
Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability

Modulo a Theory of Sequences

Ying Sheng1, Andres Nötzli1, Andrew Reynolds2, Yoni
Zohar3, David Dill4, Wolfgang Grieskamp4, Junkil

Park4, Shaz Qadeer4, Clark Barrett1 and Cesare Tinelli2

1Stanford University.
2The University of Iowa.

3Bar-Ilan University.
4Meta Novi.

Abstract

Dynamic arrays, also referred to as vectors, are fundamental data struc-
tures used in many programs. Modeling their semantics efficiently is crucial
when reasoning about such programs. The theory of arrays is widely
supported but is not ideal, because the number of elements is fixed (deter-
mined by its index sort) and cannot be adjusted, which is a problem, given
that the length of vectors often plays an important role when reasoning
about vector programs. In this paper, we propose reasoning about vectors
using a theory of sequences. We introduce the theory, propose a basic cal-
culus adapted from one for the theory of strings, and extend it to efficiently
handle common vector operations. We prove that our calculus is sound and
show how to construct a model when it terminates with a saturated con-
figuration. Finally, we describe an implementation of the calculus in cvc5
and demonstrate its efficacy by evaluating it on verification conditions for
smart contracts and benchmarks derived from existing array benchmarks.

1 Introduction

Generic vectors are used in many programming languages. For example, in
C++’s standard library, they are provided by std::vector. Automated verifi-
cation of software systems that manipulate vectors requires an efficient and
automated way of reasoning about them. Desirable characteristics of any

1

Springer Nature 2021 LATEX template

2 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

approach for reasoning about vectors include: (i) expressiveness—operations
that are commonly performed on vectors should be supported; (ii) generality—
vectors are always vectors of elements of some type (e.g., vectors of integers),
and so it is desirable that vector reasoning be integrated within a more gen-
eral framework; solvers for satisfiability modulo theories (SMT) provide such
a framework and are widely used in verification tools (see [?] for a recent
survey); (iii) efficiency—fast and efficient reasoning is essential for usability in
a verification context, especially as verification tools are increasingly used by
non-experts and in continuous integration.

Despite the ubiquity of vectors in software on the one hand and the effec-
tiveness of SMT solvers for software verification on the other hand, there is
not currently a clean way to represent vectors using operators from the SMT-

LIB standard [?]. While the theory of arrays can be used, it is not a great fit
because SMT-LIB arrays have a fixed size (possibly even infinite) determined
by their index type. Representing a dynamic array thus requires additional
modeling work expressed by extending an SMT problem with an axiomatiza-
tion of relevant properties of vectors. This involves, for expressiveness, the use
of quantified formulas, which often makes the reasoning engine less efficient
and robust. Indeed, part of the motivation for this work was frustration with
array-based modeling in the Move Prover, a verification framework for smart
contracts [?] (see Section 7 for more information about the Move Prover and
its use of vectors). The current paper bridges this gap by studying and imple-
menting a native theory of sequences in the SMT framework, which satisfies
the desirable properties for vector reasoning listed above.

We present two SMT-based calculi for determining satisfiability of quantifier-
free formulas in the theory of sequences, and obtain solving procedures for that
theory as rule application strategies for those calculi. Since the decidability of
the satisfiability problem for quantifier-free formulas in even weaker theories
is unknown (see, e.g., [? ?]), we do not aim for a decision procedure. Rather,
we prove model and solution soundness (entailing that, when our procedures
terminate, their answers are correct). Our first calculus leverages reasoning
techniques for the theory of strings from the SMT-LIB standard, which can
be seen as a theory of sequences of Unicode characters. We generalize these
techniques by lifting rules specific to sequences of characters to more general
rules for arbitrary element types. By itself, this base calculus is already quite
effective. However, it lacks rules to perform high-level vector-specific reasoning.
For example, both reading from and updating a vector are very common
operations in programming, and reasoning efficiently about the corresponding
sequence operators is thus crucial. Our second calculus addresses this gap
by integrating reasoning methods from array solvers, which handle reads
and updates efficiently, into the first procedure. Notice, however, that this
integration is not trivial, as it must handle novel combinations of operators
(such as the combination of update and read operators with concatenation)
as well as out-of-bounds cases that do not occur with SMT-LIB arrays. We
have implemented both calculi in the cvc5 SMT solver [?] and evaluated them

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 3

on benchmarks originating from the Move prover, as well as benchmarks that
were translated from SMT-LIB array benchmarks.

Consistent with the choice to consider a theory of generic sequences, both
of our calculi are agnostic about the sort of the elements in the sequence.
However, for combination purposes, we consider here only element sorts that
are infinite. This makes the theory stably infinite, allowing for a simple, Nelson-
Oppen-style [?] combination of our procedures for it with those for other
theories. More sophisticated combination methods require a stronger property,
politeness [? ?], which we expect to investigate in future work.

The rest of the paper is organized as follows. Section 2 includes basic notions
from first-order logic. Section 3 introduces the theory of sequences and shows
how it can be used to model vectors. Section 4 presents calculi for this theory.
Section 5 proves that the calculi are correct for the theory. Section 6 describes
the implementation of these calculi in cvc5. Section 7 presents an evaluation
comparing Z3 and several variations of the sequence solver in cvc5. We conclude
in Section 8 with directions for further research.

Related work: Our work crucially builds on a proposal by Bjørner et al. [?],
but extends it in several key ways. First, their implementation (for a logic they
call QF_BVRE) restricts the generality of the theory by allowing only bit-vector
elements (representing characters) and assuming that sequences are bounded. In
contrast, our calculus maintains full generality, allowing unbounded sequences
and elements of arbitrary sort. Second, while our core calculus focuses only on
a subset of the operators in [?], our implementation supports the remaining
operators by reducing them to the core operators, and also adds native support
for the update operator, which is not included in [?].

The base calculus that we present for sequences builds on similar work for
the theory of strings [? ?]. We extend our base calculus to support array-like
reasoning based on the weak-equivalence approach [?]. Though there exists
prior work on extending the theory of arrays with more operators and reasoning
about length [? ? ? ? ?], this work does not consider many of the other sequence
operators we consider here. Most notably, it does not consider concatenation.

The SMT solver Z3 [?] provides a theory solver for sequences. However,
its documentation is limited [?], it does not support update directly, and its
internal algorithms are not described in the literature. Furthermore, as we show
in Section 7, the performance of the Z3 implementation is generally inferior to
our implementation in cvc5.

A preliminary version of this work was published in the proceedings of
IJCAR 2022 [?]. The current article extends the original version with complete
proofs. Further, while [?] only sketched the model construction method (when
a saturated configuration in our calculi is found), here, model construction is
formalized, thoroughly described, and proven correct.

Springer Nature 2021 LATEX template

4 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

2 Preliminaries

We assume the usual notions and terminology of many-sorted first-order logic
with equality (see, e.g., [?] for a complete presentation). We consider many-
sorted signatures Σ, each containing a set of sort symbols (including a Boolean
sort Bool), a family of logical symbols ≈ for equality, with sort σ×σ → Bool for
all sorts σ in Σ and interpreted as the identity relation, and a set of interpreted
(and sorted) function symbols. We fix a set X of infinitely-many variables of
sort σ, for each sort σ of Σ, and adopt the usual definitions of well-sorted terms
with variables from X , and of well-sorted literals and formulas as terms of sort
Bool. Given a set of terms S, we write T (S) to denote the set of all subterms
of S. A literal is flat if it has the form ⊥, p(x1, . . . , xn), ¬p(x1, . . . , xn), x ≈ y,
¬x ≈ y, or x ≈ f(x1, . . . , xn), where p and f are function symbols and x, y,
and x1, . . . , xn are variables. By convention and unless otherwise stated, we
use letters w, x, y, z to denote variables and s, t, u, v to denote terms.

A Σ-interpretation M is defined as usual and assigns: false to M(⊥); a set
M(σ) to every sort σ of Σ; a function M(f) : M(σ1)× . . .×M(σn) → M(σ)
to every function symbol f of Σ with arity σ1 × . . .× σn → σ; and an element
M(x) ∈ M(σ) to every variable x of sort σ. The satisfaction relation between
interpretations and formulas is defined as usual and is denoted by |=.

A theory is a pair T = (Σ, I), in which Σ is a signature and I is a class of Σ-
interpretations, closed under variable reassignment. A Σ-formula φ is satisfiable
(resp., unsatisfiable) in T , or T -(un)satisfiable, if it is satisfied by some (resp.,
no) interpretation in I. Two Σ-formulas φ and ψ are T -equisatisfiable if φ is
T -satisfiable iff ψ is T -satisfiable. For a theory T = (Σ, I), a set Γ of Σ-formulas
and a Σ-formula φ, we say that Γ entails φ in T (or T -entails φ) and write
Γ |=T φ if every interpretation M ∈ I that satisfies every formula of Γ also
satisfies φ. We write just |=T φ when Γ is empty. For a signature Σ, the empty
theory of Σ, also known as the theory of uninterpreted functions (UF), is (Σ, I),
where I is the class of all Σ-interpretations. We often drop Σ when it is clear
from the context.

The theory TLIA = (ΣLIA, ITLIA
) of linear integer arithmetic is based on the

signature ΣLIA that includes a single sort Int, all natural numbers as constant
symbols, the unary − symbol, the binary + symbol, and the binary ≤ relation,
all with the expected rank. For k ∈ N, we use the notation k · x, inductively
defined by 0 · x = 0 and (m+ 1) · x = x+m · x. In turn, ITLIA

consists of all
interpretations M for ΣLIA in which the domain M(Int) is the set of integer
numbers, for every constant symbol n ∈ N, M(n) = n, and +, −, and ≤ are
interpreted as usual. We use standard notation for integer intervals (e.g., [a, b]
for the set of integers i, where a ≤ i ≤ b and [a, b) for the set where a ≤ i < b).

3 A Theory of Sequences

In this section, we define the theory TSeq of sequences. Its signature ΣSeq is given
in Figure 1. It includes the sorts Seq, Elem, Int, and Bool, intuitively denoting
sequences, sequence elements, integers, and Booleans, respectively. The first

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 5

Symbol Arity SMT-LIB Description

n Int n All constants n ∈ N
+ Int× Int→ Int + Integer addition
− Int→ Int - Integer negation
≤ Int× Int→ Bool <= Integer inequality

ϵ Seq seq.empty The empty sequence
unit Elem→ Seq seq.unit Sequence constructor
| | Seq→ Int seq.len Sequence length
nth Seq× Int→ Elem seq.nth Element access
update Seq× Int× Elem→ Seq seq.update Element update
extract Seq× Int× Int→ Seq seq.extract Extraction (subsequence)
++ · · ·++ Seq× · · · × Seq→ Seq seq.concat Concatenation

Fig. 1: Signature for the theory of sequences.

four lines include symbols of ΣLIA. We write t1 ▷◁ t2, with ▷◁ ∈ {>,<,≥}, as
syntactic sugar for the equivalent literal expressed using ≤ and possibly ¬. For
example, x < y is expressed as ¬(y ≤ x). The sequence symbols are given on
the remaining lines, using mixfix notation for the length and concatenation
operators. Figure 1 also provides the arity of each function symbol, that is,
the number and sorts of its input arguments (if any) and the sort of its result.
Notice that ++ · · ·++ is a variadic function symbol; we require that it takes
at least two arguments.

3.1 Semantics

The theory TSeq consists of all the ΣSeq-interpretations that interpret:
• Int as the set of all integers;
• Elem as some non-empty set E;
• Seq as the set of finite sequences whose elements are from E, that is, the
set E∗ of all words over the alphabet E;

• each numeral as the corresponding integer;
• +,−, and ≤ as integer addition, negation, and comparison, respectively;
• ϵ as the empty sequence;
• unit as the function that maps every element of E to the sequence
containing only that element;

• | | as the function len that maps every sequence of E∗ to its length;
• nth as a function that maps every sequence s ∈ E∗ and integer n to the
n-th element of s when n is in bounds, i.e., 0 ≤ n < len(s),1 and to an
arbitrary integer when n is out of bounds;

• update as the function that maps every sequence s ∈ E∗, integer i, and
element e ∈ E to s itself if i is out of bounds and to the sequence obtained
from s by replacing its i-th element by e if i is in bounds;

1We number elements in a sequence starting at 0.

Springer Nature 2021 LATEX template

6 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

• extract as the function that maps every sequence s ∈ E∗ and integers i
and l to the maximal sub-sequence of s starting at index i and having
length at most l if both i and l are non-negative and i < len(x);2 the
function returns the empty sequence in all other cases;

• ++ · · ·++ as the function that maps two or more sequences s1, s2, . . . , sn
of E∗ to their concatenation s1s2 · · · sn.

Notice that the interpretations of Elem and nth are not completely fixed
by the theory: different models of TSeq may differ on the set they associate
with Elem and on the value returned by nth when its second argument is out
of bounds. Also notice that TSeq is a conservative extension of the theory TLIA
of linear integer arithmetic introduced earlier, that is, every ΣLIA-formula is
TSeq-satisfiable iff it is TLIA-satisfiable.

3.2 Vectors as Sequences

We show the applicability of TSeq by using it for a simple verification task.
Consider the C++ function swap at the top of Figure 2. This function swaps
two elements in a vector. The comments above the function include a partial
specification for it: if both indexes are in bounds and the indexed elements
are equal, then the function should not change the vector (this is expressed
by s_out == s). We now consider how to encode the verification condition
induced by the code and the specification. The function variables a, b, i, and j
can be encoded as variables of sort Int with the same names. We include two
copies of s: s for its value at the beginning, and sout for its value at the end. But
what should the sorts of s and sout be? In the following examples, we consider
two options, one based on arrays (Example 1) and the other on sequences
(Example 2). Figure 2 summarizes the encodings of the two alternatives.

Example 1 (Arrays) The theory of arrays includes three sorts: index, element (in this
case, both are Int), and an array sort Arr, as well as two operators: x[i], interpreted
as the ith element of x; and x[i ← a], interpreted as the array obtained from x by
setting the element at index i to a. The variables and formulas used for this example
are given on the left-hand side of the table of in Figure 2. We declare s and sout as
variables of an uninterpreted sort Vec and declare two functions ℓ and c, which, given
v of sort Vec, return its length (of sort Int) and content (of sort Arr), respectively.3

Next, we introduce functions to model vector operations: ≈A for comparing vectors,
nthA for reading from them, and updateA for updating them. These functions need to
be axiomatized. We include two axioms (see bottom of Figure 2): Ax1 states that two
vectors are equal iff they have the same length and content. Ax2 axiomatizes the update
operator relying on the definition of array updates: the updated vector has the same
length as the original one, and if the update index i is in bounds, the updated content
has the update value at index i and is otherwise identical to the original content.
These axioms are not meant to be complete but are strong enough for the example.

2In Bjørner et al.[?], the second argument j denotes the end index, while here it denotes the
length of the sub-sequence, in order to be consistent with the theory of strings in the SMT-LIB
standard.

3It is possible to obtain a similar encoding using the theory of datatypes (see, e.g., [?]); however,
here we use uninterpreted functions which are simpler and more widely supported by SMT solvers.

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 7

// @pre : 0 <= i , j < s . s i z e () and s [i] == s [j]
// @post : s out == s
void swap (std : : vector<int>& s , int i , int j) {

int a = s [i] ;
int b = s [j] ;
s [i] = b ;
s [j] = a ;

}

Arrays Sequences

Problem Variables a, b, i, j : Int s, sout : Vec a, b, i, j : Int s, sout : Seq

Auxiliary Variables ℓ : Vec→ Int c : Vec→ Arr
≈A: Vec× Vec→ Bool
nthA : Vec× Int→ Int
updateA : Vec× Int× Int→ Vec

Axioms Ax1 ∧ Ax2

Program a ≈ nthA(s, i) ∧ b ≈ nthA(s, j) a ≈ nth(s, i) ∧ b ≈ nth(s, j)
sout ≈A updateA(updateA(s, i, b), j, a) sout ≈ update(update(s, i, b), j, a)

Spec. 0 ≤ i, j < ℓ(s) ∧ nthA(s, i) ≈ nthA(s, j) 0 ≤ i, j < |s| ∧ nth(s, i) ≈ nth(s, j)

¬(sout ≈A s) ¬(sout ≈ s)

Ax1 := ∀ x, y : Vec. x ≈A y ⇔ (ℓ(x) ≈ ℓ(y) ∧ ∀ i : Int. 0 ≤ i < ℓ(x)⇒ c(x)[i] ≈ c(y)[i])

Ax2 := ∀ x, y : Vec. ∀ i, a : Int.

y ≈A updateA(x, i, a)⇒ (ℓ(x) ≈ ℓ(y) ∧ (0 ≤ i < ℓ(x)⇒ c(y) ≈ c(x)[i← a]))

Fig. 2: An example using TSeq.

The first two lines of the swap function are encoded as equalities using nthA, and
the last two lines are combined into one nested constraint using updateA. The precon-
dition of the specification is naturally modeled using nthA, and the post-condition is
negated, so that the unsatisfiability of the formula entails the correctness of the func-
tion w.r.t. the specification. Indeed, the conjunction of all formulas in this encoding is
unsatisfiable in the combined theories of arrays, integers, and uninterpreted functions.

The above encoding, while being good enough to prove the verification
condition, has two main shortcomings: it introduces auxiliary symbols and it
uses quantifiers, reducing clarity and efficiency. The next example illustrates
how the theory of sequences allows for a more natural and succinct encoding.

Example 2 (Sequences) In the sequences encoding, given in the right-hand side of
the table in Figure 2, s and sout have sort Seq. No auxiliary sorts or functions are
needed, as the theory symbols can be used directly. Further, these symbols do not need
to be axiomatized as their semantics is fixed by the theory. The resulting formula is
much shorter than in Example 1 and has no quantifiers. It is also unsatisfiable in
TSeq and can be proven so with our calculus.

Springer Nature 2021 LATEX template

8 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

4 Calculi

After introducing some definitions and assumptions (Section 4.1), we describe a
basic calculus for the theory of sequences, which adapts techniques from previous
procedures for the theory of strings (Section 4.2). In particular, the basic
calculus reduces the operators nth and update by introducing concatenation
terms. We then show how to extend that calculus with additional rules inspired
by solvers for the theory of arrays (Section 4.3); the modified calculus can
often reason about nth and update terms directly, avoiding the introduction of
concatenation terms (which are typically expensive to reason about).

4.1 Basic Definitions

For conciseness, we use a vector of sequence terms t = (t1, . . . , tn) to denote
the term corresponding to the concatenation of t1, . . . , tn. More precisely, t
denotes ϵ if n = 0, denotes t1 if n = 1, and denotes t1 ++ · · ·++ tn otherwise.

Definition 1 A ΣSeq-formula φ is a sequence constraint if it has the form s ≈ t or
s ̸≈ t. It is an arithmetic constraint if
1. it has the form s ≈ t, s ≥ t, s ̸≈ t, or s < t where s, t are terms of sort Int; or
2. it is a disjunction c1 ∨ c2 of two arithmetic constraints.

Notice that sequence constraints do not have to contain sequence terms (e.g.,
x ≈ y where x, y are Elem-variables). Also, equalities and disequalities between
terms of sort Int are both sequence and arithmetic constraints. In this paper
we focus on sequence constraints and arithmetic constraints. This is justified
by the following lemma.

Lemma 1 For every quantifier-free ΣSeq-formula φ, there are sets S1, . . . ,Sn of
sequence constraints and sets A1, . . . ,An of arithmetic constraints such that: (i) φ
is TSeq-satisfiable iff Si ∪ Ai is TSeq-satisfiable for some i ∈ [1, n]; and (ii) for every
TSeq-interpretationM and i ∈ [1, n], ifM |= Si ∪ Ai, thenM |= φ.

Proof Using standard transformations, φ can be transformed into a disjunction
φ′ = φ1 ∨ . . . ∨ φn, where for each i ∈ [1, n], φi is a conjunction of flat literals
φ1
i , . . . , φ

ni
i , such that (i) φ and φ′ are TSeq-equisatisfiable; and (ii) for every TSeq-

interpretationM, ifM |= φ′, thenM |= φ. Each flat literal in φi is either a sequence

constraint or an arithmetic constraint. For each i ∈ [1, n] we set Si = {φj
i | such

that φj
i is a sequence constraint } and Ai = {φj

i | such that φj
i is an arithmetic

constraint }. Both (i) and (ii) follow easily. □

We present the calculi with the following simplifying assumptions.

Assumption 1 Whenever we refer to a set S of sequence constraints, we assume:
1. for every non-variable term t ∈ T (S), there exists a variable x such that x ≈ t ∈ S;
2. for every variable x of sort Seq, there exists a variable ℓx such that ℓx ≈ |x| ∈ S;

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 9

|ϵ| → 0 |unit(t)| → 1
|update(s, i, t)| → |s| |s1 ++ · · ·++ sn| → |s1|+ · · ·+ |sn|
u++ ϵ++ v → u++ v u++ (s1 ++ · · ·++ sn) ++ v → u++ s1 ++ · · ·++ sn ++ v

Fig. 3: Rewrite rules for the reduced form t↓ of a term t, obtained from t by
applying these rules to completion.

3. all literals in S are flat.
Whenever we refer to a set of arithmetic constraints, we assume all its literals are flat.

These assumptions are without loss of generality as any set can be easily
transformed into a TSeq-equisatisfiable set satisfying the assumptions by the
addition of fresh variables and equalities. Some of the derivation rules we
introduce later, which operate on a set S of sequence constraints and a set A of
arithmetic constraints, introduce non-flat literals in those sets. In such cases,
we assume that similar transformations are done immediately after applying
the rule to maintain the invariant that all literals in S ∪ A are flat. Similarly,
rules may introduce arithmetic literals, such as ℓx > 0, that are not arithmetic
constraints according to Definition 1. Every one of those literals, however, can
be converted to an equivalent set of arithmetic constraints, and so we assume
that they are, to guarantee that A remains a set of arithmetic constraints.
Rules may also introduce fresh variables k of sort Seq. We further assume for
brevity that in such cases, a corresponding constraint ℓk ≈ |k| is added to S,
where ℓk is a fresh variable of sort Int.

Definition 2 Let C be a set of constraints. We write C |= φ to denote that C entails
formula φ in the empty theory, and write ≡C to denote the binary relation over T (C)
such that s ≡C t iff C |= s ≈ t.

Lemma 2 For every set S of sequence constraints, ≡S is an equivalence relation;
furthermore, every equivalence class of ≡S contains at least one variable.

We denote the equivalence class of a term s according to ≡S by [s]≡S
and drop

the ≡S subscript when it is clear from the context.
In the presentation of the calculus, it will often be useful to normalize terms

to what we call a reduced form.

Definition 3 Let t be a ΣSeq-term. The reduced form of t, denoted by t↓, is the term
obtained by applying to it the rewrite rules listed in Figure 3 to completion.

Observe that t↓ is well defined because the given rewrite rules form a terminating
and confluent rewrite system. Termination can be seen by noting that each
rule reduces the number of applications of sequence operators in the left-hand

Springer Nature 2021 LATEX template

10 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

side term or keeps that number the same but reduces the size of the term. It is
confluent because the reduction rules for length constraints have no ambiguity,
and the last two rules about concatenation have a unique final form, which is
the result of removing all the empty sequences and nested concatenations. It is
not difficult to show that |=TSeq

t ≈ t↓.
We now introduce some basic definitions related to concatenation terms.

The goal is to be able to define when such terms are made up of basic building
blocks that cannot be further decomposed.

Definition 4 A concatenation term is a term of the form s1 ++ · · ·++ sn with n ≥ 2.
If each si is a variable, it is a variable concatenation term. For a set S of sequence
constraints, a variable concatenation term x1++ · · ·++xn is singular in S if S ̸|= xi ≈ ϵ
for at most one variable xi with i ∈ [1, n]. A sequence variable x is atomic in S if
S ⊭ x ≈ ϵ and for all variable concatenation terms s ∈ T (S) such that S |= x ≈ s, s
is singular in S.

Intuitively, a variable concatenation term is singular if it contains at most one
variable that is not equivalent to the empty sequence; a sequence variable is
atomic if it is inequivalent to the empty sequence and every concatenation
term it is equivalent to is singular. Thus, an atomic variable cannot be further
decomposed into a concatenation of more than one (non-empty) term.

We now lift the concept of atomic variables to representatives of equivalence
classes.

Definition 5 Let S be a set of sequence constraints. Assume a choice function
α : T (S)/≡S → T (S) that chooses a variable from each equivalence class of ≡S.
A sequence variable x is an atomic representative in S if it is atomic in S and
x = α([x]≡S).

Finally, we define a relation between a sequence variable and its furthest
expansion into concatenations. For example, from x ≈ x1++u and u ≈ x2++x3,
we can expand x to get x ≈ x1++x2++x3. Informally, under the right conditions
on a set of atoms of the form x ≈ x1++ · · ·++xn, we can apply such expansions
to completion and obtain a unique representation for each sequence variable
which we can then treat as the variable’s normal form (defined formally in
Lemma 6 in the next section).

Definition 6 Let S be a set of sequence constraints. We inductively define a relation
S |=++ x ≈ s, where x is a sequence variable in S and s is a sequence term whose
variables are in T (S), as follows:
1. S |=++ x ≈ x for all sequence variables x ∈ T (S).
2. S |=++ x ≈ t for all sequence variables x ∈ T (S) and variable concatenation terms

t, where x ≈ t ∈ S.
3. If S |=++ x ≈ (w ++ y ++ z)↓ and S |= y ≈ t and t is ϵ or a variable concatenation

term in S that is not singular in S, then S |=++ x ≈ (w ++ t++ z)↓.

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 11

Let α be a choice function for S as defined in Definition 5. We additionally define
the entailment relation S |=∗++ x ≈ y, with y = (y1, . . . , yn) (n ≥ 0), to hold if each
element of y is an atomic representative in S and there exists z of length n such that
S |=++ x ≈ z and S |= yi ≈ zi for i ∈ [1, n].

In other words, S |=∗++ x ≈ t holds when t is a concatenation of atomic
representatives and is entailed to be equal to x by S. In practice, t is determined
by recursively expanding concatenations using equalities in S up to a fixpoint.
Note that our rules ensure that cyclic equations (i.e., of the form x ≈ t[x])
either collapse into x ≈ x or create an inconsistency in the arithmetic theory
(see Lemma 4).

Example 3 Suppose S = {x ≈ y ++ z, y ≈ w ++ u, u ≈ v} (we omit the additional
constraints required by Assumption 1, part 2 for brevity). It is easy to see that u,
v, w, and z are atomic in S, but x and y are not. Furthermore, w and z (and
one of u or v) must also be atomic representatives. By Item 2 of Definition 6, we
have S |=++ x ≈ y ++ z. Then, since S |= y ≈ w ++ u and w ++ u is a variable
concatenation term not singular in S, we get that S |=++ x ≈ ((w ++ u) ++ z)↓, and
so S |=++ x ≈ w ++ u ++ z. Now, assume that v = α([v]≡S) = α({v, u}). Then,
S |=∗++ x ≈ w ++ v ++ z.

Our calculi can be understood as modeling abstractly a cooperation between an
arithmetic subsolver and a sequence subsolver. Many of the derivation rules in
these calculi lift those in the string calculus of Liang et al. [?] to sequences of
elements of an arbitrary sort. We describe them similarly as rules that modify
configurations.

Definition 7 A configuration is either the distinguished configuration unsat or a
pair (S,A) of a set S of sequence constraints and a set A of arithmetic constraints.

The derivation rules are given in guarded assignment form, where the rule
premises describe the conditions on the current configuration under which the
rule can be applied, and the conclusion is either unsat, or otherwise describes
the resulting modifications to the configuration, with a syntax of the form
X, y abbreviating X ∪ {y}. A rule may have multiple alternative conclusions
separated by ∥. In the rules, some of the premises have the form S |= s ≈ t
(see Definition 2) or S |=LIA s ≈ t where |=LIA abbreviates |=TLIA

. The former
entailment can be checked with standard algorithms for congruence closure,
and the latter can be checked by solvers for linear integer arithmetic.

An application of a rule is redundant if it has a conclusion that is not
unsat and where each component in the derived configuration is a subset of
the corresponding component in the premise configuration. We assume that
for rules that introduce fresh variables, the introduced variables are identical
whenever the premises triggering the rule are the same (i.e., we cannot generate

Springer Nature 2021 LATEX template

12 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

an infinite sequence of rule applications by continuously using the same premises
to introduce fresh variables).4 A configuration other than unsat is saturated
with respect to a set R of derivation rules if every possible application of a rule
in R to it is redundant. Notice that, in particular, the rules A-Conf and S-Conf

cannot be applied to a configuration that is saturated with respect to those
rules, as this would result in unsat and would thus not be redundant.

A derivation tree is a tree where each node is a configuration and its children,
if any, are obtained by a non-redundant application of a rule of the calculus. A
derivation tree is closed if all of its leaves are unsat. As we show later, a closed
derivation tree with root node (S,A) is a proof that A∪S is unsatisfiable in TSeq.
In contrast, a derivation tree with root node (S,A) and a saturated leaf with
respect to all the rules of the calculus is a witness that A∪S is satisfiable in TSeq.

Our two calculi are built out of the derivation rules listed in Figures 4 to 6.
Based on what we said above about the implicit postprocessing of the sets of
constraints derived by those rules, one can prove that all of them transform
configurations to configurations, leading to the following lemma which we will
implicitly rely on when proving later results.

Lemma 3 For every rule from Figures 4 to 6 that does not derive unsat, if S′ and
A′ are the sets resulting from applying the rule to a configuration (S,A), then (S′,A′)
is a configuration as well.

A configuration (S,A) is satisfied by an interpretation if S ∪ A is satisfied
by that interpretation. In contrast, the configuration unsat is satisfied by no
interpretation. A derivation rule is sound if for every model of TSeq that satisfies
the configuration in the rule’s premise there is one that satisfies one of the
configurations in the rule’s conclusion.

4.2 Core Calculus

We now present the first calculus for solving TSeq-formulas.

Definition 8 The calculus BASE consists of the derivation rules in Figures 4 and 5.

Some of the rules are adapted from previous work on string solvers [? ?].
Compared to that work, our presentation of the rules is noticeably simpler, due
to our use of the relation |=∗++ from Definition 6. In particular, our configurations
consist only of pairs of sets of formulas, without any auxiliary data-structures.

The rules in Figure 4 form the core of the calculus. For greater clarity, some
of the conclusions of the rules include terms before they are flattened. First,
either subsolver can report that the current set of constraints is unsatisfiable
by using the rules A-Conf or S-Conf. The latter corresponds to a situation where

4In practice, this is implemented by associating each introduced variable with a witness term as
described in Reynolds et al. [?].

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 13

A-Conf
A |=LIA ⊥
unsat

A-Prop
A |=LIA s ≈ t s, t ∈ T (S)

S := S, s ≈ t

S-Conf
S |= ⊥
unsat

S-Prop
S |= s ≈ t s, t ∈ T (S) s, t are ΣLIA-terms

A := A, s ≈ t

S-A
x, y ∈ T (S) ∩ T (A) x, y : Int

A := A, x ≈ y ∥ A := A, x ̸≈ y

L-Intro
s ∈ T (S) s : Seq

S := S, |s| ≈ (|s|)↓
L-Valid

x ∈ T (S) x : Seq

S := S, x ≈ ϵ ∥ A := A, ℓx > 0

U-Eq
S |= unit(x) ≈ unit(y)

S := S, x ≈ y
C-Eq

S |=∗++ x ≈ z S |=∗++ y ≈ z

S := S, x ≈ y

C-Split
S |=∗++ x ≈ (w ++ y ++ z)↓ S |=∗++ x ≈ (w ++ y′ ++ z′)↓

A := A, ℓy > ℓy′ S := S, y ≈ y′ ++ k ∥
A := A, ℓy < ℓy′ S := S, y′ ≈ y ++ k ∥

A := A, ℓy ≈ ℓy′ S := S, y ≈ y′

Deq-Ext
x ̸≈ y ∈ S x, y : Seq

A := A, ℓx ̸≈ ℓy ∥
A := A, ℓx ≈ ℓy, 0 ≤ i, i < ℓx S := S, w1 ≈ nth(x, i), w2 ≈ nth(y, i), w1 ̸≈ w2

Fig. 4: The core derivation rules, where k and i denote fresh variables of
sequence and integer sort, respectively, and w1, w2 are fresh element variables.

congruence closure detects a conflict between an equality and a disequality. The
rules A-Prop, S-Prop, and S-A correspond to a form of Nelson-Oppen-style theory
combination5 of the two sub-solvers. The first two rules communicate equalities
between terms, while the third guesses arrangements for shared variables of
sort Int. Rule L-Intro ensures that the length term |s| for each sequence term s
is equal to its reduced form (|s|)↓. Rule L-Valid restricts sequence lengths to
be non-negative, splitting on whether each sequence is empty or has a length
greater than 0. Rule U-Eq captures the injectivity of the unit operator. We
will introduce the definition of normal form later in Lemma 6. For now, it
can be intuitively treated as a unique representation of each sequence variable
introduced by |=∗++. In view of this, rule C-Eq concludes that two sequence terms
are equal if they have the same normal form. If a sequence variable has two
different normal forms, rule C-Split takes the first differing components y and
y′ from the two normal forms and splits on their length relationship. Note that
C-Split is a source of non-termination of the calculus, and in fact the only one
(see, e.g., [? ?]). Finally, rule Deq-Ext handles disequalities between sequences
x and y by either asserting that their lengths are different or by choosing an
index i at which they differ.

5Note that this goes beyond Nelson-Oppen combination because the theories TLIA and TSeq are
not disjoint. As a consequence, the exchanged (dis)equalities are not limited to shared variables.

Springer Nature 2021 LATEX template

14 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

R-Extract
x ≈ extract(y, i, j) ∈ S

A := A, i < 0 ∨ i ≥ ℓy ∨ j ≤ 0 S := S, x ≈ ϵ ∥
A := A, 0 ≤ i < ℓy, j > 0, ℓk ≈ i, ℓx ≈ min(j, ℓy − i)

S := S, y ≈ k ++ x++ k′

R-Nth
x ≈ nth(y, i) ∈ S

A := A, i < 0 ∨ i ≥ ℓy ∥
A := A, 0 ≤ i < ℓy, ℓk ≈ i S := S, y ≈ k ++ unit(x) ++ k′

R-Update
x ≈ update(y, i, z) ∈ S

A := A, i < 0 ∨ i ≥ ℓy S := S, x ≈ y ∥
A := A, 0 ≤ i < ℓy, ℓk ≈ i, ℓk′ ≈ 1

S := S, y ≈ k ++ k′ ++ k′′, x ≈ k ++ unit(z) ++ k′′

Fig. 5: Reduction rules for extract, nth, and update. The rules use k, k′, and k′′

to denote fresh sequence variables. We write s ≈ min(t, u) as an abbreviation
for s ≈ t ∨ s ≈ u, s ≤ t, s ≤ u.

Figure 5 includes a set of reduction rules for handling operators that are not
directly handled by the core rules. These reduction rules capture the semantics
of these operators by reduction to concatenation. Rule R-Extract splits into two
cases: either the extraction uses an out-of-bounds index or a non-positive length,
in which case the result is the empty sequence, or the original sequence can be
described as a concatenation that includes the extracted sub-sequence. Rule
R-Nth creates an equation between y and a concatenation term with unit(x) as
one of its components, as long as i is not out of bounds. Rule R-Update considers
two cases. If i is out of bounds, then the update term is equal to y. Otherwise,
y is equal to a concatenation, with the middle component (k′) representing the
part of y that is updated. In the update term, k′ is replaced by unit(z).

Example 4 Consider a configuration (S,A), where S contains the formulas x ≈ y++z,
z ≈ v ++ x ++ w, and v ≈ unit(u), and A is empty. Hence, S |= |x| ≈ |y ++ z|.
By L-Intro, we have S |= |y ++ z| ≈ |y| + |z|. Together with Assumption 1, we have
S |= ℓx ≈ ℓy + ℓz, and then with S-Prop, we have ℓx ≈ ℓy + ℓz ∈ A. Similarly, we can
derive ℓz ≈ ℓv + ℓx + ℓw, ℓv ≈ 1 ∈ S, and so

A |=LIA ℓz ≈ 1 + ℓy + ℓz + ℓw. (1)

Notice that for any variable k of sort Seq, we can apply L-Valid, L-Intro, and S-Prop
to add to A either ℓk > 0 or ℓk = 0. Applying this to y, z, w, we have that A |=LIA ⊥
in each branch thanks to (1), and so A-Conf applies and we get unsat.

Before moving forward, we provide the following helper lemma which relates
concatenation terms to their lengths.

Lemma 4 Let S be a set of sequence constraints and A a set of arithmetic constraints.
Suppose (S,A) is saturated w.r.t. S-Prop, L-Intro and L-Valid. If x1++ · · ·++xn ∈ T (S)
is a variable concatenation term of size n not singular in S, then

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 15

1. A |=LIA Σn
k=1ℓxk ≥ 2; and

2. for each m ∈ [1, n], A |=LIA Σn
k=1ℓxk > ℓxm .

Proof Let i, j ∈ [1, n], i ̸= j, such that S ⊭ xi ≈ ϵ and S ⊭ xj ≈ ϵ. We know that
xi, xj ∈ T (S), so by saturation of L-Valid, we have A |= ℓxi > 0 and A |= ℓxj > 0.
Also, by saturation of L-Valid, L-Intro, and S-Prop, together with Assumption 1, we
know that A |=LIA ℓxk ≥ 0 for k ∈ [1, n]. It follows that A |=LIA Σn

k=1ℓxk ≥ 2.
Furthermore, for each m ∈ [1, n], A |=LIA Σn

k=1ℓxk > ℓxm . □

The calculus uses judgments of the form S |=∗++ x ≈ t. The following lemma
shows that it is possible to compute whether those judgments hold.

Lemma 5 Let S be a set of sequence constraints and A a set of arithmetic con-
straints. If (S,A) is saturated w.r.t. A-Conf, S-Prop, L-Intro and L-Valid, the problem
of determining whether S |=∗++ x ≈ s for given x and s is decidable.

Proof We show that the set of pairs (x, s) for which S |=++ x ≈ s is finite (it is then
easy to see that the set of pairs (y, t) for which S |=∗++ y ≈ t is also finite). Consider a
tree whose root is obtained by Item 1 or Item 2 of Definition 6 where the children
of a node are all possible results of applying Item 3 of Definition 6. Note that each
node can have only finitely many children as there are only finitely many pairs (y, t)
where y is a variable in S and t is ϵ or a variable concatenation term in T (S). Below,
we show that every path in the tree is finite, from which it follows that the tree is
finite. Since there are only finitely many such trees, it follows that the set of (x, s) for
which S |=++ x ≈ s is finite.

Define a partial order ≺ over terms of sort Seq in T (S), by s ≺ t iff A |=LIA ℓxs <
ℓxt for some variables xs and xt such that xs ≡S s and xt ≡S t. We show that ≺ is
well defined. First, by Assumption 1, such xs and xt exist. Next, if xs ≡S s, xt ≡S t,
x′s ≡S s and x′t ≡S t, then A |=LIA ℓxs < ℓxt iff A |=LIA ℓx′

s
< ℓx′

t
, since S |= xs ≈ x′s

and S |= xt ≈ x′t by saturation of S-Prop. Finally, by saturation with respect to
A-Conf, ≺ is irreflexive, asymmetric, and transitive. Let ≺∗ be the (well-founded)
Dershowitz-Manna multiset ordering induced by ≺ [?], that is, the minimal transitive
relation that satisfies: A ≺∗ B whenever A is obtained from B by removing a single
element b, and possibly adding any finite number of elements a such that a ≺ b for
every such new element. Now, for each term t of sort Seq in T (S), let m(t) be the
multiset of the terms occurring in it (the multiplicity of each element in this multiset
is the number of times it occurs in t). We prove the following claim, which establishes
that every path in the tree mentioned above is finite: if S |=++ x ≈ (w ++ y ++ z)↓,
S |= y ≈ t and t is ϵ or a variable concatenation term in S that is not singular in S,
then m((w ++ y ++ z)↓) ≻∗ m((w ++ t++ z)↓).

We consider two cases: t is ϵ or t is a variable concatenation term in T (S) not
singular in S. In the first case, (w ++ t++ z)↓ = (w ++ z)↓. Note that the only
role of ↓ here is to flatten nested concatenations. Hence, y is removed from the
multiset of sub-terms and is not replaced by anything, so m((w ++ y ++ z)↓) ≻∗
m((w ++ t++ z)↓).

In the second case, t is a variable concatenation term in S not singular in S.
Let t = t1 ++ . . .++ tn. Now, (w ++ (t1 ++ · · ·++ tn) ++ z)↓ is a flat concatenation in
which y was removed, and t1, . . . , tn were added. To prove a decrease in ≺∗ from
m((w ++ y ++ z)↓) to m((w ++ t++ z)↓), we show that for every k ∈ [1, n], tk ≺ y,

Springer Nature 2021 LATEX template

16 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

that is, A |=LIA ℓtk < ℓy (notice that tk and y are variables). By Lemma 4, we
know that for each k ∈ [1, n], A |=LIA Σn

i=1ℓti > ℓtk . Since S |= y ≈ t, we have
S |= |y| = |t|. By saturation of L-Intro and S-Prop, and by Assumption 1, it follows
that A |= ℓy = Σn

i=1ℓti . Thus, A |=LIA ℓy > ℓtk . □

Lemma 5 assumes saturation with respect to certain rules. Accordingly, our
proof strategy, described in Section 6, will ensure such saturation before
attempting to apply rules relying on |=∗++.

The following lemma shows that the relation |=∗++ induces a normal form
for each equivalence class of ≡S.

Lemma 6 Let S be a set of sequence constraints and A a set of arithmetic constraints.
Suppose (S,A) is saturated w.r.t. A-Conf, S-Prop, L-Intro, L-Valid, and C-Split. Then,
for every equivalence class e of ≡S whose terms are of sort Seq, there exists a unique
(possibly empty) s such that whenever S |=∗++ x ≈ s′ for x ∈ e, then s′ = s. In this
case, we call s the normal form of e (and of x).

Proof Let e be an equivalence class of ≡S whose terms are of sort Seq, and let x ∈ e
(we know every equivalence class has at least one variable by Lemma 2). We show
existence and uniqueness of a normal form for e.

Existence: We show that for some s, S |=∗++ x ≈ s. Consider the tree construction of
Lemma 5. If we follow some path in the tree, we will reach a node S |=++ x ≈ t for
which no children can be derived (i.e., Item 3 of Definition 6 doesn’t apply). It is not
hard to see that t = (t1, . . . , tn), where n ≥ 0 and each ti is a variable for i ∈ [1, n].

Let s have the same length as t and let si := α(ti) for i ∈ [1, n]. We prove that
S |=∗++ x ≈ s. We know that S |=++ x ≈ t. If n = 0, then trivially, S |=∗++ x ≈ s.
Otherwise, for each i ∈ [1, n], we further know that S |= ti ≈ si and si = α([si]), so it
only remains to show that si is atomic in S. Assume it is not. Then either S |= si ≈ ϵ
or there exists a variable concatenation term u ∈ T (S) not singular in S such that
S |= si ≈ u. In either case, this would imply that Item 3 of Definition 6 is applicable
to S |=++ x ≈ t, contradicting our assumption.

Uniqueness: By the existence argument above, there exists some s such that S |=∗++
x ≈ s. Now, suppose S |=∗++ x ≈ s′, and assume that s ̸= s′. Then there must be
w,z,z′, y, y′, each containing only variables that are atomic representatives, such
that s = (w ++ y ++ z)↓ and s′ = (w ++ y′ ++ z′)↓, with y ̸= y′. By saturation w.r.t.
C-Split, there are three possibilities: A |= ℓy > ℓy′ and y ≈ y′ ++ k ∈ S for some k;
A |= ℓy < ℓy′ and y′ ≈ y ++ k ∈ S for some k; or A |= ℓy = ℓy′ and y ≈ y′ ∈ S. In
the first case, notice that since S |= y ≈ y′ ++ k, it follows that S |= |y| ≈

∣∣y′ ++ k
∣∣.

Also, by saturation of L-Intro, S |=
∣∣y′ ++ k

∣∣ ≈ ∣∣y′∣∣ + |k|. So, S |= |y| ≈ ∣∣y′∣∣ + |k|.
And, by saturation of S-Prop and Assumption 1 also A |= ℓy ≈ ℓy′ + ℓk. It follows
that S ⊭ k ≈ ϵ; otherwise, we would have A |= ℓk ≈ 0 by L-Intro and S-Prop, which
together with A |= ℓy > ℓy′ contradicts saturation of A-Conf. Also, y′ is atomic and
hence, S ⊭ y′ ≈ ϵ. Thus, S |= y ≈ y′ ++ k but y′ ++ k is not singular in S as S ⊭ k ≈ ϵ
and S ⊭ y′ ≈ ϵ. In particular, this means that y is not atomic, which contradicts
our assumption, so the first case is impossible. The second case is analogous to the
first. In the third case, we have y ≈ y′ ∈ S, but y and y′ are both equivalence class
representatives, so y = y′, which contradicts our assumption that y ̸= y′. □

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 17

4.3 Extended Calculus

Next, we present a variant of the BASE calculus that combines array reasoning
with the core rules of that calculus and the R-Extract rule.

Definition 9 The calculus EXT is comprised of the derivation rules in Figures 4
and 6, with the addition of rule R-Extract from Figure 5.

Unlike in BASE, the rules in Figure 6 do not reduce nth and update to
concatenation operations. Instead, they reason about those operators directly
and handle their combination with concatenation. Rule Nth-Concat identifies
the i-th element of sequence y with the corresponding element selected from
its normal form (see Lemma 6). Rule Update-Concat operates similarly, applying
update to all the components. Rule Update-Concat-Inv operates similarly on the
updated sequence rather than on the original sequence. Rule Nth-Unit captures
the semantics of nth when applied to a unit term. RuleUpdate-Unit is similar
and distinguishes an update on an out-of-bounds index (different from 0) from
an update within the bound. Rule Nth-Intro is meant to ensure that rules
Nth-Update (explained below) and Nth-Unit (explained above) are applicable
whenever an update term exists in the constraints. Rule Nth-Update captures the
read-over-write axioms of arrays, adapted to consider their lengths as in Christ
and Hoenicke [?]. It distinguishes three cases. In the first, the update index is
out of bounds. In the second, it is not out of bounds, and the corresponding nth
term accesses the same index that was updated. In the third case, the index
used in the nth term is different from the updated index. Rule Update-Bound

splits on two cases: either the update changes the sequence, or the sequence
remains the same. Finally, rule Nth-Split introduces a case split on the equality
between two sequence variables x and x′ whenever they appear as arguments
to nth with equivalent second arguments. This is needed to ensure that we
detect all cases where the arguments of two nth terms must be equal.

5 Correctness

In this section, we prove that the calculi presented in Section 4 are correct.
This is formalized by following theorem:

Theorem 1 Let X ∈ {BASE,EXT} and (S0,A0) be a configuration. Assume without
loss of generality that A0 contains only arithmetic constraints that are not sequence
constraints. Let T be a derivation tree obtained by applying the rules of X with (S0,A0)
as the initial configuration.
1. If T is closed, then S0 ∪ A0 is TSeq-unsatisfiable.
2. If T contains a saturated configuration (S,A) w.r.t. all the rules of X, then S ∪ A

is TSeq-satisfiable, and so is S0 ∪ A0.

Springer Nature 2021 LATEX template

18 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

Nth-Concat
x ≈ nth(y, i) ∈ S S |=∗++ y ≈ w1 ++ · · ·++ wn

A := A, i < 0 ∨ i ≥ ℓy ∥
A := A, 0 ≤ i, i < ℓw1

S := S, x ≈ nth(w1, i) ∥ . . . ∥

A := A,
n−1∑
j=1

ℓwj
≤ i, i <

n∑
j=1

ℓwj
S := S, x ≈ nth(wn, i−

n−1∑
j=1

ℓwj
)

Update-Concat
x ≈ update(y, i, v) ∈ S S |=∗++ y ≈ w1 ++ · · ·++ wn

S := S, x ≈ z1 ++ · · ·++ zn,

z1 ≈ update(w1, i, v), . . . , zn ≈ update(wn, i−
n−1∑
j=1

ℓwj
, v)

Update-Concat-Inv
x ≈ update(y, i, v) ∈ S S |=∗++ x ≈ w1 ++ · · ·++ wn

S := S, y ≈ z1 ++ · · ·++ zn,

w1 ≈ update(z1, i, v), . . . , wn ≈ update(zn, i−
n−1∑
j=1

ℓwj
, v)

Nth-Unit
x ≈ nth(y, i) ∈ S S |= y ≈ unit(u)

A := A, i < 0 ∨ i > 0 ∥ A := A, i ≈ 0 S := S, x ≈ u

Update-Unit
x ≈ update(y, i, v) ∈ S S |= y ≈ unit(u)

A := A, i < 0 ∨ i > 0 S := S, x ≈ unit(u) ∥
A := A, i ≈ 0 S := S, x ≈ unit(v)

Nth-Intro
s′ ≈ update(s, i, t) ∈ S

S := S, e ≈ nth(s, i), e′ ≈ nth(s′, i)

Nth-Update
nth(x, j) ∈ T (S) y ≈ update(z, i, v) ∈ S S |= x ≈ y or S |= x ≈ z

A := A, j < 0 ∨ j ≥ ℓx ∥
A := A, i ≈ j, 0 ≤ j, j < ℓx S := S, nth(y, j) ≈ v ∥
A := A, i ̸≈ j, 0 ≤ j, j < ℓx S := S, nth(y, j) ≈ nth(z, j)

Update-Bound
x ≈ update(y, i, v) ∈ S

A := A, 0 ≤ i, i < ℓy S := S, nth(y, i) ̸≈ v ∥ S := S, x ≈ y

Nth-Split
nth(x, i), nth(x′, i′) ∈ T (S) i ≈ i′ ∈ A

S := S, x ≈ x′ ∥ S := S, x ̸≈ x′

Fig. 6: Extended derivation rules. The rules use z1, . . . , zn to denote fresh
sequence variables and e, e′ to denote fresh element variables.

The theorem states that the calculi are correct in the following sense: if a
closed derivation tree is obtained for the constraint set S0 ∪ A0 then that is
unsatisfiable in TSeq; if a tree with a saturated leaf is obtained, then it is
satisfiable. It is possible, however, that neither kind of tree can be derived by
the calculi, making them neither refutation-complete nor terminating. This is
not surprising since, as mentioned in the introduction, the decidability of even
weaker theories is still unknown.

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 19

In the remainder of this section, we prove the above theorem for the extended
calculus EXT. The simpler case of BASE can be obtained by an adaptation.

5.1 Proof of Theorem 1, Item 1

The proof of Item 1 is routine, and amounts to a local soundness check of each
derivation rule. Most rules in our calculi are easily shown to be sound. The
only non-routine cases are those involving the |=∗++ relation. They rely on the
following lemma.

Lemma 7 Let S be a set of sequence constraints and A a set of arithmetic constraints.
Suppose (S,A) is saturated w.r.t. S-Prop, L-Intro, and L-Valid. If S |=∗++ x ≈ s then
S |=TSeq

x ≈ s.

Proof Suppose S |=∗++ x ≈ s where s = (s1, . . . , sn). Then, for some s′ = (s′1, . . . , s
′
n),

S |=++ x ≈ s′ and S |= si ≈ s′i for i ∈ [1, n]. To show that S |=TSeq
x ≈ s, it thus

suffices to show that S |=TSeq
x ≈ s′. As shown in Lemma 5, there is a finite number

k of derivation steps in |=++ that yield x ≈ s′. We prove the claim by induction on
k. For k = 1, we either apply Item 1 or Item 2. In the former case we get a trivial
identity S |=++ x ≈ x, and clearly S |=TSeq

x ≈ x. In the latter case, we get an identity
S |=++ x ≈ t such that S |= x ≈ t, and so in particular S |=TSeq

x ≈ t. Suppose

k > 1, and that x ≈ s′ was obtained using Item 3 of Definition 6. Hence, s′ has
the form (w ++ t++ z)↓, where S |=++ x ≈ (w ++ y ++ z)↓ with a shorter derivation,
and S |= y ≈ t. By the induction hypothesis, S |=TSeq

x ≈ (w ++ y ++ z)↓. Clearly,
S |=TSeq

y ≈ t. Hence, S |=TSeq
x ≈ s′. □

Using Lemma 7, we can prove the soundness of rules that use |=∗++. For example,
we can show the soundness of the C-Split rule as follows. Since S |=∗++ x ≈ s
implies that x ≈ s follows from S in TSeq, we have that every model of the
premise configuration of C-Split assigns the same value to (w ++ y ++ z)↓ and
(w ++ y′ ++ z′)↓. Assuming that the first two branches of the conclusion do not
hold in some model, we indeed get that the interpretations of y and y′ must be
identical, as they are the sub-sequence of the same sequence, that begins at
the same index and whose length is the same.

5.2 Proof of Theorem 1, Item 2

Consider a saturated configuration (S,A). We first define an interpretation
M, based on (S,A) in Section 5.2.1. Then, we prove that M is well-defined in
Section 5.2.2. Finally, we show in Section 5.2.3 that M |= S∪A. By construction,
M is designed to be a model of TSeq, hence S ∪ A is TSeq-satisfiable. The
TSeq-satisfiability of S0 ∪ A0 is an immediate consequence of that fact that
S0 ∪ A0 ⊆ S ∪ A since, except for A-Conf and S-Conf, none of rules removes
constraints from the current configuration.

Springer Nature 2021 LATEX template

20 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

5.2.1 Model Construction

We will construct a satisfying interpretation M for a saturated configuration
(S,A) bottom-up by interpreting Elem as an arbitrary but countably infinite
set. We can do that because, intuitively, TSeq itself allows such interpretations
and is such that no set of ΣSeq constraints can impose an upper bound on
the cardinality of Elem. Note, however, that in a theory combination setting,
where Elem is replaced by a sort (such as Bool, for instance) that admits only
finite interpretations, our construction will not work. In that case, in fact, our
calculus needs to be extended with additional rules that take the finiteness of
the element sort into account as done, for instance, in Liang et al. [?] for the
theory of strings over a finite alphabet.

For our model construction, we start with the lengths of the sequences,
obtained from solving the TLIA-constraints. Then the element variables are be
assigned with distinct interpretations. For that, we rely on the element domain
being infinite. We use a weak equivalence graph to capture constraints that are
based on update. In the graph, two variables connected by an edge will differ
in their interpretation on at most one element. We carefully assign atomic
sequence variables in the graph, starting with element-wise assignments deduced
by nth. We assign distinct values to all remaining elements for the sequence
variables. Non-atomic sequence variables are assigned simply by following the
values assigned to their corresponding equivalent concatenation terms.

Unless stated otherwise, by equivalence class we mean an equivalence class
w.r.t. ≡S and may drop the subscript when referring to it (e.g., writing [x] for
the equivalence class of x). We say that an equivalence class e is atomic in S if
its terms are of sort Seq and all variables in it are atomic in S. From now on,
we will simply say “atomic” to mean “atomic in S.” Note that if e contains
any variable that is atomic, then all variables in e are atomic.

The definitions provided below completely define the interpretation M. Def-
inition 10 defines the domains of M; Definition 11 defines the interpretations
of the function symbols of ΣSeq, except nth, whose definition is deferred. Defini-
tion 12 defines the interpretations of variables of sort Int and Elem; Definition 13
assigns lengths, but not yet values, to the interpretations of variables of sort
Seq that are atomic; Definition 14 defines the interpretations of variables of sort
Seq that are equivalent to unit terms; Definition 17 defines the interpretations
of variables of sort Seq that are atomic but not equivalent to unit terms; Defini-
tion 18 defines the interpretations of variables of sort Seq that are not atomic;
Finally, Definition 19 fully defines the interpretation of the nth symbol in M.6

Definition 10 (Model construction: domains)
1. M(Int) = Z, the set of integers.
2. M(Elem) is some countably infinite set E.
3. M(Seq) is the set E∗ (of finite sequences whose elements are taken from E).

6Recall that the meaning of nth is fixed by the theory only for certain inputs.

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 21

The domains for Int and Seq were chosen to meet the requirements of TSeq.
The exact identity of Elem is not important, and so we set its elements to be
arbitrary. In contrast, as argued above, its cardinality is, as we will see later.

Definition 11 (Model construction: function symbols) The symbols shown in
Figure 1, except for nth, are interpreted as prescribed by the semantics of TSeq provided
in Section 3.1.

Now we can assign values to variables of sort Int and Elem.

Definition 12 (Model construction: Int and Elem variables)
1. Let A be a TLIA-interpretation (with A(Int) = Z) that satisfies A. ThenM(x) :=
A(x) for every variable x of sort Int.

2. Let a1, a2, . . . be an enumeration ofM(Elem), and let e1, . . . , en be an enumeration
of the equivalence classes of ≡S whose variables have sort Elem. Then, for every
i ∈ [1, n] and every variable x ∈ ei,M(x) := ai.

Next, we assign values to variables of sort Seq. We will first associate a
sequence value with every sequence equivalence class (we write M(e) for the
value associated with equivalence class e). Then, for each equivalence class e
and for each x ∈ e, we define M(x) := M(e). We start by defining lengths.

Definition 13 (Model construction: length of atomic variables) For each variable x
in an atomic equivalence class e of ≡S, we constrainM(e) to be a sequence of length
M(ℓx).

Note that because every atomic variable is in an atomic equivalence class,
Definition 13 assigns a length to every atomic variable. In what follows, we
denote the length assigned to M(e) in Definition 13 by ℓe.

Next, we define model values for atomic variables. We start with equivalence
classes that contain unit-terms. We will call an equivalence class e of ≡S a unit
equivalence class if unit(x) ∈ e for some x.

Definition 14 (Model construction: atomic variables in unit equivalence classes)
For every atomic variable x such that x ≡S unit(y) for some y, we setM([x]) to be a
sequence of length 1 whose only element isM(y).

Next, we turn to atomic equivalence classes that are not unit. We begin
by defining a graph in order to keep track of constraints that originate from
the update symbol. The graph connects atomic equivalence classes by edges
constructed from update.

If two vertices are connected by an edge, one of them is an update of the
other, and so they differ on at most 1 element. This definition is an adaptation

Springer Nature 2021 LATEX template

22 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

of the weak equivalence graph from Christ and Hoenicke [?] to the context of
sequences, where operations are richer. In particular, we take into account not
only whether a constraint of the form y ≈ update(x, i, a) appears in S, but also
whether x and y are atomic, and whether the interpretation already given to
i in Definition 12 is within the range determined by the length assigned to x
and y in Definition 13.

Definition 15 (Weak equivalence graph) Define a graph G = (V,E, δ) as follows.
V is the set of atomic equivalence classes. E ⊆ V × V is a set of unordered edges,
and δ : E → P(N) is a labeling function on edges, such that (e1, e2) ∈ E and
k ∈ δ((e1, e2)) iff there are x ∈ e1 and y ∈ e2 such that y ≈ update(x, i, z) ∈ S or
x ≈ update(y, i, z) ∈ S, whereM(i) = k and 0 ≤ k <M(ℓe1) =M(ℓe2).

Definition 16 (Weak equivalence) Given a weak equivalence graph G = (V,E, δ),
for each i ∈ N, we define a binary relation ∼i over V as follows: e1 ∼i e2 iff there
exists a path p between e1 and e2 in G, such that for each edge d in p, δ(d) \ {i} ≠ ∅.

It is routine to verify the following lemma.

Lemma 8 For each i ∈ N, ∼i is an equivalence relation over the atomic equivalence
classes of ≡S.

Notice that even though ∼i is defined using update-terms, every atomic
equivalence class e satisfies e ∼i e, even if it has no update-terms.

Let ℓ be the maximal sequence length assigned in Definition 13. Let
a11, a

2
1, . . . , a

ℓ
1, a

1
2, . . . , a

ℓ
2, . . . be an enumeration of the elements in M(Elem)

that were not assigned to any variable of Elem sort. For each i ∈ [0, ℓ),
let Ei

1, E
i
2, . . . , E

i
ni

be an enumeration of the equivalence classes of ∼i. The
following lemma is a consequence of Lemma 8.

Lemma 9 For every atomic equivalence class e of ≡S, and for each i ∈ [0, ℓe), there
exists some j such that e ∈ Ei

j .

Definition 17 (Model construction: atomic variables in non-unit equivalence classes)
Let e be an atomic equivalence class of ≡S that is not a unit equivalence class. We
set the ith element ofM(e) for every i ∈ [0, ℓe) as follows. By Lemma 9, there exists
some j such that e ∈ Ei

j .

1. If there are e′ ∈ Ei
j , s ∈ e′, x, and y such that x ≡S nth(s, y) and M(y) = i, we

set the ith element ofM(e) to beM(x).
2. Otherwise, the ith element ofM(e) is set to aij .

Next, we set the interpretation of non-atomic variables of sort Seq.

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 23

Definition 18 (Model construction: non-atomic sequence variables) Let x be a
non-atomic variable of sort Seq, and let y be its normal form. M([x]) is set to be
the concatenation of the interpretations of the variables in y. (M([x]) is the empty
sequence if y is of size 0.)

Finally, we define the interpretation of nth. M(nth) is a function from
M(Seq)×M(Int) to M(Elem). Given a ∈ M(Seq) and an integer i, if i is non-
negative and smaller than the length of a, the value of M(nth)(a, i) is fixed by
the theory. The following definition assigns a value to M(nth)(a, i) for other i’s.

Definition 19 (Model construction: nth terms) For every element a ∈M(Seq) with
length n and for every i ∈ N such that i < 0 or i ≥ n, if there are s, x, and y such that
x ≡S nth(s, y),M(s) = a, andM(y) = i,M(nth)(a, i) is set toM(x). Otherwise, it
is set arbitrarily.

This concludes the construction of M. The following is an example of a
construction of a model according to the above definitions.

Example 5 Consider a signature in which Elem is Int, and a saturated configuration
(S∗,A∗) w.r.t. EXT that includes the following formulas: y ≈ y1 ++ y2, x ≈ x1 ++ x2,
y2 ≈ x2, y1 ≈ update(x1, i, a), |y1| = |x1|, |y2| = |x2|, nth(y, i) ≈ a, nth(y1, i) ≈ a.
Following the above construction, a satisfying interpretationM can be built as follows:
Definition 10 Set bothM(Int) andM(Elem) to be the set of integer numbers.M(Seq)

is fixed by the theory.
Definition 12 First, find an arithmetic model, M(ℓx) = M(ℓy) = 4,M(ℓy1) =

M(ℓx1) = 2,M(ℓy2) =M(ℓx2) = 2,M(i) = 0. Further, setM(a) = 0.
Definition 13 Start assigning values to sequences. First, set the lengths ofM(x) and

M(y) to be 4, and the lengths ofM(x1),M(x2),M(y1),M(y2) to be 2.
Definition 14 Skipped as there are no unit terms.
Definition 17 Next, according to Item 1, the 0th element ofM(y1) is set to 0 (y1 is

atomic, y is not.). According to Item 2, assign fresh values to the remaining
indices of atomic variables. The result can be, e.g., M(y1) = [0, 2],M(x1) =
[1, 2],M(y2) =M(x2) = [3, 4].

Definition 18 Assign non-atomic sequence variables based on equivalent concatena-
tions:M(y) = [0, 2, 3, 4],M(x) = [1, 2, 3, 4].

Definition 19 No integer variable in the formula was assigned an out-of-bound value,
and so the interpretation of nth on out-of-bounds cases is set arbitrarily.

5.2.2 Well-definedness

Note that Definitions 10 and 11 are trivially well-defined. We now go through
the remaining definitions.

Lemma 10 Definition 12 is well-defined.

Springer Nature 2021 LATEX template

24 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

Proof To show that Item 1 is well-defined, we note that by saturation of A-Conf,
A is TLIA-satisfiable. To show that Item 2 is well-defined, we establish an infinite
enumeration a1, a2, . . . ofM(Elem), which exists due to Definition 10. □

Lemma 11 Definition 13 is well-defined.

Proof Let x, y ∈ e. We show thatM(ℓx) =M(ℓy). Since x ≡S y, we have S |= |x| ≈
|y|. By Assumption 1, we also have S |= ℓx ≈ ℓy. By saturation of S-Prop, we have
ℓx ≈ ℓy ∈ A, and hence, by Definition 12,M(ℓx) =M(ℓy). □

Lemma 12 Definition 14 is well-defined.

Proof We first show that ℓ[x] is 1. To see this, note first that by saturation of L-Intro
(and Figure 3), we have S |= |unit(y)| ≈ 1. We also have ℓx ≈ |x| ∈ S by Assumption 1.
It follows that S |= ℓx ≈ 1, so ℓx ≈ 1 ∈ A by saturation of S-Prop. Thus, we must
have A(ℓx) = 1 in Definition 12, and thusM(ℓx) = 1. By Definition 13, we then have
that the length ofM([x]) must be 1.

Next, suppose unit(y), unit(z) ∈ [x]. We proveM(y) =M(z). Since S |= unit(y) ≈
unit(z), we must have y ≈ z ∈ S, by saturation of U-Eq. Hence, y ≡S z and so by
Definition 12, we haveM(y) =M(z). □

For the well-definedness of Definition 17, we use the following helper lemma
which shows that the model assigns equal lengths to updated sequences.

Lemma 13 If y ≈ update(x, i, z) ∈ S, thenM(ℓx) =M(ℓy).

Proof By congruence, S |= |y| ≈ |update(x, i, z)|, and by saturation of L-Intro and
the definition of ↓, we know that S |= |update(x, i, z)| ≈ |x|. Thus, S |= |x| ≈ |y|. By
Assumption 1, S |= ℓx ≈ ℓy, so by saturation of S-Prop, we have A |= ℓx ≈ ℓy. It
follows from Definition 12 that A(ℓx) = A(ℓy), and thus,M(ℓx) ≈M(ℓy). □

Lemma 14 Definition 17 is well-defined.

Proof Let e be as in Definition 17. Suppose there are e′, e′′ ∈ Ei
j , with s′ ∈ e′,

s′′ ∈ e′′, and x′, y′, x′′, y′′ such that x′ ≡S nth(s′, y′) and x′′ ≡S nth(s′′, y′′) and
M(y′) =M(y′′) = i, with i ∈ [0, ℓe). We prove thatM(x′) =M(x′′).

We first show that y′ ≈ y′′ ∈ S. Clearly y′, y′′ ∈ T (S). Also, y′, y′′ ∈ T (A) since
y′ ≈ y′ ∈ A and y′′ ≈ y′′ ∈ A by saturation of S-Prop. It follows by saturation of S-A
that either y′ ≈ y′′ ∈ A or y′ ̸≈ y′′ ∈ A. SinceM(y′) =M(y′′), the latter cannot hold,
and so the former holds. Then, by saturation of A-Prop, we have y′ ≈ y′′ ∈ S as well.

Now, notice that e′ ∼i e′′. Hence, there exist e1, . . . , en such that e1 = e′,
en = e′′ and for k ∈ [1, n), ek and ek+1 are connected by an edge dk in G where
δ(dk) \ {i} ≠ ∅. For every such k, we have that sk ≈ update(s′k, yk, zk) ∈ S or
s′k≈update(sk, yk, zk) ∈ S for some sk ∈ ek, s

′
k ∈ ek+1, integer variable yk, and Elem-

variable zk. By Lemma 13,M(ℓsk) =M(ℓs′k
). And by Definition 13, ℓek =M(ℓsk)

and ℓek+1 = M(ℓs′k
). It follows that ℓe′ = ℓe1 = . . . = ℓen = ℓe′′ . By a similar

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 25

argument, because e ∼i e′, we have ℓe′ = ℓe. We also have: (∗) M(yk) ̸= i and
(∗∗)M(yk) ∈ [0, ℓe). Define s′0 to be an alias for s′ and then notice that for k ∈ [1, n),
sk ≡S s′k−1 because sk, s

′
k−1 are both in ek.

We prove by induction that for k ∈ [0, n), nth(s′, y′) ≡S nth(s′k, y
′). For the base

case, we simply note that nth(s′, y′) and nth(s′0, y
′) are identical and nth(s′, y′) ∈ T (S).

For the induction step, suppose that nth(s′, y′) ≡S nth(s′k, y
′), where k ∈ [0, n− 1).

This implies nth(s′k, y
′) ∈ T (S), and we also know s′k ≡S sk+1. Recalling that

sk+1 ≈ update(s′k+1, yk+1, zk+1) ∈ S or s′k+1 ≈ update(sk+1, yk+1, zk+1) ∈ S, we
see that the premises of Nth-Update are satisfied. By saturation of Nth-Update, then,
there are three possibilities.
1. In the first case, A |= y′ < 0∨ y′ ≥ ℓs′k

. We know from Definition 12 thatM(y′) =

A(y′) and M(ℓs′k
) = A(ℓs′k), so we must have M(y′) < 0 or M(y′) ≥ M(ℓs′k

).

But M(y′) = i and i ∈ [0, ℓe), and we know that M(ℓs′k
) = ℓek+1 = ℓe, so this

case is not possible.
2. In the second case, A |= y′ ≈ yk+1. This is also not possible because we know that
A(y′) =M(y′) = i ̸=M(yk+1) = A(yk+1).

3. In the third case, nth(sk+1, y
′) ≡S nth(s′k+1, y

′). But we know that s′k ≡S sk+1,

so we also have nth(s′k, y
′) ≡S nth(s′k+1, y

′). Then, by the induction hypothesis,

nth(s′, y′) ≡S nth(s′k+1, y
′), which completes the induction proof.

Letting k = n−1, we obtain nth(s′, y′) ≡S nth(s′n−1, y
′). But s′n−1 ∈ en and en = e′′,

so s′n−1 ≡S s′′ and nth(s′, y′) ≡S nth(s′′, y′). Finally, since we showed above that
y′ ≈ y′′ ∈ S, we have nth(s′, y′) ≡S nth(s′′, y′′), and thus x′ ≡S x′′, which means that
M(x′) =M(x′′) by Definition 12. □

Lemma 15 Definition 18 is well-defined.

Proof y exists and is unique by Lemma 6. If y is a variable or a variable-concatenation
term, then uniqueness guarantees well-definedness. Further, each variable that occurs
in y is atomic by Lemma 6, and hence its value in M was already defined in
Definitions 14 and 17. □

We prove that Definition 19 is well-defined, but first we prove some helper
lemmas. Recall that we write C |=LIA φ to denote that every model of TLIA
satisfying C also satisfies φ. Intuitively, if φ can be derived from C using
arithmetic reasoning, then C |=LIA φ.

The first lemma states that |=++ conforms with the lengths of sequences.

Lemma 16 If S |=++ x ≈ z and z is of size n, then A |=LIA ℓx = Σn
i=1ℓzi .

Proof The proof is by structural induction using Definition 6. For Item 1, clearly
A |= ℓx ≈ ℓx. For Item 2, we have S |=++ x ≈ t for some variable concatenation term
t = t1 ++ · · · ++ tn such that S |= x ≈ t. Therefore, S |= |x| ≈ |t|. By saturation of
L-Intro, S |= |x| ≈ Σn

i=1|ti|, and using Assumption 1, we get S |= ℓx ≈ Σn
i=1ℓti . By

saturation of S-Prop, A |= ℓx ≈ Σn
i=1ℓti .

Now suppose that S |=++ x ≈ (w ++ y ++ z)↓ and S |= y ≈ t, where t is ϵ or a
variable concatenation term in T (S). Let w = (w1, . . . , wm) and z = (z1, . . . , zn),
with m,n ≥ 0. By the induction hypothesis, we have that A |=LIA ℓx ≈ Σm

i=1ℓwi + ℓy +

Springer Nature 2021 LATEX template

26 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

Σn
i=1ℓzi . We consider two cases. (1) t = ϵ: in this case, S |= |y| ≈ |ϵ|. Also, S |= |ϵ| = 0

by saturation of L-Intro, so S |= |y| = 0, and thus A |= ℓy = 0 by saturation of S-Prop
and Assumption 1. It follows that A |=LIA ℓx ≈ Σm

i=1ℓwi +Σn
i=1ℓzi . (2) t is a variable

concatenation term in T (S): let t = t1 ++ . . . ++ tk. We have S |= |y| ≈ |t|. Also,
S |= |t| = Σk

i=1|ti| by saturation of L-Intro. By saturation of S-Prop and Assumption 1

(and assuming wlog that Σk
i=1ℓti is the result of flattening Σk

i=1|ti|), it follows that
A |= ℓy = Σk

i=1ℓti . Thus, A |=LIA ℓx ≈ Σm
i=1ℓwi +Σk

i=1ℓti +Σn
i=1ℓzi . □

Next, we show that the model respects the lengths of sequence variables.

Lemma 17 For every sequence variable x ∈ S, if ℓ is the length of M(x), then
M(ℓx) = ℓ.

Proof If x is atomic, then ℓ = M(ℓx) by Definition 13. Suppose that x is non-
atomic. Let y be the normal form of x where y is of size n. Each element of y
is atomic, so for i ∈ [1, n], the length of M(yi) is M(ℓyi) by Definition 13. Then,
ℓ = Σn

i=1M(ℓyi) by Definition 18. Let z of length n be such that S |=++ x ≈ z
and S |= yi ≈ zi for i ∈ [1, n], which exists by Definition 6. By Lemma 16, we have
that A |=LIA ℓx ≈ Σn

i=1ℓzi . For each i ∈ [1, n], we know that because S |= yi ≈ zi,
S |= |yi| ≈ |zi|, and so by Assumption 1, S |= ℓyi ≈ ℓzi . Therefore, A |= ℓyi ≈ ℓzi by
saturation of S-Prop. Then, we can conclude that A |=LIA ℓx ≈ Σn

i=1ℓyi . Finally, we
haveM(ℓx) = A(ℓx) = Σn

i=1A(ℓyi) = Σn
i=1M(ℓyi) = ℓ. □

The next lemmas show that nth terms are evaluated correctly, first for
atomic classes and then generally.

Lemma 18 Suppose k ≡S nth(x, y). Let i =M(y), e = [x], and let ℓe be the length
ofM(x). If e is atomic and i ∈ [0, ℓe), then the ith element ofM(x) isM(k).

Proof We consider the following cases:
1. e is a unit equivalence class: then, for some z, unit(z) ∈ e. By Definition 14, we have

that i = 0 andM(x) contains the single elementM(z). We show thatM(z) =
M(k). Since nth(x, y) ∈ T (S) and S |= x ≈ unit(z), by saturation of Nth-Unit,
there are two cases. In the first case, A |= y < 0∨ y > 0, which, by Definition 12, is
not possible sinceM(y) = i = 0. In the second case, nth(x, y) ≈ z ∈ S. It follows
that z ≡S k, so by Definition 12,M(z) =M(k).

2. e is atomic but not a unit equivalence class: let j be such that e ∈ Ei
j . Then, by

Item 1 of Definition 17, the ith element ofM(e) must beM(k), and thus the ith
element ofM(x) isM(k). □

Lemma 19 Suppose k ≡S nth(x, y). Let i =M(y), e = [x], and let ℓe be the length
ofM(x). If i ∈ [0, ℓe), then the ith element ofM(x) isM(k).

Proof If e is atomic, then we have the result by Lemma 18. Suppose e is not atomic.
Let x be the normal form of x.
1. If x is empty, then by Definition 18,M(x) is the empty sequence, so i ∈ [0, ℓe) is

always false, and the statement holds vacuously.

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 27

2. Suppose x has a single element, x1. By Definition 6, it is clear that S |=∗++ x1 ≈ x1.
So, by saturation of C-Eq, we must have x ≈ x1 ∈ S. But x1 is atomic, so this
contradicts the assumption that e is not atomic.

3. Otherwise, x = x1 ++ · · ·++ xn, with n ≥ 2. Recall that nth(x, y) ∈ T (S). Thus,
by saturation of Nth-Concat, one of its n+ 1 conclusions is applicable. In the first
case, we must have A |= y < 0 ∨ y ≥ ℓx. But we also know that M(y) = i is
non-negative and is smaller than the length assigned to M(x), which leads to a
contradiction using Lemma 17. For the other cases, we have, for some k ∈ [1, n],

(1) A |= Σk−1
j=1 ℓxj ≤ y < Σk

j=1ℓxj and (2) S |= nth(x, y) ≈ nth(xk, y − Σk−1
j=1 ℓxj).

By Definition 12, this means that Σk−1
j=1M(ℓxj) ≤ M(y) < Σk

j=1M(ℓxj). Now,

by Definition 18, M(x) = M(x1) ++ · · · ++M(xn), and by Lemma 17, the

length ofM(xj) isM(ℓxj) for j ∈ [1, n]. Let i′ =M(y)− Σk−1
j=1M(ℓxj). Clearly,

i′ ∈ [0,M(ℓxk)), and elementM(y) ofM(x) is the same as element i′ ofM(xk).

Now, revisiting (2), let α be the term y − Σk−1
j=1 ℓxj , and let α̂ be the variable

introduced for α when flattening the term nth(xk, α). We have k ≡S nth(x, y), so
k ≡S nth(xk, α̂) by (2). Let i′′ beM(α̂), and recall that xk is atomic and that the
length ofM(xk) isM(ℓxk). By Lemma 18, we have that if i′′ ∈ [0,M(ℓxk)), then
the i′′th element ofM(xk) isM(k). It remains to show that i′ = i′′. To see this,
note that S |= α̂ ≈ α. So, by saturation of S-Prop, we have A |= α̂ ≈ α. Then, by

Definition 12, i′′ =M(α̂) =M(y)− Σk−1
j=1M(ℓxj) = i′. □

The following lemma proves that disequalities are respected.

Lemma 20 For all x, y, with x ̸≈ y ∈ S, we haveM(x) ̸=M(y).

Proof By Deq-Ext we have two cases. In the first, A |= ℓx ̸= ℓy. So, by Definition 12,
M(ℓx) ̸=M(ℓy). Thus, by Lemma 17, we have that the length ofM(x) is different
from the length ofM(y), soM(x) ̸=M(y).

In the second case, we have (1) A |= ℓx ≈ ℓy ∧ 0 ≤ i < ℓx and (2) w1 ≈
nth(x, i), w2 ≈ nth(y, i), w1 ̸≈ w2 ∈ S, for some i, w1, w2. By (2) and saturation of
S-Conf, we know that w1 ̸≡S w2, so by Definition 12,M(w1) ̸=M(w2). Let n =M(i)
and let ℓ be the length of M(x). By Definition 12, we have M(ℓx) =M(ℓy) and
0 ≤ n <M(ℓx). So, by Lemma 17, we have that the lengths ofM(x) andM(y) are
both equal to ℓ, and n ∈ [0, ℓ). Looking again at (2), we can apply Lemma 19 twice to
get that the nth element ofM(x) isM(w1) and the nth element ofM(y) isM(w2).
We can then conclude thatM(x) ̸=M(y), as we know thatM(w1) ̸=M(w2). □

We can now show that Definition 19 is well-defined.

Lemma 21 Definition 19 is well-defined.

Proof Suppose there are x, x′, s, s′, y, y′ such that x ≡S nth(s, y), x′ ≡S nth(s′, y′),
M(s) =M(s′) = a, andM(y) =M(y′) = i. We proveM(x) =M(x′). Since y, y′ ∈
T (S), and they have sort Int, by saturation of S-Prop, we have that y ≈ y, y′ ≈ y′ ∈ A,
and so y, y′ ∈ T (S)∩T (A). By saturation of S-A, either y ̸≈ y′ ∈ A or y ≈ y′ ∈ A. The
first case is impossible sinceM(y) =M(y′). In the second case, we have y ≈ y′ ∈ A,
and so y ≈ y′ ∈ S by saturation of A-Prop. Now, by saturation of Nth-Split, there are
two options: either s ̸≈ s′ ∈ S or s ≈ s′ ∈ S. The first is impossible by Lemma 20,

Springer Nature 2021 LATEX template

28 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

asM(s) =M(s′). On the other hand, if s ≈ s′ ∈ S, then since x ≡S nth(s, y) and
x′ ≡S nth(s′, y′), we also have x ≡S x′. Thus, by Definition 12,M(x) =M(x′). □

From the well-definedness lemmas above we can then conclude that M is
well-defined.

5.2.3 Satisfaction

In this section, we show that M |= S ∪ A. The arithmetic constraints (i.e., A)
are satisfied by the fact that M extends a model A of TLIA that satisfies A (see
Definitions 11 and 12).

Lemma 22 M satisfies A.

Showing that M |= S is more involved. Roughly speaking, we consider each
possible shape of a sequence constraint separately, and prove that M satisfies
constraints of that shape from S. The cases that include nth and update terms
heavily rely on the construction of the weak equivalence graph. Constraints
that include concatenation are handled by reasoning about |=++.

The main result of this section is thus the following.

Lemma 23 M satisfies S.

The proof of this lemma is provided at the end of this section. The following
lemmas will be used for the various cases of that proof. The first lemma proves
the existence of atomic representatives.

Lemma 24 A variable x is atomic in S iff S |=∗++ x ≈ y for some atomic
representative y.

Proof ⇒: Let y be the representative of [x]. By Definition 4, and because x ≡S y and
x is atomic, y must also be atomic. We have S |=++ x ≈ x by Definition 6, and thus,
also by Definition 6, we have S |=∗++ x ≈ y.
⇐: Since y is atomic and x ≡S y, x is also atomic by Definition 4. □

Next, we show how |=∗++ works with concatenation terms.

Lemma 25 If S |=∗++ x ≈ y, thenM(x) =M(y1)++ . . .++M(yn), where y has size
n ≥ 0.

Proof If x is not atomic, then the result is immediate by Definition 18. If x is atomic,
then by Lemma 24 and uniqueness of normal forms (Lemma 6), n = 1. Since x ≡S y1,
and models are assigned by equivalence class in Definitions 14 and 17, it follows that
M(x) =M(y1). □

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 29

In the next lemma, we show that the empty sequence obtains length 0.

Lemma 26 S |= x ≈ ϵ iffM(x) has length 0.

Proof ⇒: If S |= x ≈ ϵ, then S |= |x| ≈ |ϵ|. By saturation of L-Intro, S |= |ϵ| = 0. So,
by Assumption 1, S |= ℓx ≈ 0, and so, by saturation of S-Prop, we have ℓx ≈ 0 ∈ A.
Thus, by Definition 12,M(ℓx) = 0, and so the length of x is 0 by Lemma 17. ⇐: If
M(x) has length 0, then by Lemma 17,M(ℓx) = 0. By saturation of L-Valid, either
x ≈ ϵ ∈ S or A |= ℓx > 0. But the latter is impossible by Definition 12. □

Next, we show how |=∗++ works with update terms.

Lemma 27 If x ≈ update(y, i, v) ∈ S, M(i) ∈ [0,M(ly)), and S |=∗++ y ≈ w1 ++
· · ·++ wn, then:
1. x ≈ z1 ++ · · ·++ zn ∈ S for some atomic z1, . . . , zn;
2. there exists some k ∈ [1, n], such that

∑k−1
j=1M(ℓwj) ≤ M(i) <

∑k
j=1M(ℓwj)

and zk = update(wk, αk, v) ∈ S, where A |= αk ≈ i−∑k−1
j=1 ℓwj ; and

3. for all j ∈ [1, n], j ̸= k, zj ≈ wj ∈ S.

Proof By saturation w.r.t. Update-Concat, there is x ≈ z1 ++ · · · ++ zn ∈ S, for
some z1, . . . , zn, such that zm ≈ update(wm, αm, v) ∈ S for m ∈ [1, n], where αm

is the variable introduced for the term i −∑m−1
j=1 ℓwj when flattening the term

update(wm, i −∑m−1
j=1 ℓwj , v). Then, zm ≈ update(wm, αm, v) ∈ S and αm ≡S i −∑m−1

l=1 ℓwl . By saturation of S-Prop, we also have A |= αm ≈ i−∑m−1
j=1 ℓwj .

Next we prove that z1, ..., zn are atomic. Suppose zm is not atomic for some
m ∈ [1, n]. Note that we cannot have S |= zm ≈ ϵ: wm is atomic, so by Lemma 26,
M(wm) has a nonzero length; then, by Lemma 13,M(zm) has nonzero length, so
S ⊭ zm ≈ ϵ by Lemma 26. Let u be the normal form of zm. u cannot be empty
because then, by Lemma 25, the length ofM(zm) would be 0, so by Lemma 26, we
would have zm ≈ ϵ. u cannot be of size 1 as then zm would be atomic by Lemma 24.
Thus, u is of size at least 2. Now, by saturation of Update-Concat-Inv applied to
zm ≈ update(wm, αm, v), we have wm ≈ z′ ∈ S, u1 ≈ update(z′1, αm, v) ∈ S, and
u2 ≈ update(z′2, α

′, v) ∈ S, for some α′ where S |= α′ = αm − ℓu1 . By Lemma 13,
we have M(ℓu1) =M(ℓz′

1
) and M(ℓu2) ≈ M(ℓz′

2
). But u1 and u2 are atomic, so

by Lemma 26, their lengths cannot be zero. By Lemma 17, then, the lengths of z′1
and z′2 are also nonzero. So S ⊭ z1 ≈ ϵ and S ⊭ z2 ≈ ϵ by Lemma 26. Thus, z is not
singular, which means that wm is not atomic, which is a contradiction.

Now, consider the following n+ 2 constraints: i < 0,
∑k−1

j=1 ℓwj ≤ i <
∑k

j=1 ℓwj

for k ∈ [1, n], and i ≥∑n
j=1 ℓwj . Exactly one of these holds inM, since it interprets

arithmetic symbols in the usual way by Definition 11.
SupposeM |= i < 0 orM |= i ≥∑n

j=1 ℓwj . We know thatM(i) ∈ [0,M(ℓy)),
so this case is impossible by Lemmas 17 and 25.

Now, suppose thatM |= ∑k−1
j=1 ℓwj ≤ i <

∑k
j=1 ℓwj for some k ∈ [1, n]. Clearly,

Item 2 holds for this k. We know that Update-Bound is saturated w.r.t. zm ≈
update(wm, αm, v) ∈ S for m ∈ [1, n]. Recall also that A |= αm ≈ i−∑m−1

j=1 ℓwj . It
is easy to see that the first branch is inconsistent withM whenever m ̸= k. Thus, we
have zm ≈ wm ∈ S for m ∈ [1, n],m ̸= k. □

Springer Nature 2021 LATEX template

30 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

The next lemma proves that unit classes are atomic.

Lemma 28 If x ≡S unit(y) then x is atomic.

Proof Note that S |= |unit(y)| ≈ 1 by saturation of L-Intro, and so we also have (∗)
S |= |x| ≈ 1. Assume x is not atomic. There are two cases. In the first case, x ≡S ϵ. But
S |= |ϵ| ≈ 0 by saturation of L-Intro, so by (∗) and saturation of S-Prop, this implies
A |= 0 ≈ 1, which contradicts saturation of A-Conf. In the second case, there exists a
variable concatenation term x1++ · · ·++xn ∈ T (S) such that S |= x ≈ x1++ · · ·++xn
and x1++· · ·++xn is not singular in S. By Lemma 4, we know that A |=LIA Σn

i=1ℓxn ≥ 2.
But by (∗) and saturation of S-Prop and L-Intro, together with Assumption 1, we also
have A |= Σn

i=1ℓxn = 1, which also contradicts saturation of A-Conf. □

Next, we show when Item 2 of Definition 6 can be eliminated.

Definition 20 Define S |=1,3
++ x ≈ t if there is a derivation of S |=++ x ≈ t without

using Item 2 of Definition 6.

Lemma 29 If S |=∗++ x ≈ y, where y has size n, then for some z of size n such that

zi ≡S yi, i ∈ [1, n], S |=1,3
++ x ≈ z.

Proof Since S |=∗++ x ≈ y, there is some z′ such that z′i ≡S yi, i ∈ [1, n] and
S |=++ x ≈ z′. Consider the derivation tree described in Lemma 5, and let D be
the path through the tree corresponding to the derivation of S |=++ x ≈ z′. If D
has no application of Item 2 of Definition 6, then the claim is proved by setting z
to be z′. Otherwise, the first node in D must use Item 2 of Definition 6 to derive
S |=++ x ≈ t, where x ≈ t ∈ S. Suppose that t is not singular. Then, it is possible

to derive S |=1,3
++ x ≈ t by starting with S |=1,3

++ x ≈ x and then applying Item 3 of
Definition 6, using S |= x ≈ t. We can then replace the root of D with this derivation

to get a derivation showing S |=1,3
++ x ≈ z.

Suppose, on the other hand, that t is singular and t = t1 ++ . . .++ tm. Without
loss of generality, assume that D eagerly applies Item 3 of Definition 6 m− 1 times,
each time using S |= ti ≈ ϵ for some i ∈ [1,m], which is possible because t is singular.
The result is a derivation of S |=++ x ≈ tk for some variable tk. We consider two cases.
1. Suppose that tk is atomic with atomic representative v. Then, clearly we have

S |=∗++ x ≈ v and S |=∗++ tk ≈ v, so by saturation of C-Eq, x ≡S tk. By Lemma 6,

we also have that y = v. But then, let z = x. Clearly, we have S |=1,3
++ x ≈ z.

Furthermore, x ≡S y, proving the claim.
2. Suppose that tk is not atomic. Then D must continue after S |=++ x ≈ tk, and the

next step must use Item 3 of Definition 6 using S |= tk ≈ t′ to derive S |=++ x ≈ t′,
where t′ is ϵ or a variable concatenation term in S that is not singular in S. But
then, note that we can start with S |=1,3

++ tk ≈ tk and apply the same step to get

S |=1,3
++ tk ≈ t′. If we continue using the rest of the steps in derivation D, we can

show that S |=1,3
++ tk ≈ z′, and therefore, S |=∗++ tk ≈ y. By saturation of C-Eq,

we then have x ≡S tk. But, since x ≡S tk, this means that x ≡S t′. So, we can
start with S |=1,3

++ x ≈ x and apply Item 3 of Definition 6 using S |= x ≈ t′ to get

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 31

S |=1,3
++ x ≈ t′. Using the same steps that appear in D after tk ≈ t′, we can show

S |=1,3
++ x ≈ z′, which proves the claim. □

Lemma 30 Let x be a sequence variable. Suppose S |=1,3
++ x ≈ t and S |=++ z ≈

(u++ x++ v)↓. Then S |=++ z ≈ (u++ t++ v)↓.

Proof By induction on the number of derivation steps in |=1,3
++ that yield S |=1,3

++ x ≈ t
(see Definition 6). If this number is 1, then it must be by using Item 1 of Definition 6,
so x = t and the result follows trivially. If this number is some n+1 > 1, then consider
the first n steps of the derivation. Let S |=1,3

++ x ≈ s be their result. By the induction
hypothesis, S |=++ z ≈ (u++ s++ v)↓. Now, consider the n+ 1 step of the derivation.
It must replace some variable y in s by some term r, which results in t. Performing the
same step on S |=++ z ≈ (u++ s++ v)↓ results in S |=++ z ≈ (u++ t++ v)↓. □

The next lemma shows how normal forms can be joined together.

Lemma 31 Let x1, . . . , xk be sequence variables. Suppose S |=++ x ≈ x1 ++ · · ·++ xk,
and for every i ∈ [1, k], S |=∗++ xi ≈ x1i ++ · · · ++ xni

i . Then S |=∗++ x ≈ x11 ++ x21 ++
· · ·++ xnk

k .

Proof We have S |=++ x ≈ x1 ++ · · · ++ xk. Also, for every i ∈ [1, k], since S |=∗++
xi ≈ x1i ++ · · · ++ xni

i , we also have, by Lemma 29, S |=1,3
++ xi ≈ y1i ++ · · · ++ yni

i

for some y1i , . . . , y
ni
i such that yji ≡S xji for every j ∈ [1, ni]. Considering the case

where i = 1, by Lemma 30 we get S |=++ x ≈ ((y11 ++ · · ·++ yn1
1) ++ x2 ++ · · ·++ xk)↓.

Continuing this way until i = k, and by the properties of ↓, we obtain S |=++ x ≈
(y11 ++ · · ·++ ynk

k)↓. Since y11 , . . . , y
nk

k are variables, we actually have S |=++ x ≈
y11 ++ · · ·++ ynk

k . And hence, S |=∗++ x ≈ x11 ++ · · ·++ xnk

k . □

Finally, we can show that M |= S by considering the various shapes of
literals in S.

Proof of Lemma 23 Let φ ∈ S. We prove thatM |= φ. By Assumption 1, φ is a flat
sequence constraint. We consider the possible shapes of φ.
1. φ is x ≈ y, for x, y of sort Int: by rule S-Prop, x ≈ y ∈ A. By Lemma 22,M |= φ.
2. φ is x ≈ y, for x, y of sort Elem: we have x ≡S y, so by Definition 12,M |= φ.
3. φ is x ≈ y where x, y have sort Seq: Definitions 13, 14, 17 and 18 are defined for

equivalence classes. Since x and y are in the same equivalence class,M |= φ.
4. φ is x ̸≈ y where x, y have sort Int: by saturation of S-Prop, x ≈ x, y ≈ y ∈ A.

Hence, x, y ∈ T (S)∩T (A). By saturation of S-A, either x ≈ y ∈ A or x ̸≈ y ∈ A. In
the first case, by saturation of A-Prop, we also have x ≈ y ∈ S, which is impossible
by saturation of S-Conf. Hence, we have x ̸≈ y ∈ A. By Lemma 22,M |= φ.

5. φ is x ̸≈ y where x, y have sort Elem: x is not equivalent to y w.r.t. ≡S, so
Definition 12 assigns them different values; thus,M(x) ̸=M(y) andM |= φ.

6. φ is x ̸≈ y where x, y have sort Seq:M |= φ by Lemma 20.
7. φ is x ≈ y + z, x ≈ −y, or x ≈ n for some n ∈ N: by saturation of S-Prop, φ ∈ A,

soM |= φ by Lemma 22.

Springer Nature 2021 LATEX template

32 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

8. φ is x ≈ ϵ: we know that S |= |ϵ| = 0 by saturation of L-Intro. Using Assumption 1,
we get S |= ℓx ≈ 0, and so by saturation of S-Prop we have A |= ℓx = 0. It follows
by Lemma 17 thatM(x) has length 0 and is thus the empty sequence.

9. φ is x ≈ unit(y): By Lemma 28, [x] is atomic. Also, [x] is a unit equivalence class.
Hence M([x]) was defined in Definition 14 and was set to a sequence of size 1
whose only element isM(y) by Lemma 12. Therefore,M |= φ.

10. φ is x ≈ |y|: we know that ℓy ≈ |y| ∈ S by Assumption 1, so ℓy ≈ x ∈ A by
saturation of S-Prop. From Definition 12, it follows thatM(ℓy) =M(x). But by
Lemma 17, we also haveM(|y|) =M(ℓy), soM(x) =M(|y|).

11. φ is x ≈ x1 ++ · · ·++ xn. Suppose that x1, . . . , xn have the unique (by Lemma 6)
normal forms S |=∗++ x1 ≈ u1 ++ · · · ++ um1 , S |=∗++ x2 ≈ um1+1 ++ · · · ++ um2 ,
. . ., S |=∗++ xn ≈ umn−1+1 ++ · · · ++ umn . By Item 2 of Definition 6, we know
S |=++ x ≈ x1 ++ · · ·++ xn, so by Lemma 31, we have S |=∗++ x ≈ u1 ++ · · ·++ umn .
By Lemma 25, thenM(x) =M(u1) ++ . . .++M(umn). Also, by Lemma 25, for
each i ∈ [1, n],M(xi) =M(umi−1+1)++ . . .++M(umi). So,M(x1++ . . .++xn) =
M(x1) ++ . . .++M(xn) =M(u1) ++ . . .++M(umn) =M(x).

12. φ is x ≈ nth(y, i): We consider two cases:
(a) M(i) is negative or is not smaller than the length of M(y): applying

Definition 19 withM(y) for a,M(i) for i and x for itself, we get thatM |= φ.
(b) M(i) is non-negative and smaller than the length ofM(y): By Lemma 19

with x for k, y for x and i for y, we have that theM(i)th element ofM(y)
isM(x). Therefore,M |= φ.

13. φ is x ≈ update(y, i, z): First, assume M(i) is negative or not smaller than the
length ofM(y). In this case, the interpretation inM of update(y, i, z) isM(y).
Hence, we prove thatM(x) =M(y). By saturation of Update-Bound, we have that
either A |= 0 ≤ i < ℓy or x ≈ y ∈ S. The first case is impossible by Definitions 11
and 12 and Lemma 17, and hence, the second case holds. We therefore have x ≡S y,
and since the definitions of sequence variables are done by equivalence classes (see
Definitions 14, 17 and 18), we haveM(x) =M(y).
Next, assume M(i) is non-negative and smaller than the length of M(y) (this
also implies that M(y) is not an empty sequence). By Lemma 13, we have
M(ℓx) =M(ℓy), and by Lemma 17,M(|x|) =M(ℓx) andM(|y|) =M(ℓy). We
consider the following cases:
(a) [x] and [y] are atomic in S: We show that for every j ∈ [0,M(ℓx)), the jth

element ofM(x) is the same as the jth element ofM(update(y, i, z)).
First, suppose j =M(i). We show that the jth element ofM(x) isM(z). By

saturation of Nth-Intro, we have nth(x, i) ∈ T (S). Since x ≈ update(y, i, z) ∈ S,
rule Nth-Update applies. Its first and last branches are impossible: the first by
our assumption onM(i) and Definitions 11 and 12 and Lemma 17, and the
last because it would require A |= i ̸= i, but we know A ⊭ ⊥ by saturation of
A-Conf. Hence, the middle branch applies, which means nth(x, i) ≈ z ∈ S. By
Lemma 18, then, we know that the jth element ofM(x) isM(z).

Suppose, on the other hand, that j ̸=M(i). This impliesM(ℓx) =M(ℓy) ≥
2, so [x] and [y] cannot be unit by Definition 14. Their values are thus set by
Definition 17. Since x ≈ update(y, i, z) ∈ S, by Definition 15, there is an edge
d between [x] and [y] withM(i) ∈ δ(d). It follows, because j ≠M(i), that
[x] ∼j [y] by Definition 16. But then [x] and [y] are in the same equivalence
class of ∼j , so in either case of Definition 17, their jth value is set to the
same value. Finally, because j ̸=M(i), the jth element ofM(update(y, i, z))
is (according to the semantics of update) the jth element ofM(y).

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 33

(b) Suppose S |=∗++ y ≈ w1 ++ · · ·++wn. By Lemma 27, we have x ≈ z1 ++ · · ·++
zn ∈ S for some atomic z1, . . . , zn,

∑k−1
j=1M(ℓwj) ≤ M(i) <

∑k
j=1M(ℓwj)

and zk = update(wk, αk, z) ∈ S for some k ∈ [1, n], where A |= αk ≈
i−∑k−1

j=1 ℓwj , and for m ∈ [1, n],m ̸= k, zm ≈ wm ∈ S. Since Definitions 14
and 17 assign equivalence classes, we also haveM(zm) =M(wm).

Since zk, wk are atomic, we have M(zk) = M(update(wk, αk, z)) by

Item 13(a) above. By Lemma 22, we haveM(αk) =M(i)−∑k−1
j=1M(ℓwj).

By Item 11, above,M(x) ≈M(z1) ++ . . .++M(zn). It follows thatM(x) =
M(w1) ++ . . .++M(update(wk, αk, z)) ++ . . .++M(wn). By Lemma 24, we
also haveM(y) =M(w1)++. . .++M(wn), soM(update(y, i, z)) =M(w1)++

. . .++M(update)(M(wk),M(i)−∑k−1
j=1M(ℓwj),M(z))++ . . .++M(wn). It

follows thatM(x) =M(update(y, i, z)).
14. φ is x ≈ extract(y, i, j): By saturation w.r.t. R-Extract, we have two options.

In the first, A |= i < 0 ∨ i ≥ ℓy ∨ j ≤ 0 and x ≈ ϵ ∈ S. By Item 8, above,M(x) is
the empty sequence. By Lemmas 17 and 22,M(i) < 0 orM(i) has at least the
length ofM(y) orM(j) ≤ 0. In each of these 3 cases, we get from the semantics
of extract in TSeq that M(extract) assigns the empty sequence w.r.t the inputs
M(y),M(i) andM(j). Hence in this case we getM |= φ.
In the second case, A |= 0 ≤ i < ℓy ∧ j > 0 ∧ ℓk ≈ i ∧ ℓx ≈ min(j, ℓy − i) ∧ ℓk′ ≈
ℓy−ℓx−i and y ≈ k++x++k′ ∈ S. We thus haveM(y) =M(k)++M(x)++M(k′)
by Item 11, above. Also,M |= A, by Lemma 22. According to the semantics of
extract in TSeq, sinceM(i),M(j) ≥ 0,M(i) is smaller than the length ofM(y),
the value assigned inM to extract(y, i, j) is the maximal sub-sequence ofM(y)
that starts at indexM(i) and has length at mostM(j). SinceM |= y ≈ k++x++k′

with the appropriate length constraints (by Lemma 17), we have that this sequence
value is exactlyM(x) and hence,M |= φ. □

6 Implementation

We implemented our procedure for sequences in the cvc5 SMT solver as an
extension of cvc5’s theory solver for strings [? ?]. We have generalized that
theory solver to reason about both strings and sequences. In this section, we
describe how the rules of the calculus are implemented and the overall strategy
for when they are applied.

Like most SMT solvers, cvc5 is based on the CDCL(T) architecture [?]
which combines several subsolvers, each specialized on a specific theory, with a
solver for propositional satisfiability (SAT). Following that architecture, cvc5
maintains an evolving set of formulas F. If F consists of quantifier-free formulas
over the theory TSeq, the case targeted by this work, the SAT solver searches
for a satisfying assignment for F at the Boolean level, represented as a set M of
literals whose atoms come from F. If none exists, the problem is unsatisfiable
at the propositional level and hence also TSeq-unsatisfiable. Otherwise, M is
partitioned into the arithmetic constraints A and the sequence constraints S
and checked for TSeq-satisfiability using the rules of the EXT calculus. Many of
those rules, including all those with multiple conclusions, are implemented by
adding new formulas to F according to the splitting-on-demand approach [?].

Springer Nature 2021 LATEX template

34 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

This causes the SAT solver to try to extend its assignment to those formulas,
which results in the addition of new literals to M (and thereby also to A and S).

In this setting, the rules of the two calculi are implemented as follows. The
effect of rule A-Conf is achieved by invoking cvc5’s theory solver for linear integer
arithmetic. Rule S-Conf is implemented by the congruence closure submodule.
Rules A-Prop and S-Prop are implemented by a standard mechanism for theory
combination, namely sharing equalities, as in the Nelson-Oppen method.

Note that each of these four rules may be applied eagerly, i.e., before
constructing a complete satisfying assignment M for F.

The remaining rules are implemented in the theory solver for sequences.
Each time M is checked for satisfiability, cvc5 follows a strategy to determine
which rule to apply next. If none of the rules apply and the configuration
is different from unsat, then it is saturated, and the solver returns sat. The
strategy for EXT prioritizes rules as follows. Only the first applicable rule is
applied, and then control goes back to the SAT solver.
1. (Add length constraints) For each sequence term in S, apply L-Intro for

non-variables and L-Valid for variables, if not already done.
2. (Mark congruent terms) For each set of update (resp. nth) terms that are

congruent to one another in the current configuration, mark all but one
term and ignore the marked terms in the subsequent steps.

3. (Reduce extract) For extract(y, i, j) in S, apply R-Extract if not already done.
4. (Construct normal forms) Apply U-Eq or C-Split. We choose how to apply the

latter rule based on constructing normal forms for equivalence classes in a
bottom-up fashion, where the equivalence classes of x and y are considered
before the equivalence class of x++y. We do this until we find an equivalence
class such that S |=∗++ z ≈ u1 and S |=∗++ z ≈ u2 for distinct u1, u2.

5. (Normal forms) Apply C-Eq to two variables if they have the same normal
form but are in different equivalence classes.

6. (Extensionality) For each disequality in S, apply Deq-Ext, if not already done.
7. (Distribute update and nth) For each term update(x, i, t) (resp. nth(x, j))

such that the normal form of x is a concatenation term, apply Update-Concat

and Update-Concat-Inv (resp. Nth-Concat) if not already done. Alternatively,
if the normal form of the equivalence class of x is a unit term, apply
Update-Unit (resp. Nth-Unit).

8. (Array reasoning on atomic sequences) Apply Nth-Intro and Update-Bound to
update terms. For each update term, find the matching nth terms and apply
Nth-Update. Apply Nth-Split to pairs of nth terms with equivalent indices.

9. (Integer arrangement) Apply S-A to two arithmetic terms occurring in S and
A.

Whenever a rule is applied, the strategy will restart from the beginning in the
next iteration. The strategy is designed to apply with higher priority steps
that are easy to compute and are likely to lead to conflicts. Some steps are
ordered based on dependencies from other steps. For instance, Steps 5 and 7
use normal forms, which are computed in Step 4. The strategy for the BASE

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 35

calculus is the same, except that Steps 7 and 8 are replaced by one that applies
R-Update and R-Nth to all update and nth terms in S.

We point out that the C-Split rule may cause non-termination of the proof
strategy described above in the presence of cyclic sequence constraints, for
instance, constraints where sequence variables appear on both sides of an
equality. The solver uses methods for detecting some of these cycles, to restrict
when C-Split is applied. In particular, when S |=∗++ x ≈ (u++ s++w)↓, S |=∗++
x ≈ (u++ t++ v)↓, and s occurs in v, then C-Split is not applied. Instead, other
heuristics are used, and in some cases the solver terminates with a response
of “unknown” (see e.g., [?] for details). In addition to the version shown here,
we also use another variation of the C-Split rule where the normal forms are
matched in reverse (starting from the last terms in the concatenations). The
implementation also uses fast entailment tests for length inequalities. These
tests may allow us to conclude which branch of C-Split, if any, is feasible, without
having to branch on cases explicitly.

Although not shown here, the calculus can also accommodate certain
extended sequence constraints, that is, constraints using a signature with
additional functions. For example, our implementation supports sequence
containment, replacement, and reverse. It also supports an extended variant of
the update operator, in which the third argument is a sequence that overrides the
sequence being updated starting from the index given in the second argument.
Constraints involving these functions are handled by reduction rules similar to
those in Figure 5. The implementation is further optimized by using context-
dependent simplifications, which may eagerly infer when certain sequence terms
can be simplified to constants based on the current set of assertions [?].

7 Evaluation

We evaluate the performance of our approach, as implemented in cvc5. The
evaluation investigates:

(i) whether the use of sequences is a viable option for reasoning about vectors
in programs,

(ii) how our approach compares with other sequence solvers, and
(iii) the performance impact of our array-style extended rules.
As a baseline, we use version 4.8.14 of the Z3 SMT solver, which supports a

theory of sequences without updates. For cvc5, we evaluate implementations of
both the basic calculus (denoted cvc5) and the extended array-based calculus
(denoted cvc5-a). The benchmarks, solver configurations, and logs from our
runs are available for download.7 We ran all experiments on a cluster equipped
with Intel Xeon E5-2620 v4 CPUs. We allocated one physical CPU core and
8GB of RAM for each solver-benchmark pair and used a time limit of 300
seconds. We use the following two sets of benchmarks:

Array Benchmarks (Arrays) The first set of benchmarks is derived from
the QF_AX benchmarks in SMT-LIB [?]. To generate these benchmarks, we

7http://dx.doi.org/10.5281/zenodo.6146565

http://dx.doi.org/10.5281/zenodo.6146565

Springer Nature 2021 LATEX template

36 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

w/ update

Set cvc5 cvc5-a z3

Arrays Slvd 242 390 170
(551) Time 162 303 4329

Diem Slvd 542 547 443
(558) Time 518 440 639

(a)

10−1 100 101 102

cvc5 [s]

10−1

100

101

102

cv
c5

-a
[s

]

sat

unsat

10x

100x

1000x

(b) Arrays

10−1 100 101 102

cvc5 [s]

10−1

100

101

102

cv
c5

-a
[s

]

sat

unsat

10x

100x

1000x

(c) Diem

Fig. 7: Figure 7a lists the number of solved benchmarks and total time on
commonly solved benchmarks. The scatter plots compare the base solver (cvc5)
and the extended solver (cvc5-a) on Arrays and Diem benchmarks.

(i) replace declarations of arrays with declarations of sequences of uninterpreted
sorts, (ii) change the sort of index terms to integers, and (iii) replace store with
update and select with nth. The resulting benchmarks are quantifier-free and do
not contain concatenations. Note that the original and the derived benchmarks
are not TSeq-equisatisfiable, because sequences take into account out-of-bounds
cases that do not occur in arrays. For the Z3 runs, we add to the benchmarks
a definition of update in terms of extraction and concatenation.

Smart Contract Verification (Diem) The second set of benchmarks consists
of verification conditions generated by running the Move Prover [?] on smart
contracts written for the Diem framework. By default, the encoding does not
use the sequence update operation, so Z3 can be used directly. To generate
benchmarks that use the update operator, we modified the Move Prover
encoding. In addition to using the sequence theory, the benchmarks make heavy
use of quantifiers and the SMT-LIB theory of datatypes.

Figure 7a summarizes the results in terms of number of solved benchmarks
and total time in seconds on commonly solved benchmarks. The configuration
that solves the largest number of benchmarks is the implementation of the
extended calculus (cvc5-a). This approach also successfully solves most of the
Diem benchmarks, which suggests that sequences are a promising option for
encoding vectors in programs. The results further show that the sequences solver
of cvc5 significantly outperforms Z3 on both the number of solved benchmarks
and the solving time on commonly solved benchmarks.

Figures 7b and 7c show scatter plots comparing cvc5 and cvc5-a on the
two benchmark sets. We can see a clear trend towards better performance when
using the extended solver. In particular, the table shows that in addition to
solving the most benchmarks, cvc5-a is also fastest on the commonly solved
instances from the Diem benchmark set.

For the Arrays set, we can see that some benchmarks are slower with
the extended solver. This is also reflected in the table, where cvc5-a is slower
on the commonly solved instances. This is not too surprising, as the extra

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 37

machinery of the extended solver can sometimes slow down easy problems. As
problems get harder, however, the benefit of the extended solver becomes clear.
For example, if we drop Z3 and consider just the commonly solved instances
between cvc5 and cvc5-a (of which there are 242), cvc5-a is about 2.47×
faster (426 vs 1053 seconds). Of course, further improving the performance of
cvc5-a is something we plan to explore in future work.

8 Conclusion

We introduced calculi for checking satisfiability in the theory of sequences, which
can be used to model the vector data type. We described our implementation
in cvc5 and provided an evaluation, showing that the proposed theory is
rich enough to naturally express verification conditions without introducing
quantifiers, and that our implementation is efficient. We believe that verification
tools can benefit by changing their encoding of verification conditions that
involve vectors to use the proposed theory and implementation.

We plan to propose the incorporation of this theory in the SMT-LIB
standard and contribute our benchmarks to SMT-LIB. As future research, we
plan to integrate other approaches for array solving into our basic solver. We
also plan to study the politeness [? ?] and decidability of various fragments of
the theory of sequences.

Acknowledgments

This work was funded in part by the Stanford Center for Blockchain Research,
NSF-BSF grant numbers 2110397 (NSF) and 2020704 (BSF), ISF grant number
619/21, and Meta Novi. Part of the work was done when the first author was
an intern at Meta Novi.

References

[1] Francesco Alberti, Silvio Ghilardi, and Elena Pagani. Cardinality con-
straints for arrays (decidability results and applications). Formal Methods
Syst. Des., 51(3):545–574, 2017.

[2] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina
Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds,
Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile and industrial-
strength SMT solver. In TACAS (1), volume 13243 of Lecture Notes in
Computer Science, pages 415–442. Springer, 2022.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Stan-
dard: Version 2.6. Technical report, Department of Computer Science,
The University of Iowa, 2017. Available at www.SMT-LIB.org.

Springer Nature 2021 LATEX template

38 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

[4] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Splitting on demand in SAT modulo theories. In M. Hermann and
A. Voronkov, editors, Proceedings of the 13th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR’06),
Phnom Penh, Cambodia, volume 4246 of Lecture Notes in Computer
Science, pages 512–526. Springer, 2006.

[5] Clark W. Barrett, Igor Shikanian, and Cesare Tinelli. An abstract decision
procedure for a theory of inductive data types. J. Satisf. Boolean Model.
Comput., 3(1-2):21–46, 2007.

[6] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Handbook of Model Checking, pages 305–343. Springer, 2018.

[7] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. Z3str3: A string solver
with theory-aware heuristics. In Daryl Stewart and Georg Weissenbacher,
editors, 2017 Formal Methods in Computer Aided Design, FMCAD 2017,
Vienna, Austria, October 2-6, 2017, pages 55–59. IEEE, 2017.

[8] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph
Wintersteiger. Programming Z3. https://theory.stanford.edu/∼nikolaj/
programmingz3.html#sec-sequences-and-strings, 2018.

[9] Nikolaj Bjørner, Vijay Ganesh, Raphaël Michel, and Margus Veanes. An
SMT-LIB format for sequences and regular expressions. SMT, 12:76–86,
2012.

[10] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility
analysis for string-manipulating programs. In Stefan Kowalewski and Anna
Philippou, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 15th International Conference, TACAS 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5505 of
Lecture Notes in Computer Science, pages 307–321. Springer, 2009.

[11] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan
Shankar. CDSAT for nondisjoint theories with shared predicates: Arrays
with abstract length. In David Déharbe and Antti E. J. Hyvärinen, edi-
tors, Proceedings of the 20th Internal Workshop on Satisfiability Modulo
Theories co-located with the 11th International Joint Conference on Auto-
mated Reasoning (IJCAR 2022) part of the 8th Federated Logic Conference
(FLoC 2022), Haifa, Israel, August 11-12, 2022, volume 3185 of CEUR
Workshop Proceedings, pages 18–37. CEUR-WS.org, 2022.

[12] Jürgen Christ and Jochen Hoenicke. Weakly equivalent arrays. In Fro-
Cos, volume 9322 of Lecture Notes in Computer Science, pages 119–134.
Springer, 2015.

https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-sequences-and-strings
https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-sequences-and-strings

Springer Nature 2021 LATEX template

Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences 39

[13] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In TACAS, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008.

[14] Nachum Dershowitz and Zohar Manna. Proving termination with multiset
orderings. Commun. ACM, 22(8):465–476, 1979.

[15] Neta Elad, Sophie Rain, Neil Immerman, Laura Kovács, and Mooly Sagiv.
Summing up smart transitions. In CAV (1), volume 12759 of Lecture
Notes in Computer Science, pages 317–340. Springer, 2021.

[16] Herbert B. Enderton. A mathematical introduction to logic. Academic
Press, 2 edition, 2001.

[17] Stephan Falke, Florian Merz, and Carsten Sinz. Extending the theory of
arrays: memset, memcpy, and beyond. In VSTTE, volume 8164 of Lecture
Notes in Computer Science, pages 108–128. Springer, 2013.

[18] Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin C. Rinard.
Word equations with length constraints: What’s decidable? In Haifa
Verification Conference, volume 7857 of Lecture Notes in Computer Science,
pages 209–226. Springer, 2012.

[19] Silvio Ghilardi, Alessandro Gianola, and Deepak Kapur. Interpolation
and amalgamation for arrays with maxdiff. In Stefan Kiefer and Chris-
tine Tasson, editors, Foundations of Software Science and Computation
Structures - 24th International Conference, FOSSACS 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, volume 12650 of Lecture Notes in Computer Science, pages
268–288. Springer, 2021.

[20] Dejan Jovanovic and Clark W. Barrett. Polite theories revisited. In Chris-
tian G. Fermüller and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning - 17th International Conference,
LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings, vol-
ume 6397 of Lecture Notes in Computer Science, pages 402–416. Springer,
2010.

[21] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett, and
Morgan Deters. A DPLL(T) theory solver for a theory of strings and regular
expressions. In Armin Biere and Roderick Bloem, editors, Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings, volume 8559 of Lecture Notes in Computer Science,
pages 646–662. Springer, 2014.

Springer Nature 2021 LATEX template

40 Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences

[22] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[23] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT Modulo Theories: from an abstract Davis-Putnam-Logemann-
Loveland Procedure to DPLL(T). Journal of the ACM, 53(6):937–977,
November 2006.

[24] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combin-
ing data structures with nonstably infinite theories using many-sorted
logic. In Bernhard Gramlich, editor, Frontiers of Combining Systems, 5th
International Workshop, FroCoS 2005, Vienna, Austria, September 19-21,
2005, Proceedings, volume 3717 of Lecture Notes in Computer Science,
pages 48–64. Springer, 2005. Extended technical report is available at
https://hal.inria.fr/inria-00070335/.

[25] Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli.
Reductions for strings and regular expressions revisited. In 2020 For-
mal Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel,
September 21-24, 2020, pages 225–235. IEEE, 2020.

[26] Andrew Reynolds, Maverick Woo, Clark W. Barrett, David Brumley,
Tianyi Liang, and Cesare Tinelli. Scaling up DPLL(T) string solvers using
context-dependent simplification. In Rupak Majumdar and Viktor Kuncak,
editors, Computer Aided Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, volume
10427 of Lecture Notes in Computer Science, pages 453–474. Springer,
2017.

[27] Ying Sheng, Andres Nötzli, Andrew Reynolds, Yoni Zohar, David L. Dill,
Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Clark W. Barrett, and
Cesare Tinelli. Reasoning about vectors using an SMT theory of sequences.
In IJCAR, volume 13385 of Lecture Notes in Computer Science, pages
125–143. Springer, 2022.

[28] Jingyi Emma Zhong, Kevin Cheang, Shaz Qadeer, Wolfgang Grieskamp,
Sam Blackshear, Junkil Park, Yoni Zohar, Clark Barrett, and David L.
Dill. The Move prover. In Shuvendu K. Lahiri and Chao Wang, editors,
Proceedings of the 32nd International Conference on Computer Aided
Verification (CAV ’20), volume 12224 of Lecture Notes in Computer Science,
pages 137–150. Springer International Publishing, July 2020.

https://hal.inria.fr/inria-00070335/

	Introduction
	Preliminaries
	A Theory of Sequences
	Semantics
	Vectors as Sequences

	Calculi
	Basic Definitions
	Core Calculus
	Extended Calculus

	Correctness
	Proof of thm:correctness, item:soundness
	Proof of thm:correctness, item:completeness
	Model Construction
	Well-definedness
	Satisfaction

	Implementation
	Evaluation
	Conclusion

