z, �x), �x) (2)

in which z has type D. If CVC4 can find datatype value �P∗�, encoding a program P∗, such
as the instance ∃�x .¬σ(eS(�P∗�, �x), �x) of (2) is unsatisfiable, then P∗ is a solution for (1).

123

 19 Page 16 of 25 A. Abate et al.

Depending on the structure of the synthesis problem, CVC4 uses different strategies
for generating candidates solutions. It either applies a constraint-based (smart) enumeration,
which allows for numerous optimisations [34, Section 2]; a highly optimised brute-force (fast)
enumeration [34, Section 3]; or a hybrid approach combining smart and fast enumeration [34,
Section 4]. Note that the integration of CEGIS(T) in CVC4 is agnostic to the enumeration
strategy.

5.2 CEGIS(T) in CVC4 via Skeleton Generation

In this section, we discuss our first approach for integrating CEGIS(T) with CVC4. This
direction follows Algorithm 1 very closely. Given a candidate solution P∗, if the verification
fails and P∗ contains constants, then a skeleton P∗[?] is generated that replaces the constants
with symbolic holes. Similar to Sect. 4.3, an off-the-shelf SMT solver, in this case CVC4
itself, which can perform efficient quantifier reasoning in the theories of linear arithmetic
and bitvectors [30, 36], checks the satisfiability of

Φ = ∃�v ∀�x . σ (P∗[�v], �x). (4)

If Φ is satisfiable, learning the constraint

C(P, P∗, �v) =
∧

i=1·n
vi = ci (5)

provides a solution to the original conjecture. However, differently from Algorithm 1, ifΦ is
unsatisfiable, meaning that the skeleton P∗[?] is infeasible for every constant value tuple �c,
we have noway of blockingCVC4 from generating new candidates differing from P∗ only by
the constant values. This is because our enumeration, in this first approach, is not changed so
that it can reason about skeletons. That is the motivation for our second approach, described
in Sect. 5.3. Instead of enumerating concrete programs, it directly enumerates skeletons,
which are turned into concrete solutions by the theory solvers. However, this first approach
has the advantage that it can be used with other approaches to CEGIS such as, for instance,
divide and conquer [7, 8]. In that approach, the candidate solutions are built from enumerated
partial solutions according to how they behave on the current set of counterexamples, which
requires the enumeration to provide concrete programs rather than skeletons.

Observe that when generating P∗[?] from P∗ not all constants can be abstracted away,
since this can, for instance, transform linear problems into non-linear ones.

Example 3 Suppose that a candidate P∗ = 1 + 2 × x is generated for a linear function.
Abstracting the constants, we obtain P∗[?] = v1+v2×x , which is a non-linear query. CVC4
does not have efficient support for the combination of non-linear arithmetic and quantifiers. In
such cases, the generalisation is only partial. In this case, only the first constant is abstracted,
with the final skeleton being P∗[?] = v1 + 2 × x .

Note that this issue only impacts conjectures with the specific pattern of having con-
stants multiplying variables. This does not prevent the handling of conjectures with multiple
constants.

5.3 CEGIS(T) in CVC4 via Any Constant Constructors

In the second approach for CEGIS(T), we explicitly model the holes in candidate solutions
using a specialised datatype constructor ? : Int → I within the datatype that encodes the

123

Synthesising Programs with Non-trivial Constants Page 17 of 25 19

syntactic restrictions of the input. We refer to this as the any constant constructor. Internally,
our solver treats an application of this constructor as the representation of any constant of
integer type. Using this constructor, the process for generating candidate skeletons is made
explicit at the level of the datatype, with datatype values now representing arithmetic terms
with holes. Thus, in this approach,we remove all other constructors corresponding to concrete
constants from the datatypes encoding the grammar and include only this constructor instead.

Example 4 Consider the grammar R from Example 2. Using the any constant constructor,
the datatype encoding of R becomes:

I = ?(Int) | x | y | plus(I, I) | minus(I, I) | ite(B, I, I)

B = geq(I, I) | eq(I, I) | not(B) | and(B,B)

Notice that the argument of the any constant constructor ? is the builtin integer type Int.
This is in contrast to the grammar from Sect. 2, which had no subfields of integer type.
Hence, the arithmetic theory solver of CVC4 will reason about values of this datatype in the
(combined) theory of datatypes and integer arithmetic.

In this approach, CVC4 generates candidate solutions P∗ that can be abstracted to a
skeleton P∗[?] by replacing each application of an any constant constructor with a hole. For
example, plus(x, ?(i)) becomes x + v1 for fresh variable v1 and some (for now irrelevant)
integer value i . For each such skeleton, CVC4 proceeds to determine the satisfiability of
Φ = ∃�v ∀�x . σ (P∗[�v], �x). If Φ is unsatisfiable, the constraint

C(P, P∗, �v) = ¬�P∗[?]�
is learned, which will prevent the generation of all programs differing from P∗ only on the
constants, effectively blocking the skeleton P∗[?].

An advantage of this approach with respect to the approach in the previous section is
that it allows the term enumerator to reason about the equivalence of expressions with holes
in order to eliminate redundant candidates, with the effect of accelerating the search. In
detail, the term enumeration techniques in CVC4 employ aggressive strategies for blocking
candidate solutions that are equivalent to previously generated ones. This is a critical aspect
of the efficiency of an enumerative-based synthesis solver as it allows it to recognise and
immediately discard redundant candidate solutions. We call this process blocking via theory
rewriting [34] since it uses the SMT solver’s own term simplifier as an incomplete, but fast,
checker for term equivalence. The process needs special consideration when extending the
solver to CEGIS(T).

For example, consider the candidate solution x+0, whose datatype encoding is plus(x, 0).
In CVC4’s default implementation of CEGIS, the term enumerator will skip this candidate
(as well as all candidates that have it as a subterm) because it is redundant with the smaller
candidate x. This is a problem for the approach in Sect. 5.2,whichmay thenmiss the candidate
plus(x, 0) and and hence fail to generalise it to a finalised solution when a solution of the
form plus(x, c) exists. By contrast, the approach in this section can be instrumented in this
setting to reason about constants symbolically. In particular, instead of reasoning about the
equivalence of candidate terms of the form P∗ = plus(x, ?(c)) based on fixing a value for
c, our extensions to blocking via theory rewriting with CEGIS(T) employ stronger criteria
for term redundancy based on analyzing the entire set of skeleton instances. As an example,
the skeleton term plus(?(c1), ?(c2)) is redundant according to our criteria since the addition
of two constants is always equivalent to some constant. Thus, this skeleton is considered
redundant with respect to the simpler skeleton ?(c).

123

 19 Page 18 of 25 A. Abate et al.

6 Experimental Evaluation

We compared CEGIS(T) against CEGIS in two program synthesisers and evaluated
the improvement in performance. The first synthesiser is our prototype implementation
fastsynth and the second one is CVC4, reflecting the case study in Sect. 5. Both
fastsynth2 and the implementation inside CVC43 are available to download.

We conducted the experimental evaluation on an AWS c5.18xlarge4 We used the Linux
time command to measure CPU time used for each benchmark. The runtime was limited to
1800s per benchmark. We used MiniSat [17] as the SAT solver, and Z3 v4.5.1 [16] as the
SMT-solver in CEGIS(T) with SMT-based theory solver. The SAT solver could, in principle,
be replaced with Z3 to solve benchmarks over a broader range of theories.

6.1 CEGIS(T) in fastsynth

The basic CEGIS implementation in fastsynth uses SAT/SMT solving for both synthesis
andverification. For synthesis,we construct a formulawhich encodes all possible programsup
to a set program length and is satisfied if one such program satisfies the logical specification.
The formula introduces extra boolean “selector” variables, which choose the sequence of
operators and operands in the candidate program P∗.

Incremental Satisfiability Solving The CEGIS implementation may sometimes perform hun-
dreds of loop iterations before finding the correct solution. Recall that the synthesis block
of CEGIS is based on SAT solving. Each iteration of CEGIS, the synthesis phase makes a
call to a SAT solver. Consequently, we may end up making hundreds of calls to this SAT
solver, which are all very similar (the same base specification with some extra constraints
added in each iteration). This makes CEGIS a prime candidate for incremental SAT solving.
We implemented incremental solving in the synthesis block of CEGIS.

Benchmarks We selected a set of bitvector benchmarks from the Syntax-Guided Synthesis
(SyGuS) competition [5] and a set of benchmarks synthesising safety invariants and danger
invariants for C programs [14]. The selection criterion was that the solution to be synthesized
requires constants. All benchmarks are written in SyGuS-IF [33], a variant of the SMT-LIB
2 language [9].

Since the syntactic restrictions (called the grammar or the template) provided in the SyGuS
benchmarks generally contain all the necessary non-trivial constants, we completely removed
the grammars from these benchmarks. Removing just the non-trivial constants and keeping
the rest of the grammar (with the only constants being 0 and 1) would have made the problem
much more difficult, as the constants would have had to be incrementally constructed by
applying the operators available to 0 and 1.

Wegroup the 83 benchmarks into three categories: 47 fall into invariant generation, which
covers danger invariants, safety invariants and the class of invariant generation benchmarks
from the SyGuS competition; 6 derive from hackers/crypto, which includes benchmarks
from hackers-delight and cryptographic circuits; and 7 benchmarks are categorised as com-
parisons, i.e., benchmarks that require synthesising longer programs with comparisons, e.g.,
finding the maximum value of 10 variables. The remaining 23 benchmarks are listed under

2 www.github.com/kroening/fastsynth.git.
3 www.github.com/CVC4/CVC4.git.
4 https://docs.aws.amazon.com/awsec2/latest/userguide/compute-optimized-instances.html.

123

www.github.com/kroening/fastsynth.git
www.github.com/CVC4/CVC4.git
https://docs.aws.amazon.com/awsec2/latest/userguide/compute-optimized-instances.html

Synthesising Programs with Non-trivial Constants Page 19 of 25 19

other, and are all benchmarks taken from the SyGuS competition that do not fit neatly into
any of the previous categories.
Results In Table 2 we report results comparing four different configurations of CEGIS and
CEGIS(T) infastsynth, alongwith a “virtual best solver” result, which is the fastest result
of all the configurations. These results are from the prototype implementation of CEGIS(T)
in [1]. The configurations presented in the table are as follows:

– CEGIS(T)-FM: CEGIS(T) with Fourier-Motzkin as the theory solver;
– CEGIS(T)-SMT: CEGIS(T) with Z3 as the theory solver;
– CEGIS: basic CEGIS as described in Sect. 2.2;
– CEGIS-Inc: basic CEGIS with incremental SAT solving;
– CEGIS(T)-vbs: virtual best solver. The fastest result of the above four configurations.

The results for our implementation of CEGIS(T) are given in Table 2. In combination,
CEGIS(T)-vbs and CEGIS(T)-SMT solve 6 more benchmarks than our straight implemen-
tation of CEGIS (42 vs. 36). Unsurprisingly, CEGIS(T)-SMT solves more of the invariant
generation benchmarks that require synthesising arbitrary constants than CEGIS. Also,
CEGIS(T)-FM is generally faster than CEGIS for benchmarks with non-trivial constants
as it avoids enumerating the constants. However, it fails to solve many of the other bench-
marks that plain CEGIS can solve because attempting to apply FM slows it down.

A noted weakness in our implementation of both CEGIS and CEGIS(T) is that they
are slow to synthesise long expressions. This is due to the iterative-deepening-style search
performed by the implementation where, starting with n = 1, the space of possible programs
of size n is searched exhaustively before considering those of size n + 1, and so on.

6.2 CEGIS(T) in CVC4

Benchmarks We tested CVC4 on the full set of benchmarks across the SyGuS competition5

minus the programming-by-example ones. We excluded PBE because there already exists a
specific divide and conquer technique for solving these benchmarks [8] that is orthogonal
to CEGIS(T). We ran two sets of experiments. For the first one, we removed the grammars
from all the benchmarks. Notably, this enables CVC4 to use the full grammar from the
background theory. In the second experiment, we included only the benchmarks that contain
a grammar (e.g. the invariant benchmarks are excluded from this experiment as they don’t
contain a grammar). For these benchmarks we removed all constant literals except 0 and
1 and then extended the grammars to permit any constant literal. For example, a syntactic
template which originally contains the rules I nt → 0 and I nt → 7 will now contain the
rules I nt → 0 and I nt → Any Integer Literal. We include 0 and 1 in the grammar so that
the synthesis algorithms that do not implement CEGIS(T), and instead enumerate through
the grammar given are, at least theoretically, capable of solving the benchmarks that need
constants.
Results In Table 3 we present results comparing five configurations of CVC4: the default
behaviour of CVC4 1.7 using CEGIS, CVC4 using CEGIS but adding constant literals from
the benchmark to the grammar, the implementation CVC4-CEGIS(T), as well as two “virtual
best CVC4 solvers”, denoting the fastest results of some of the previousCVC4 configurations.

The configurations presented in Table 3 are as follows:

– CVC4-CEGIS: default behaviour of CVC4 version 1.7 using CEGIS, as described in
[34];

5 https://github.com/SyGuS-Org/benchmarks/tree/master/lib [retrieved March 2021].

123

https://github.com/SyGuS-Org/benchmarks/tree/master/lib

 19 Page 20 of 25 A. Abate et al.

Table 2 Prototype CEGIS(T) experimental results – for every set of benchmarks, we give the number of
benchmarks solved by each configuration within the timeout and the average time taken per solved benchmark

Benchmark CEGIS(T)-SMT CEGIS(T)-FM CEGIS CEGIS-inc CEGIS(T)-vbs
s # s # s # s # s

comparisons 1 < 0.1 1 0.63 1 < 0.1 1 < 0.1 1 < 0.1

hackers/crypto 3 32.0 3 31.0 3 31.0 3 237.7 3 30.4

inv 23 220.9 14 60.3 17 203.0 17 86.8 23 171.1

other 15 77.7 13 85.1 15 89.2 15 18.7 15 18.6

total solved 42 151.0 31 65.9 36 135.6 36 68.5 42 102.5

– CVC4-ac: CVC4 using CEGIS, but adding constant literals from the benchmark to the
grammar;

– CVC4-CEGIS(T): CEGIS(T) as implemented inside CVC4 and described in Sect. 5.3;
– vbs1: the fastest result of CVC4-CEGIS and CVC4-ac.
– vbs2: the fastest result of CVC4-CEGIS, CVC4-ac and CVC4-CEGIS(T).

We exclude from the evaluation the single invocation solver of CVC4, which is not impacted
in anyway by the CEGIS(T) approach.We do not compare against the technique described in
Sect. 5.2 because it has been deprecated in CVC4 in favour of the more general one described
in Sect. 5.3.

The implementation of CEGIS(T) inside CVC4 (as shown in Table 3) is able to extend
the set of benchmarks that CVC4 with CEGIS solves by 24. This is shown in the virtual
best solver results, where vbs2, including CEGIS(T), solves 1420 benchmarks compared
to vbs1, which solves 1396. Note that the virtual best solvers are presented not as practical
parallel solvers, but to highlight the improvements of CVC4-CEGIS(T) w.r.t. CVC4-CEGIS
in solving these extra 24 problems. These improvements occur on benchmarks that require
large constants, as expected. Moreover, it would be virtually impossible for CVC4-CEGIS
to solve the 24 benchmarks that CVC4-CEGIS(T) solves exclusively, since representing
those large constants in the regular enumeration (which uses only the constants 0 and 1)
requires prohibitively large programs. CVC4-CEGIS(T) is worse than CVC4-CEGIS on
some benchmarks because when no large constants are necessary for building a solution,
CEGIS(T) may only add overhead.

CVC4-CEGIS(T) is particularly effective on the invertibility conditions with grammars
benchmark set, solving 7 more problems than both CVC4-CEGIS and CVC4-ac (101 bench-
marks vs. 94). Moreover it significantly outperforms CVC4-ac on harder benchmarks (those
requiring more than 100s to solve), as shown in Figure 4. These benchmarks contain synthe-
sis goals for inverses of bit-vector operators (for more details, see Niemetz et al. [30]), whose
solutions often require particular constants. Even though the grammars in these benchmarks
contain carefully chosen constants to help the SyGuS solver [30, Sect 3.1], CVC4-CEGIS(T)
ability to find arbitrary, necessary, constants still can lead to considerable improvements.

On average, CVC4-CEGIS is better than CVC4-CEGIS(T) because on benchmarks
where constants are not needed there is some slight overhead to using CEGIS(T). How-
ever, CEGIS(T) is able to solve benchmarks that CEGIS alone cannot and the portfolio
of solvers is a winning combination. Also, CVC4-CEGIS performs better than CVC4-ac
because providing explicit constants in the grammar requires CVC4 to enumerate through a

123

Synthesising Programs with Non-trivial Constants Page 21 of 25 19

Table 3 Experimental results for CVC4-CEGIS(T) – for every set of benchmarks, we give the number of
benchmarks solved by each configuration within the timeout and the average time taken per solved benchmark

Benchmark Num CVC4-CEGIS CVC4-ac CVC4-CEGIS(T) vbs1(first two) vbs2(all three)
s # s # s # s # s

With grammar

Conditional
inverses

128 114 0.65 114 0.65114 25.7 114 0.65 114 0.65

Invertibility
conditions

128 94 85.5 94 82.7 101 111.4 94 82.4 102 84.8

General 232 128 40.2 128 40.2 108 81.5 128 40.0 132 31.7

Total (with
grammar)

488 336 39.4 336 38.7 323 71.2 336 38.5 348 37.1

Without grammar

General track
(2018)

308 147 98.9 144 57.6 129 152.7 149 65.9 149 60.2

Conditional
inverses

161 142 25 142 2.7 144 3.7 142 1.4 144 3.2

Invertibility
condition

160 103 84.0 96 84.2 107 83.0 105 71.7 112 66.0

Invariants
(woosuk)

369 157 106.3 157 106 157 106 157 105.6 157 105.3

Invariants
(lustre)

456 203 84.1 199 126.9 175 95.8 208 106.7 208 106.7

Invariant track
(2018)

127 109 4.2 111 8.8 111 29.6 111 4.4 111 3.9

Invariants
(code2inv)

276 184 69.2 187 60.4 185 78.7 191 66.4 194 65.7

Total (no
grammar)

1808 1042 70.7 1033 68.61005 80 1060 65.6 1072 64.1

Total 2296 1378 63.1 1369 61.31328 77.9 1396 59.1 1420 57.5

Fig. 4 Comparison on the 128
invertibility condition
benchmarks with grammars.
Execution times in miliseconds

123

 19 Page 22 of 25 A. Abate et al.

bigger space. This illustrates the importance of techniques like CEGIS(T): it allows finding
constants when needed, and avoid enumerating them when they are not needed.

7 RelatedWork

The traditional view of program synthesis is that of synthesis from complete specifications
[29]. Such specifications are often unavailable, difficult towrite, or expensive to check against
using automated verification techniques. This has led to the proposal of inductive synthesis
and, more recently, of oracle-based inductive synthesis, in which the complete specification
is not available and oracles are queried to choose programs [27].

Awell-known application of CEGIS is program sketching [40, 42], where the programmer
uses a partial program, called a sketch, to describe the desired implementation strategy, and
leaves the low-level details of the implementation to an automated synthesis procedure.
Inspired by sketching, Syntax-Guided Program Synthesis (SyGuS) [3] requires the user to
supplement the logical specification provided to the program synthesiser with a syntactic
template that constrains the space of solutions. In contrast to SyGuS, our aim is to improve
the efficiency of the exploration to the point that user guidance is no longer required.

Another very active area of program synthesis are component-based approaches [2, 18–
20, 23, 24, 32]. Such approaches are concerned with assembling programs from a database
of existing components and make use of various techniques, from counterexample-guided
synthesis [23] to type-directed searchwith lightweight SMT-based deduction and partial eval-
uation [19] and Petri-nets [20]. The techniques developed in the current paper are applicable
to any component-based synthesis approach that relies on counterexample-guided inductive
synthesis.

Heuristics for constant synthesis are presented in [15], where the solution language is
parameterised, inducing a lattice of progressively more expressive languages. One of the
parameters is word width, which allows synthesising programs with constants that satisfy the
specification for smaller wordwidths. Subsequently, heuristics extend the program (including
the constants) to the required word width. As opposed to this work, CEGIS(T) denotes a
systematic approach that does not rely on ad-hoc heuristics.

Regarding the use of SMT solvers in program synthesis, they are frequently employed as
oracles. By contrast, Reynolds et al. [35] present an efficient encoding able to solve program
synthesis constraints directly within an SMT solver. Their approach relies on rephrasing the
synthesis constraint as the problem of refuting a universally quantified formula, which can
be solved using first-order quantifier instantiation. Conversely, in our approach we maintain
a clear separation between the synthesiser and the theory solver, which communicate in a
well-defined manner. In Sect. 6, we provide a comprehensive experimental comparison with
the synthesiser described in [35].

8 Conclusion

We proposed CEGIS(T), a new approach to synthesis of programs with non-trivial constants
that combines the strengths of a counterexample-guided inductive synthesiser with those of a
theory solver with the aim of improving the synthesis of programs with non-trivial constants.
We discussed two options for the theory solver, one based on variable elimination and one
relying on an off-the-shelf SMT solver for first-order formulas with quantifiers, as well as a

123

Synthesising Programs with Non-trivial Constants Page 23 of 25 19

case study on integrating CEGIS(T) inside CVC4. Our experiments results show a significant
performance improvement on benchmarks from the SyGuS competition on benchmarks that
require synthesising arbitrary constants.

in this paper, we evaluated CEGIS(T) in the context of constant elimination when the
secification belongs to linear arithmetic. Other techniques for eliminating existentially quan-
tified variables can be used. For instance, one might use cylindrical algebraic decomposition
[12] for specifications with non-linear arithmetic.

Funding This work was partly supported by ERC project 280053 (CPROVER) and the H2020 FET OPEN
712689 SC2. Cristina David is supported by the Royal Society University Research Fellowship UF160079.

Data Availability The benchmarks tested during the current work are available at https://github.com/kroening/
cegis-smt-journal-paper.git.

Code Availability All the code developed and used for the current work is available at www.github.com/
kroening/fastsynth.git (the code for fastsynth) and www.github.com/CVC4/CVC4.git (the code for
CVC4).

Declarations

Conflict of interest Cesare Tinelli, an author of this paper, is also on the journal’s editorial board. All the other
authors declare they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Counterexample guided inductive synthesis
modulo theories. In: CAV (1), Lecture Notes in Computer Science, vol. 10981, pp. 270–288. Springer
(2018)

2. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In: CAV, LNCS, vol. 8044, pp.
934–950. Springer (2013)

3. Alur, R., Bodík, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A., Singh, R., Solar-
Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: FMCAD, pp. 1–8. IEEE (2013)

4. Alur, R., Cerný, P., Radhakrishna, A.: Synthesis through unification. In: CAV, LNCS, vol. 9207, pp.
163–179. Springer (2015)

5. Alur, R., Fisman, D., Singh, R., Solar-Lezama, A.: SyGuS-Comp 2017: Results and analysis. CoRR
abs/1711.11438 (2017)

6. Alur, R., Fisman, D., Singh, R., Udupa, A.: Syntax guided synthesis competition. http://sygus.seas.upenn.
edu/SyGuS-COMP2017.html (2017)

7. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via divide and conquer.
In: TACAS, LNCS, vol. 10205, pp. 319–336 (2017)

8. Barbosa, H., Reynolds, A., Larraz, D., Tinelli, C.: Extending enumerative function synthesis via SMT-
driven classification. In: Barrett, C.W., Yang, J. (eds.) Formal Methods In Computer-Aided Design
(FMCAD), pp. 212–220. IEEE (2019). https://doi.org/10.23919/FMCAD.2019.8894267

9. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory of inductive data types.
JSAT 3(1–2), 21–46 (2007)

10. Bik, A.J.C., Wijshoff, H.A.G.: Implementation of Fourier-Motzkin elimination. Rijksuniversiteit Leiden,
Tech. rep. (1994)

123

https://github.com/kroening/cegis-smt-journal-paper.git
https://github.com/kroening/cegis-smt-journal-paper.git
www.github.com/kroening/fastsynth.git
www.github.com/kroening/fastsynth.git
www.github.com/CVC4/CVC4.git
http://creativecommons.org/licenses/by/4.0/
http://sygus.seas.upenn.edu/SyGuS-COMP2017.html
http://sygus.seas.upenn.edu/SyGuS-COMP2017.html
https://doi.org/10.23919/FMCAD.2019.8894267

 19 Page 24 of 25 A. Abate et al.

11. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog programs using bounded
model checking. In: Design Automation Conference, DAC ’03, pp. 368–371. ACM, New York, NY, USA
(2003). https://doi.org/10.1145/775832.775928

12. Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decom-
position. In: Automata Theory and Formal Languages, LNCS, vol. 33, pp. 134–183. Springer (1975)

13. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In: Principles of Programming Languages, POPL, pp.
238–252 (1977). https://doi.org/10.1145/512950.512973

14. David, C., Kesseli, P., Kroening, D., Lewis, M.: Danger invariants. In: Formal Methods (FM), LNCS, vol.
9995, pp. 182–198. Springer (2016)

15. David, C., Kroening, D., Lewis, M.: Using program synthesis for program analysis. In: LPAR, LNCS,
vol. 9450, pp. 483–498. Springer (2015)

16. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS, LNCS, vol. 4963, pp. 337–340.
Springer (2008)

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT, LNCS, vol. 2919, pp. 502–518. Springer
(2003)

18. Feng, Y., Bastani, O., Martins, R., Dillig, I., Anand, S.: Automated synthesis of semantic malware signa-
tures using maximum satisfiability. In: NDSS. The Internet Society (2017)

19. Feng, Y., Martins, R., Geffen, J.V., Dillig, I., Chaudhuri, S.: Component-based synthesis of table consol-
idation and transformation tasks from examples. In: PLDI, pp. 422–436. ACM (2017)

20. Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based synthesis for complex APIs. In:
POPL, pp. 599–612. ACM (2017)

21. Floyd, R.W.: Assigning Meanings to Programs, pp. 65–81. Springer, Dordrecht (1993). https://doi.org/
10.1007/978-94-011-1793-7_4

22. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): fast decision procedures.
In: CAV, LNCS, vol. 3114, pp. 175–188. Springer (2004)

23. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In: PLDI, pp. 62–73.
ACM (2011)

24. Gulwani, S., Korthikanti, V.A., Tiwari, A.: Synthesizing geometry constructions. In: PLDI, pp. 50–61.
ACM (2011)

25. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program. Lang. 4(1–2), 1–119
(2017). https://doi.org/10.1561/2500000010

26. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.: Proving non-termination. In: Pro-
ceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, pp. 147–158 (2008). https://doi.org/10.1145/1328438.1328459

27. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthesis. In:
ICSE (1), pp. 215–224. ACM (2010)

28. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View, 1st edn. Springer
(2008)

29. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. In: IJCAI, pp. 542–551. William
Kaufmann (1979)

30. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified bit-vectors using
invertibility conditions. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification (CAV),
Part II, Lecture Notes in Computer Science, vol. 10982, pp. 236–255. Springer (2018)

31. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

32. Perelman, D., Gulwani, S., Grossman, D., Provost, P.: Test-driven synthesis. In: PLDI, pp. 408–418. ACM
(2014)

33. Raghothaman, M., Udupa, A.: Language to specify syntax-guided synthesis problems. CoRR
abs/1405.5590 (2014)

34. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C., Tinelli, C.: cvc4sy: Smart and fast term enumeration
for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification (CAV), Part II.
Lecture Notes in Computer Science, vol. 11562, pp. 74–83. Springer, Cham (2019)

35. Reynolds, A., Deters,M., Kuncak, V., Tinelli, C., Barrett, C.W.: Counterexample-guided quantifier instan-
tiation for synthesis in SMT. In: CAV (2), LNCS, vol. 9207, pp. 198–216. Springer (2015)

36. Reynolds, A., King, T., Kuncak,V.: Solving quantified linear arithmetic by counterexample-guided instan-
tiation. Formal Methods Syst. Des. (2017). https://doi.org/10.1007/s10703-017-0290-y

37. Reynolds, A., Viswanathan, A., Barbosa, H., Tinelli, C., Barrett, C.: Datatypes with shared selectors. In:
D. Galmiche, S. Schulz, R. Sebastiani (eds.) International Joint Conference on Automated Reasoning
(IJCAR), Lecture Notes in Computer Science, vol. 10900, pp. 591–608. Springer (2018)

123

https://doi.org/10.1145/775832.775928
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1007/s10703-017-0290-y

Synthesising Programs with Non-trivial Constants Page 25 of 25 19

38. Rosen, E.: An existential fragment of second order logic. Arch. Math. Log. 38(4–5), 217–234 (1999)
39. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of Satisfi-

ability, pp. 131–153 (2009). https://doi.org/10.3233/978-1-58603-929-5-131
40. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)
41. Solar-Lezama, A., Rabbah, R.M., Bodík, R., Ebcioglu, K.: Programming by sketching for bit-streaming

programs. In: PLDI, pp. 281–294. ACM (2005)
42. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combinatorial sketching for finite

programs. In: ASPLOS, pp. 404–415. ACM (2006)
43. Strichman, O.: On solving Presburger and linear arithmetic with SAT. In: FMCAD, LNCS, vol. 2517, pp.

160–170. Springer (2002)
44. SyGuS: Syntax-guided synthesis competition. http://www.sygus.org/. Accessed 14 Oct 2019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Alessandro Abate1 · Haniel Barbosa2 · Clark Barrett3 · Cristina David4 ·
Pascal Kesseli5 · Daniel Kroening6 · Elizabeth Polgreen7 · Andrew Reynolds8 ·
Cesare Tinelli8

Alessandro Abate
alessandro.abate@cs.ox.ac.uk

Haniel Barbosa
hbarbosa@dcc.ufmg.br

Clark Barrett
barrett@cs.stanford.edu

Pascal Kesseli
kesseli.pascal@gmail.com

Daniel Kroening
daniel.kroening@magd.ox.ac.uk

Elizabeth Polgreen
elizabeth.polgreen@ed.ac.uk

Andrew Reynolds
andrew.j.reynolds@gmail.com

Cesare Tinelli
cesare-tinelli@uiowa.edu

1 University of Oxford, Oxford, UK
2 Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
3 Stanford University, Stanford, USA
4 University of Bristol, Bristol, UK
5 Lacework Ltd, Mountain View, CA, UK
6 Amazon Inc., Oxford, UK
7 University of Edinburgh, Edinburgh, UK
8 The University of Iowa, Iowa City, USA

123

https://doi.org/10.3233/978-1-58603-929-5-131
http://www.sygus.org/
http://orcid.org/0000-0002-9106-934X

	Synthesising Programs with Non-trivial Constants
	Abstract
	1 Introduction
	Contributions

	2 Preliminaries
	2.1 The Program Synthesis Problem
	2.2 CounterExample Guided Inductive Synthesis
	2.3 CDCL(mathcalT)
	2.4 Fourier–Motzkin Elimination

	3 Motivating Examples
	3.1 CEGIS on a Simple Example
	3.2 Proving Properties of Programs

	4 CEGIS(mathcalT)
	4.1 Overview
	4.2 CEGIS(mathcalT) with a Theory Solver Based on FM Elimination
	4.2.1 Disjunction
	4.2.2 Applying CEGIS(mathcalT) with FM to the Motivational Example

	4.3 CEGIS(mathcalT) with an SMT-Based Theory Solver
	4.3.1 Applying SMT-Based CEGIS(mathcalT) to the Motivational Example

	5 Case Study: CEGIS(mathcalT) Within CVC4
	5.1 Enumerative Synthesis in CVC4
	5.2 CEGIS(mathcalT) in CVC4 via Skeleton Generation
	5.3 CEGIS(mathcalT) in CVC4 via Any Constant Constructors

	6 Experimental Evaluation
	6.1 CEGIS(mathcalT) in fastsynth
	6.2 CEGIS(mathcalT) in CVC4

	7 Related Work
	8 Conclusion
	References

