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Abstract Polite theory combination is a method for obtaining a solver for a
combination of two (or more) theories using the solvers of each individual theory
as black boxes. Unlike the earlier Nelson-Oppen method, which is usable only
when both theories are stably infinite, only one of the theories needs to be strongly
polite in order to use the polite combination method. In its original presentation,
politeness was required from one of the theories rather than strong politeness,
which was later proven to be insufficient. The first contribution of this paper is a
proof that indeed these two notions are different, obtained by presenting a polite
theory that is not strongly polite. We also study several variants of this question.

The cost of the generality afforded by the polite combination method, com-
pared to the Nelson-Oppen method, is a larger space of arrangements to consider,
involving variables that are not necessarily shared between the purified parts of the
input formula. The second contribution of this paper is a hybrid method (building
on both polite and Nelson-Oppen combination), which aims to reduce the number
of considered variables when a theory is stably infinite with respect to some of
its sorts but not all of them. The time required to reason about arrangements is
exponential in the worst case, so reducing the number of variables considered has
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the potential to improve performance significantly. We show preliminary evidence
for this by demonstrating significant speed-up on a smart contract verification
benchmark.1

1 Introduction

In 1979, Nelson and Oppen [18] proposed a general framework for combining the-
ories with disjoint signatures. Using this framework, it is possible, under certain
conditions, to obtain a decision procedure for a combined theory (e.g., the theory
of arrays of integers) using decision procedures for each theory in the combina-
tion as black boxes. In this framework, the problem of checking the satisfiability
of a quantifier-free formula in the combined theory is reduced to that of checking
the satisfiability of a conjunction of pure formulas, one for each component theory.
Each pure formula is then sent to a a theory solver, a satisfiability solver specialized
on the corresponding theory, along with a guessed arrangement (a set of equali-
ties and disequalities that capture an equivalence relation) of the variables shared
among the pure formulas. The main requirement needed for the completeness of
this technique [17] is that each theory involved be stably infinite. While many im-
portant theories are stably infinite, some are not, including the widely-used theory
of fixed-length bit-vectors. In order to be able to combine a larger class of theories,
the polite combination method was introduced by Ranise et al. [19], based on a
previous method by Tinelli and Zarba [24], and later refined by Jovanovic and
Barrett [13]. In polite combination, one theory must be polite, a stronger require-
ment than stable-infiniteness, but there is no requirement on the other theory: in
particular, it does not need to be stably infinite. Unlike the Nelson-Oppen method,
however, polite combination requires guessing arrangements over all variables of
certain sorts, not just the shared ones. At a high level, polite theories have two
properties: smoothness and finite witnessability (see Section 2). The polite combi-
nation theorem in [19] contained an error, which was identified in [13]. A fix was
also proposed in [13], which relies on stronger requirements for finite witnessabil-
ity. Following Casal and Rasga [9], we call this strengthened version strong finite
witnessability. A theory that is both smooth and strongly finitely witnessable is
called strongly polite. Shifting from polite theories to strongly polite theories al-
lowed [13] to fix the proof of correcntess of the polite combination method. It was
unclear, however, whether the notions of polite and strongly polite theories were
actually different.

This paper makes two contributions. First, we provide an affirmative answer
to the question of whether politeness and strong politeness are different notions,
by presenting an example of a theory that is polite but not strongly polite. The
given theory is over an empty signature and has two sorts, and was originally
studied in [9] in the context of shiny theories (the difference between polite and
strongly polite theories was not discussed in that paper). Here we state and prove
the separation of politeness and strong politeness, without using shiny theories.
Proving that a theory is strongly polite is harder than proving that it is just polite.
This result shows that the additional effort is sometimes needed to be able to use

1 A preliminary version of this work was published in the proceedings of CADE-28 [21]. The
current article incorporates some updates to the text, adds detailed proofs to all claims, and is
accompanied by an artifact that can be used to reproduce the case study reported in Section 5.
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the combination theorem from [13]. Our separation result is further refined, as
we also show that for empty signatures, at least two sorts are needed to present
a polite theory that is not strongly polite. Further, we show that for the empty
signature with only one sort, there is a finitely witnessable theory that is not
strongly finite witnessable. Such a theory cannot be smooth.

Second, we show that the number of variables that need to be considered
in arrangements can be reduced in the presence of more information about the
combined theories. In particular, we study the case where one theory is strongly
polite w.r.t. a set S of sorts and the other is stably infinite w.r.t. a subset S′ ⊆ S
of the sorts. For such cases, we show that it is possible to perform Nelson-Oppen
combination for S′ and polite combination for S \S′. This means that for the sorts
in S′, only shared variables need to be considered for the guessed arrangement,
which can considerably reduce its size. We also show that the set of shared variables
can be reduced for a couple of other variations of conditions on the theories. Finally,
we present a preliminary case study using a challenge benchmark from a smart
contract verification application. We show that the reduction of shared variables
is substantial and significantly improves the solving time. Verification of smart
contracts using SMT (and the analyzed benchmark in particular) is the main
motivation behind the second contribution of this paper.

Related Work: Polite combination is part of a more general effort to replace
the stable infiniteness symmetric condition in the Nelson-Oppen approach with
a weaker condition. Other examples of this effort include the notions of shiny [24],
parametric [15], and gentle [12] theories. Gentle, shiny, and polite theories can
be combined à la Nelson-Oppen with any arbitrary theory. Shiny theories were
introduced by Tinelli and Zarba [24] as a class of mono-sorted theories. Based
on the same principles as shininess, politeness is particularly well-suited to deal
with theories expressed in many-sorted logic. Polite theories were introduced by
Ranise et al. [19] to provide a more effective combination approach compared to
parametric and shiny theories, the former requiring solvers to reason about cardi-
nalities and the latter relying on expensive computations of minimal cardinalities
of models. Shiny theories were extended to many-sorted signatures in [19], where
there is a sufficient condition for their equivalence with polite theories. For the
mono-sorted case, a sufficient condition for the equivalence of shiny theories and
strongly polite theories was given by Casal and Rasga [8]. In later work [9], the
same authors proposed a generalization of shiny theories to many-sorted signa-
tures different from the one in [19], and proved that it is equivalent to strongly
polite theories with a decidable quantifier-free fragment. We discuss the connec-
tion between these results and the present paper in Remarks 2 and 3. The strong
politeness of the theory of algebraic datatypes [6] was proven by Sheng et al. [20]
who also introduced additive witnesses, which provide a sufficient condition for a
polite theory to be also strongly polite. In this paper we present a theory that is
polite but not strongly polite. In accordance with [20], the witness that we provide
for this theory is not additive.

The paper is organized as follows. Section 2 introduces the necessary notions
from first-order logic and polite theories, as well as examples that will be used
throughout the paper. Section 3 discusses the difference between politeness and
strong politeness and shows they are not equivalent. Section 4 gives the improve-
ments for the combination process under certain conditions, and Section 5 demon-
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strates the effectiveness of these improvements for a challenge benchmark. We
conclude with Section 6

2 Many-sorted Theories and Theory Combination

We review in this section the relevant notions from many-sorted first-order logic
and theory combination. This section also includes several examples that will be
used throughout the article.

2.1 Signatures and Structures

We begin with a review of many-sorted first-order logic with equality (see [11,22]
for more details). A signature Σ consists of a set SΣ (of sorts), a set FΣ of function
symbols, and a set PΣ of predicate symbols. We assume that SΣ , FΣ and PΣ are
countable. Function symbols have arities of the form σ1 × · · · × σn → σ, and
predicate symbols have arities of the form σ1 × · · · × σn, with σ1, . . . , σn, σ ∈ SΣ .
For each sort σ ∈ SΣ , PΣ includes an equality symbol =σ of arity σ×σ. We denote
it by = when σ is clear from context. When =σ are the only symbols in Σ, we
say that Σ is empty. If two signatures share no symbols except =σ we call them
disjoint (they may share sorts). We assume an underlying countably infinite set of
variables for each sort. For each signature Σ, well-sorted (Σ-)terms, (Σ-)formulas,
and (Σ-)literals are defined in the usual way. We include the universally valid
formula true in the set of (Σ-)formulas.

For a Σ-formula ϕ and a sort σ, we denote the set of free variables in ϕ of sort
σ by varsσ(ϕ). This notation naturally extends to varsS(ϕ) where S is a set of
sorts. We denote by vars (ϕ) the set of all free variables in ϕ. We denote by QF (Σ)
the set of quantifier-free Σ-formulas.

A Σ-structure A is a many-sorted structure that provides semantics for the
symbols in Σ (but not for variables). It consists of a non-empty domain σA for each
sort σ ∈ SΣ , an interpretation fA for every f ∈ FΣ , as well as an interpretation
PA for every P ∈ PΣ . We further require that =σ be interpreted as the identity
relation over σA for every σ ∈ SΣ . A Σ-interpretation I is an extension of a Σ-
structure with an interpretation for some set V of variables. We will not specify the
set V when it is clear from the context or not important. Interpretations extend to
Σ-terms in the usual way. For any Σ-term t, tI denotes the interpretation of t in
I. When α is a set of Σ-terms, αI =

{
tI | t ∈ α

}
. Given a Σ-interpretation I and

a sub-signature Σ′ of Σ, the reduct of I to Σ′ is obtained from I by restricting it
to the sorts and symbols of Σ′. Satisfaction is defined as usual: I |= ϕ denotes that
I satisfies ϕ, and given any set Θ of formulas, I |= Θ if I |= ϕ for every ϕ ∈ Θ.

2.2 Theories

A Σ-theory T is the class of all Σ-structures that satisfy some set Ax of Σ-
sentences, i.e., Σ-formulas with no free variables. For each such set Ax, we say that
T is axiomatized by Ax. A T -interpretation is a Σ-interpretation whose underlying
structure is in T . A Σ-formula ϕ is T -satisfiable ifA |= ϕ for some T -interpretation
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A. A set Θ of Σ-formulas is T -satisfiable if A |= Θ for some T -interpretation
A. Two formulas ϕ and ψ are T -equivalent if they are satisfied by the same T -
interpretations.

Example 1 Let ΣList be a signature of finite lists containing the sorts elem1, elem2,
and list, as well as the function symbols cons of arity elem1 × elem2 × list → list,
car1 of arity list → elem1, car2 of arity list → elem2, cdr of arity list → list, and
nil of arity list. The ΣList-theory TList corresponds to an SMT-LIB 2 theory of
algebraic datatypes [3,6], where elem1 and elem2 are interpreted as some sets (of
elements), and list is interpreted as finite lists of pairs of elements, one from elem1

and the other from elem2; cons denotes a list constructor that takes two elements
and a list, and inserts the pair of those two elements at the head of the list; nil
denotes the empty list. The pair (car1(l), car2(l)) denotes the first entry in l, and
cdr(l) denotes the list obtained from l by removing its first entry.

Example 2 The signature ΣInt includes a single sort int; all numerals 0, 1, . . ., all of
sort int; the function symbols +, − and · of arity int× int → int; and the predicate
symbols < and ≤ of arity int × int. The ΣInt-theory TInt corresponds to integer
arithmetic in SMT-LIB 2, and the interpretation of the symbols is the same as in
the standard structure of the integers.

Example 3 The signature ΣBV4 includes a single sort BV4 and various function
and predicate symbols for reasoning about bit-vectors of length 4 (such as & for
bit-wise and, constants of the form 0110, etc.). The ΣBV4-theory TBV4 corresponds
to SMT-LIB 2 bit-vectors of size 4, with the expected semantics of constants and
operators.

Let Σ1, Σ2 be signatures, T1 a Σ1-theory, and T2 a Σ2-theory. The combination
of T1 and T2, denoted T1⊕T2, consists of all Σ1 ∪Σ2-structures A, such that AΣ1

is in T1 and AΣ2 is in T2, where AΣi is the reduct of A to Σi for i ∈ {1, 2}.

Example 4 Let TIntBV4 be TInt ⊕ TBV4. It is the combined theory of integers and
bit-vectors from Examples 2 and 3. It has all the sorts and operators from both
theories. If we rename the sorts elem1 and elem2 of ΣList to int and BV4, respec-
tively, we can obtain a theory TListIntBV4 defined as TIntBV4 ⊕ TList. This is the
theory of lists of pairs, where each pair consists of an integer and a bit-vector of
size 4. Note that the theories TInt, TBV4, and TList are pairwise disjoint.

The following definitions and theorems will be useful in the sequel. The first is
a generalization of the Löwenheim-Skolem theorem for many-sorted languages.

Theorem 1 (Theorem 9 of [22]) Let Σ be a signature, and Θ a set of Σ-
formulas that is satisfiable. Then there exists an interpretation A that satisfies Θ,
in which σA is countable whenever it is infinite.2

Next, we formally define arrangements.

2 In [22] this was proven more generally, for order-sorted logics which extend many-sorted
logics with subsorts.
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Definition 1 (Arrangement) Let S be a set of sorts, V a finite set of variables
whose sorts are in S, and {Vσ | σ ∈ S} a partition of V such that Vσ is the set of
variables of sort σ in V . A formula δ is an arrangement of V if

δ =
∧
σ∈S

(
∧

(x,y)∈Eσ

(x = y) ∧
∧

x,y∈Vσ,(x,y)/∈Eσ

(x ̸= y)) ,

where Eσ is some equivalence relation over Vσ for each σ ∈ S.

For any set S, let |S| denote the cardinality of S. The following theorem
from [13] is a variant of a theorem from [23] and is often used to help prove
theory combination theorems.

Theorem 2 (Theorem 2.5 of [13]) For i = 1, 2, let Σi be disjoint signatures,
Si = SΣi

, Ti be a Σi-theory, and φi be a conjunction of Σi-literals. Let S =
S1 ∩ S2 and V = vars (φ1) ∩ vars (φ2). If there exist a T1-interpretation A, a T2

interpretation B, and an arrangement δV of V such that:

1. A |= φ1 ∧ δV ;
2. B |= φ2 ∧ δV ; and
3.

∣∣σA∣∣ = ∣∣σB∣∣ for every σ ∈ S,

then φ1 ∧ φ2 is T1 ⊕ T2-satisfiable.

2.3 Polite Theories

We now give the background definitions necessary for both Nelson-Oppen and
polite combination. In what follows, Σ is an arbitrary (many-sorted) signature,
S ⊆ SΣ is a set of sorts, and T is a Σ-theory. We start with stable infiniteness
and smoothness.

Definition 2 (Stably Infinite) T is stably infinite with respect to S if every
quantifier-free Σ-formula that is T -satisfiable is also satisfied by a T -interpretation
A in which σA is infinite for every σ ∈ S.

Definition 3 (Smooth) T is smooth w.r.t. S if for every quantifier-free formula
ϕ, T -interpretation A that satisfies ϕ, and function κ from S to the class of car-
dinals such that κ(σ) ≥

∣∣σA∣∣ for every σ ∈ S, there exists a T -interpretation A′

that satisfies ϕ with
∣∣∣σA′

∣∣∣ = κ(σ) for every σ ∈ S.

We identify singleton sets with their single elements when there is no ambiguity
(e.g., when saying that a theory is smooth w.r.t. a sort σ).

It is easy to show that every smooth theory is also stably infinite. The most not-
icable difference between the two notions, however, concerns finite and uncountable
cardinalities. For example, if we require gaps between finite cardinalities of formu-
las (e.g., by requiring only even cardinalities), then the resulting theory cannot be
smooth (see, e.g., Section 3.4).

We next define politeness and related concepts, following the presentation
in [20].



Combining Stable Infiniteness and (Strong) Politeness 7

Definition 4 (Finite Witness) Let ϕ be a quantifier-free Σ-formula. A Σ-
interpretation A finitely witnesses ϕ for T w.r.t. S (or, is a finite witness of ϕ for
T w.r.t. S), if A |= ϕ and σA = varsσ(ϕ)

A for every σ ∈ S. We say that ϕ is
finitely witnessed for T w.r.t. S if it is either T -unsatisfiable or has a finite witness
for T w.r.t. S. We say that ϕ is strongly finitely witnessed for T w.r.t. S if for
every3 finite set V of variables whose sorts are in S, and every arrangement δV of
V , we have that ϕ ∧ δV is finitely witnessed for T w.r.t. S.

A function wit : QF (Σ) → QF (Σ) is a (strong) witness for T w.r.t. S if for
every ϕ ∈ QF (Σ) we have that:

1. ϕ and ∃−→w . wit(ϕ) are T -equivalent for −→w = vars (wit(ϕ)) \ vars (ϕ); and
2. wit(ϕ) is (strongly) finitely witnessed for T w.r.t. S.

T is (strongly) finitely witnessable w.r.t. S if there exists a computable (strong)
witness for T w.r.t. S.

The main difference between finite witnessability and strong finite witness-
ability is that the latter notion takes into account arbitrary arrangements over
arbitrary (yet finite) sets of variables. This difference is highlighted, for example,
in Section 3.1.

Definition 5 (Polite) T is (strongly) polite w.r.t. S if it is smooth and (strongly)
finitely witnessable w.r.t. S.

2.4 Theories vs. Classes of Structures

In papers about theory combination, theories are often defined in terms of some
set Ax of sentences (axioms) (see, e.g., [9,22,13]). Specifically, a theory is defined
as the set of all sentences entailed by Ax or, interchangeably, as the class of all
structures that satisfy Ax. The latter is the approach we take in this paper. The
main reason for this is that the combination theorems we prove and cite here rely
on some forms of the Löwenheim-Skolem theorem, which do not hold for arbitrary
classes of structures, but do hold when defining theories this way. On the other
hand, theories in the SMT-LIB 2 standard, as well as in many SMT papers about
individual theories, are defined more generally as classes of structures without
reference to a set of axioms.

We point out that this discrepancy is not substantial since the two notions of a
theory as a class of structures are easily interreducible: every theory T in the sec-
ond, more general sense induces a theory in the first sense that is equivalent to T
for all of our intents and purposes since it entails exactly the same (first-order) sen-
tences as T . To be more precise, the combination theorems that we prove and cite
only hold when considering theories as classes of structures satisfying a given set
of axioms, a restriction also present in other papers on theory combination. They
can be used, however, when designing solvers for satisfiability of formulas, because
the transformation between the two notions of a theory preserves entailment and
hence satisfiability. For sake of completeness, we prove that indeed satisfiability is
preserved.

3 For the results proven below, this full generality regarding V is not needed (e.g., it is
sufficient to consider only variables in ϕ) . However, for the validity of other results in polite
theory combination, an arbitrary (finite) V is required. For more details, see Footnote 4 of [14].
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Statement [13] This Paper
f.w. formulas ̸= s.f.w. formulas Example 3 of [13] Example 5

witness ̸= strong witness Example 3 of [13] Example 6
polite ̸= strongly polite No Answer Section 3.2

1-sort, empty sig: polite = strongly polite No Answer Section 3.3
f.w. theories ̸= s.f.w. theories No Answer Section 3.4

Fig. 1 A summary of the results regarding politeness and strong politeness. The abbre-
viation (s.f.w) f.w. stands for (strong) finite witnessability.

Lemma 1 Let Σ be a signature, C a class of Σ-structures, Ax the set of Σ-
sentences satisfied by all structures of C, and TC the class of all Σ-structures that
satisfy all sentences of Ax. Then, for every Σ-formula φ, φ is TC-satisfiable iff φ
is satisfied by some Σ-interpretation whose underlying structure is in C.

Proof Every interpretation whose underlying structure is in C is, by construction
of TC, a TC-interpretation, and so the right-to-left direction trivially holds. Now,
suppose φ is not satisfied by any Σ-interpretation whose underlying structure is
in C. Then its existential closure ∃x.φ is not satisfied by any structure of C, and
hence ¬∃x.φ ∈ Ax. Ad absurdum, suppose that φ is TC-satisfiable. Then there is
a TC-interpretation A such that A |= φ. In particular, A |= ∃x.φ. But since A is a
TC-interpretation, we must also have A |= ¬∃x.φ, which is a contradiction.

⊓⊔

3 Politeness and Strong Politeness

In this section, we study the difference between politeness and strong politeness.
Since the introduction of strong politeness in [13], it has been unclear whether it
is strictly stronger than politeness, that is, whether there exists a theory that is
polite but not strongly polite. We present an example of such a theory, answering
the open question affirmatively. This result is followed by further analysis of no-
tions related to politeness. The section is organized as follows. In Section 3.1 we
reformulate an example given in [13], showing that there are witnesses that are
not strong witnesses. We then present a polite theory that is not strongly polite
in Section 3.2. The theory is over an empty signature (i.e., containing no symbols
except for equality) with two sorts. We show in Section 3.3 that politeness and
strong politeness are equivalent for empty signatures with a single sort. Finally,
we show in Section 3.4 that this equivalence does not hold for finite witnessability
alone. Figure 1 summarizes the results of this section and compares them to what
was already known in [13].

3.1 Witnesses vs. Strong Witnesses

In [13], an example was given for a witness that is not strong. We reformulate
this example in terms of the notions that are defined in the current paper, that is,
witnessed formulas are not the same as strongly witnessed formulas (Example 5),
and witnesses are not the same as strong witnesses (Example 6).
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distinct(x1, . . . , xn) :=
∧

1≤i<j≤n

xi ̸= xj

ψσ
≥n := ∃x1, . . . , xn.distinct(x1, . . . , xn)

ψσ
≤n := ∃x1, . . . , xn.∀y.

n∨
i=1

y = xi

ψσ
=n := ψσ

≥n ∧ ψσ
≤n

Fig. 2 Cardinality formulas for sort σ. All variables are assumed to have sort σ.

Example 5 Let Σ0 be an empty signature with a single sort σ, and let T0 be a
Σ0-theory consisting of all Σ0-structures with at least two elements. Let ϕ be the
formula x = x ∧w = w where both x and w are variables. This formula is finitely
witnessed for T0 w.r.t. σ, but not strongly. Indeed, for δV ≡ (x = w), ϕ∧ δV is not
finitely witnessed for T0 w.r.t. σ: a finite witness would be required to have only
a single element and would therefore not be a T0-interpretation.

The next example shows that witnesses and strong witnesses are not equivalent.

Example 6 Take Σ0, σ, and T0 as in Example 5, and for every ϕ, define wit(ϕ) to
be (ϕ ∧ w1 = w1 ∧ w2 = w2) for some variables w1, w2 /∈ varsσ(ϕ). Function
wit is a witness for T0 w.r.t. σ. However, it is not a strong witness for T w.r.t. σ.

Although the theory T0 in the above examples does serve to distinguish formu-
las and witnesses that are and are not strong, it cannot be used to do the same for
theories themselves. This is because T0 is, in fact, strongly polite, via a different
witness function.

Example 7 The function wit ′(ϕ) = (ϕ ∧ w1 ̸= w2), for some w1, w2 /∈ varsσ(ϕ), is
a strong witness for T0 w.r.t. S, as proved in [13].

Remark 1 Notice that Example 6 is quite typical for proofs of finite witnessability.
Indeed, it is often enough to just add enough variables, with trivial assertions
regarding the new variables. With strong finite witnessability, things are usually
more complicated. For example, the witness of Example 7 introduces a disequality,
thus incorporating some of the properties of the theory (namely, having at least
two elements in the domain) into the witness. In some cases, more involved strong
witnesses are needed (see e.g., [20]).

A natural question, then, is whether there is a theory that can separate the two
notions of politeness. The following subsection provides an affirmative answer.

3.2 A Polite Theory that is not Strongly Polite

Let Σ2 be a signature with just two sorts σ1 and σ2 and no function or predicate
symbols (except =). Let T2,3 be the Σ2-theory from [9], consisting of all Σ2-
structures A such that either

∣∣σA
1

∣∣ = 2 ∧
∣∣σA

2

∣∣ ≥ ℵ0 or
∣∣σA

1

∣∣ ≥ 3 ∧
∣∣σA

2

∣∣ ≥ 3 [9],
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where ℵ0 is the cardinality of the set of natural numbers.4 Notice that T2,3 can be
axiomatized using the following set of axioms, given the definitions in Figure 2:{

ψσ1

≥2, ψ
σ2

≥3

}
∪ {ψσ1

=2 → ¬ψσ2
=n | n ≥ 3}

We show that T2,3 is polite, but is not strongly polite. Its smoothness is shown
by extending any given structure with new elements as needed.

Lemma 2 T2,3 is smooth w.r.t. {σ1, σ2}.

Proof Let ϕ be a quantifier-free Σ2-formula, A a T2,3-interpretation that satisfies
ϕ, and κ a function from {σ1, σ2} to the class of cardinals such that κ(σ1) ≥

∣∣σA
1

∣∣
and κ(σ2) ≥

∣∣σA
2

∣∣. We construct a Σ2-interpretation A′ as follows. For i ∈ {1, 2},
we let σA′

i := σA
i ⊎ B for some set B of cardinality κ(σi) if the latter is infinite,

or of cardinality κ(σi) − |σi|A otherwise. Notice that this is well defined because

κ(σi) ≥
∣∣σA

i

∣∣. As for variables, xA
′
:= xA for each variable x in vars (ϕ). This is

well defined because the domains of σ1 and σ2 were only possibly extended, not
reduced. First, we prove that A′ is a T2,3-interpretation. If κ(σ1) = 2, then since
κ(σ1) ≥

∣∣σA
1

∣∣, we must have that
∣∣σA

1

∣∣ = 2, which means that |σ2|A is infinite,
which in turn means that κ(σ2) is infinite as well. Hence in this case we have∣∣∣σA′

1

∣∣∣ = κ(σ1) = 2 and
∣∣∣σA′

2

∣∣∣ = κ(σ2) ≥ ℵ0. Otherwise, κ(σ1) ≥ 3, and hence∣∣∣σA′

1

∣∣∣ = κ(σ1) ≥ 3 and also
∣∣∣σA′

2

∣∣∣ = κ(σ2) ≥
∣∣σA

2

∣∣ ≥ 3. Clearly, A′ satisfies ϕ

as the interpretations of variables did not change and ϕ is quantifier-free. Finally,∣∣∣σA′

1

∣∣∣ = κ(σ1) and
∣∣∣σA′

2

∣∣∣ = κ(σ2) by construction.
⊓⊔

We now show that T2,3 is finitely witnessable, but there is no strong witness
for it.

Lemma 3 T2,3 is finitely witnessable w.r.t. {σ1, σ2}.

Proof Define a function wit by wit(ϕ) := ϕ ∧ x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ y1 =
y1∧y2 = y2∧y3 = y3 for fresh variables x1, x2 and x3 of sort σ1 and y1, y2 and y3
of sort σ2. We prove that wit is a witness for T2,3 w.r.t. {σ1, σ2}. The formulas ϕ
and ∃x1, x2, x3, y1, y2, y3.wit(ϕ) are trivially logically equivalent and in particular
T2,3-equivalent. We prove that wit(ϕ) is finitely witnessed for T2,3 w.r.t. {σ1, σ2}.
Suppose that wit(ϕ) is T2,3-satisfiable and let A be a satisfying T2,3-interpretation.
Define a Σ2-interpretation B simply by σB

1 = varsσ1(ϕ)
A ⊎ {a1, a2, a3} and σB

2 =
varsσ2(ϕ)

A⊎{b1, b2, b3} for a1, a2, a3 /∈ σA
1 and b1, b2, b3 /∈ σA

2 . The interpretations
of variables from ϕ are the same as in A. As for the fresh variables xBi := ai and
yBi := bi for i ∈ {1, 2, 3}. We prove that B finitely witnesses wit(ϕ) for T2,3

w.r.t. {σ1, σ2}. First, B is a T2,3-interpretation, as by construction
∣∣σB

1

∣∣, ∣∣σB
2

∣∣ ≥ 3.
Second, B |= ϕ as the interpretations of variables from ϕ did not change, and
trivially satisfies the new identities, and so B |= wit(ϕ). Third, by construction
σB
1 = varsσ1(ϕ)

A ⊎ {a1, a2, a3} = varsσ1(ϕ)
B ⊎

{
xB1 , x

B
2 , x

B
3

}
= varsσ1(wit(ϕ))

B,
and similarly for σ2.

⊓⊔
4 In [9], the first condition is written

∣∣σA
1

∣∣ ≥ 2. We use equality as this is equivalent and we
believe it makes things clearer.
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Lemma 4 T2,3 is not strongly finitely witnessable w.r.t. {σ1, σ2}.

Proof Let wit be a witness for T2,3 w.r.t. {σ1, σ2}. We show that it is not strong.
In particular, we show that wit(v = v) is not strongly finitely witnessed for T2,3

w.r.t. {σ1, σ2}. Consider a T2,3-interpretation A with
∣∣σA

1

∣∣ = 2 and
∣∣σA

2

∣∣ = ℵ0.
Clearly, A |= v = v, and so A |= ∃w. wit(v = v), with w being the variables in
wit(v = v) other than v. This in turn means that there is a T2,3-interpretation
A′ that satisfies wit(v = v), different from A only in the interpretations of w, if
anywhere. Let δ be the arrangement over vars (wit(v = v)) induced by A′, that

is: for each x, y ∈ vars (wit(v = v)), x = y is a literal of δ iff xA
′
= yA

′
; and

x ̸= y is a literal of δ iff xA
′
̸= yA

′
. Then, δ either asserts that all variables in

varsσ1(wit(v = v)) are identical, or it partitions them into two equivalence classes.
A′ |= wit(v = v) ∧ δ, and so wit(v = v) ∧ δ is T2,3-satisfiable. We show that it
does not have a finite witness for T2,3 w.r.t. S. Suppose for contradiction the
existence of B, a finite witness of wit(v = v) ∧ δ for T2,3 w.r.t. S. Then

∣∣σB
1

∣∣ =∣∣varsσ1(wit(v = v) ∧ δ)B
∣∣. Now, B |= δ and B is a T2,3-interpretation, meaning∣∣σB

1

∣∣ ≥ 2, so if δ requires all variables of sort σ1 to be equal, we already have a
contradiction. On the other hand, if δ partitions the variables into two equivalence
classes, we get that

∣∣σB
1

∣∣ = 2. But since B finitely witnesses wit(v = v)∧ δ for T2,3

w.r.t. {σ1, σ2}, we also get that σB
2 is finite, meaning B is not a T2,3-interpretation.

⊓⊔

Lemmas 2 to 4 have shown that T2,3 is polite but is not strongly polite. Indeed,
using the polite combination method from [13] with this theory can cause problems.
Consider the theory T1,1 that consists of all Σ2-structures A such that

∣∣σA
1

∣∣ =∣∣σA
2

∣∣ = 1. Clearly, T1,1 ⊕ T2,3 contains no structures, and hence no formula is
T1,1 ⊕ T2,3-satisfiable. However, denote the formula true by φ1 and the formula
x = x by φ2 for some variable x of sort σ1. Then wit(φ2) is x = x ∧

∧3
i=1 xi =

xi ∧ yi = yi. Let δ be the arrangement x = x1 = x2 = x3 ∧ y1 = y2 = y3. It can be
shown that wit(φ2) ∧ δ is T2,3-satisfiable and φ1 ∧ δ is T1,1-satisfiable. Hence, the
combination method of [13] would consider φ1 ∧ φ2 to be T1,1 ⊕ T2,3-satisfiable,
which is impossible. Thus, the fact that T2,3 is not strongly polite propagates all
the way to the polite combination method.

Remark 2 An alternative way to separate politeness from strong politeness using
T2,3 can be obtained through shiny theories, as follows. Shiny theories were in-
troduced in [24] for the mono-sorted case, and were generalized to many-sorted
signatures in two different ways in [9] and [19]. In [9], T2,3 was introduced as a
theory that is shiny according to [19], but not according to [9]. Theorem 1 of [9]
states that their notion of shininess is equivalent to strong politeness for theories
in which the satisfiability problem for quantifier-free formulas is decidable. It can
be shown that this is the case for T2,3. Since it is not shiny according to [9], we
get that T2,3 is not strongly polite. Furthermore, Proposition 18 of [19] states that
every shiny theory (according to their definition) is polite. Hence we get that T2,3
is polite but not strongly polite.

We have (and prefer) a direct proof based only on politeness, without a detour
through shininess. That proof is provided next. Note also that [9] dealt only with
strongly polite theories and did not study the weaker notion of polite theories.
In particular, the fact that strong politeness is different from politeness was not
stated nor proved there.
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3.3 Mono-sorted Politeness

Theory T2,3 includes two sorts but is otherwise empty. In this section, we show
that requiring two sorts is essential for separating politeness from strong politeness
in otherwise empty signatures.5 That is, we prove that politeness implies strong
politeness otherwise. Let Σ0 be the signature with a single sort σ and no function
or predicate symbols (except =). We show that smooth Σ0-theories have a certain
form and conclude strong politeness from politeness.

Lemma 5 Let T be a Σ0-theory. If T is smooth w.r.t. σ and includes a finite
structure, then T is axiomatized by ψσ

≥n from Figure 2 for some n > 0.

Proof Let A be the T -structure with a minimal number of elements, and let n =∣∣σA∣∣. To show that every Σ0-structure that satisfies ψσ
≥n belongs to T , let B be a

Σ0-structure that satisfies ψσ
≥n and let m be the cardinality of σB. Then m ≥ n.

Clearly, A |= x = x and has n elements. Since T is smooth w.r.t. σ, there exists
a T -interpretation (that satisfies x = x) with cardinality m. This interpretation
must be isomorphic to B, as the lack of any symbols means that the only thing
that distinguishes between Σ0-structures is their cardinality. For the converse, note
that by the choice of n as minimal, every T -structure satisfies ψσ

≥n.
⊓⊔

Proposition 1 If T is a Σ0-theory that is polite w.r.t. σ, then it is strongly polite
w.r.t. σ.

Proof The formula x = x is clearly T -satisfiable. Since T is finitely witnessable
(say with witness wit), there is a T -interpretation A that satisfies wit(x = x) such
that σA is finite. T is smooth, and hence, by Lemma 5, axiomatized by ψσ

≥n for
some n. Define wit ′(ϕ) := ϕ ∧ distinct(x1, . . . , xn) for fresh x1, . . . , xn. Since T is
axiomatized by ψσ

≥n, ϕ is T -equivalent to ∃x.wit ′(ϕ). Further, for any arrangement
δ over some set of variables, and any T -interpretation A′ that satisfies wit ′(ϕ)∧ δ,
if the domain of A′ is reduced to contain only the elements in vars (wit ′(ϕ) ∧ δ)A

′
,

the result is still a T -interpretation since wit ′(ϕ) contains distinct(x1, . . . , xn). We
therefore get that wit ′ is a strong witness for T w.r.t. σ.

⊓⊔

Remark 3 We again point out, as we did in Remark 2, that an alternative way to
obtain this result is via shiny theories, using results in [19], which introduced polite
theories, as well as [8], which compared strongly polite theories to shiny theories
in the mono-sorted case. Specifically, in the presence of a single sort, Proposition
19 of [19] states that:
(∗) if the question of whether a polite theory over a finite signature con-

tains a given finite structure is decidable, then the theory is shiny.
In turn, Proposition 1 of [8] states that:
(∗∗) every shiny theory over a mono-sorted signature with a decidable sat-

isfiability problem for quantifier-free formulas is also strongly polite.
It can be shown that the question of whether a polite Σ0-theory contains a finite
structure is decidable. It can also be shown that the satisfiability of quantifier-free

5 The case of non-empty signatures is addressed in a recent paper by Toledo et al. [25].
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formulas is decidable for such theories. Using (∗) and (∗∗), we get that in Σ0-
theories, politeness implies strong politeness. As above (Remark 2), we prefer a
direct route for showing this result, without going through shiny theories.

3.4 Mono-sorted Finite Witnessability

We have seen that for Σ0-theories, politeness and strong politeness are the same.
Now we show that smoothness is crucial for this equivalence, i.e., that there is no
such equivalence between finite witnessability and strong finite witnessability.

Let T ∞
Even be the Σ0-theory of all Σ0-structures A such that

∣∣σA∣∣ is even or

infinite.6 Clearly, this theory is not smooth.

Lemma 6 T ∞
Even is not smooth w.r.t. σ.

Proof Let ϕ be x = x and A be a Σ-interpretation with σA = {a1, a2} for some
distinct elements a1, a2 and with xA = a1. Then A is a T ∞

Even-interpretation that
satisfies ϕ. Let κ defined by κ(s) = 3. Then 3 = κ(s) ≥

∣∣σA∣∣ = 2. However, there

is no Σ-interpretation A′ with
∣∣∣σA′

∣∣∣ = 3.
⊓⊔

Next, we show that the theory is finitely witnessable, but not strongly so.

Lemma 7 T ∞
Even is finitely witnessable w.r.t. σ.

Proof For a quantifier-free Σ0-formula ϕ, define wit(ϕ) as follows. Let E be the
set of all equivalence relations over vars (ϕ) ∪ {w} for some fresh variable w. Let
even(E) be the set of all equivalence relations in E for which the number of equiv-
alence classes is even. Then, wit(ϕ) is ϕ ∧

∨
e∈even(E) δe, where for an equivalence

relation e ∈ even(E), δe is the arrangement induced by e:∧
(x,y)∈e

x = y ∧
∧

x,y∈vars (ϕ)∪{w}∧(x,y) ̸∈e

x ̸= y

We prove that wit is a witness. Let ϕ be a Σ-formula. We first prove that it
is T ∞

Even-equivalent to ∃w. wit(ϕ). Since ϕ is a conjunct of wit(ϕ) that does not
include w, every A-interpretation that satisfies wit(ϕ) also satisfies ϕ. For the other
direction, let A be a T ∞

Even-interpretation satisfying ϕ. Even though A may have
infinitely many elements, the number of elements in vars (ϕ)A must be finite. If
the number of elements in vars (ϕ)A is even, then let a be some arbitrary element
of vars (ϕ)A. Otherwise, let a be an element in A different from all the elements in
vars (ϕ)A (there must be such an element since A has an even or infinite number
of elements). In either case, the number of elements in vars (ϕ)A ∪ {a} is even.
Thus, if we modify A to map w to a, then it must satisfy one of the disjuncts in∨

e∈even(E) δe. Hence, A satisfies ∃w. wit(ϕ).
Next, if wit(ϕ) is T ∞

Even-satisfiable, then there is a satisfying T ∞
Even-interpreta-

tion A satisfying it. A must satisfy one of the disjuncts in wit(ϕ), which means∣∣vars (wit(ϕ))A∣∣ is even. The restriction of A to vars (wit(ϕ))A is a T ∞
Even-interpre-

tation that finitely witnesses wit(ϕ).
⊓⊔

6 Notice that T ∞
Even can be axiomatized using the set

{
¬ψσ

=2n+1 | n ∈ N
}
(see Figure 2).
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Lemma 8 T ∞
Even is not strongly finitely witnessable w.r.t. σ.

Proof Let wit : QF (Σ0) → QF (Σ0) be a witness for T ∞
Even w.r.t. σ. We prove

that wit is not a strong witness for T ∞
Even w.r.t. σ, by showing that wit(x = x) is

not strongly finitely witnessed for T ∞
Even w.r.t. σ. Consider a T ∞

Even-interpretation
A with 2 elements, which interprets all the variables in vars (wit(x = x)). Clearly,
A |= x = x, and therefore, A |= ∃w.wit(x = x), where w is vars (wit(x = x))\{x}.
Hence, there exists a T ∞

Even-interpretation A′, identical to A, except possibly in its
interpretation of variables in vars (wit(x = x)) \ {x}, that satisfies wit(x = x). In
particular, A′ has two elements. Let δA′ be the arrangement over vars (wit(x = x))
satisfied by A′. Then δA′ induces an equivalence relation with either 1 or 2 equiv-
alence classes. Let v be a variable not in vars (wit(x = x)). Define an arrangement
δ over vars (wit(x = x))∪{v} as follows: If δA′ induces one equivalence class, δ :=
δA′ ∧

∧
u∈vars (wit(x=x)) v = u. Otherwise, δ := δA′ ∧

∧
u∈vars (wit(x=x)) v ̸= u. In the

first case, δ induces one equivalence class, and in the second, three. wit(x = x)∧ δ
is clearly T ∞

Even-satisfiable, but it does not have a finite witness for T ∞
Even w.r.t. σ,

as any interpretation B that finitely witnesses it has either 1 or 3 elements, and
hence it is not in T ∞

Even.
⊓⊔

4 A Blend of Polite and Stably-Infinite Theories

In this section, we show that the polite combination method can be optimized
to reduce the search space of possible arrangements. In what follows, Σ1 and
Σ2 are disjoint signatures, S = SΣ1

∩ SΣ2
̸= ∅, T1 is a Σ1-theory, T2 is a Σ2-

theory, φ1 is a conjunction of Σ1-literals, and φ2 is a conjunction of Σ2-literals.
When both theories are stably-infinite, the Nelson-Oppen procedure reduces the
T1 ⊕ T2-satisfiability of φ1 ∧ φ2 to the existence of an arrangement δ over the set
V = varsS(φ1) ∩ varsS(φ2), such that φ1 ∧ δ is T1-satisfiable and φ2 ∧ δ is T2-
satisfiable. The correctness of this reduction relies on the fact that both theories
are stably infinite w.r.t. S.

In contrast, the polite combination method only requires a condition (namely
strong politeness) from one of the theories, while the other theory is unrestricted
and, in particular, not necessarily stably infinite. Thus, when T2 is strongly polite,
polite combination reduces the T1 ⊕ T2-satisfiability of φ1 ∧ φ2 to the existence
of an arrangement δ such that φ1 ∧ δ is T1-satisfiable and wit(φ2) ∧ δ is T2-
satisfiable, where wit is a strong witness for T2 w.r.t. S. The difference with the
Nelson-Oppen procedure is that the arrangement δ in this case is not over V
above but over a different set V ′ = varsS(wit(φ2)), Thus, the flexibility offered
by polite combination comes with a price. The set V ′ is potentially larger than V
as it contains all variables with sorts in S that occur in wit(φ2), not just those
that also occur in φ1. Since the search space of arrangements over a set grows
exponentially with its size, this difference can become crucial. If T1 happens to be
stably infinite w.r.t. S, however, we can fall back to Nelson-Oppen combination
and only consider variables that are shared by the two formulas. But what if T1 is
stably infinite only w.r.t. to some proper subset S′ ⊂ S? Can this knowledge about
T1 help in finding some set V ′′ of variables between V and V ′, such that we need
only consider arrangements of V ′′? In this section we prove that this is possible by
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taking V ′′ to include only the variables of sorts in S′ that are shared between φ1

and wit(φ2), and all the variables of sorts in S \S′ that occur in wit(φ2). We also
identify several weaker conditions on T2 that are sufficient for the combination
theorem to hold.

4.1 Refined Combination Theorem

To put the discussion above in formal terms, we recall the following theorem.

Theorem 3 ([13]) If T2 is strongly polite w.r.t. S with a witness wit, then the
following are equivalent:

1. φ1 ∧ φ2 is (T1 ⊕ T2)-satisfiable;
2. there exists an arrangement δV over V , such that φ1 ∧ δV is T1-satisfiable and

wit(φ2) ∧ δV is T2-satisfiable,

where V =
⋃

σ∈S Vσ, and Vσ = varsσ(wit(φ2)) for each σ ∈ S.

Our goal is to identify general cases in which information regarding T1 can
help reduce the size of the set V . To this end, we extend the definitions of stably
infinite, smooth, and strongly finitely witnessable to two sets of sorts rather than
one. Roughly speaking, in this extension, the usual definition is taken for the first
set, and some cardinality-preserving constraints are enforced on the second set.

Definition 6 Let Σ be a signature, S1, S2 two disjoint subsets of SΣ , and T a
Σ-theory.

1. T is (strongly) stably infinite w.r.t. (S1, S2) if for every quantifier-free Σ-
formula ϕ and T -interpretationA satisfying ϕ, there exists a T -interpretation B
such that B |= ϕ, |σB| is infinite for every σ ∈ S1, and |σB| ≤ |σA| (|σB| = |σA|)
for every σ ∈ S2.

2. T is smooth w.r.t. (S1, S2) if for every quantifier-freeΣ-formula ϕ, T -interpreta-
tion A satisfying ϕ, and function κ from S1 to the class of cardinals such that
κ(σ) ≥

∣∣σA
∣∣ for each σ ∈ S1, there exists a T -interpretation B that satisfies

ϕ, with
∣∣σB

∣∣ = κ(σ) for each σ ∈ S1, and with
∣∣σB

∣∣ infinite whenever
∣∣σA∣∣ is

infinite for each σ ∈ S2.
3. T is strongly finitely witnessable w.r.t. (S1, S2) if there is a computable function

wit : QF (Σ) → QF (Σ) such that for every quantifier-free Σ-formula ϕ:
(a) ϕ and ∃−→w . wit(ϕ) are T -equivalent for −→w = vars (wit(ϕ)) \ vars (ϕ); and
(b) for every T -interpretation A and arrangement δ of any set of variables

whose sorts are in S1, if A satisfies wit(ϕ) ∧ δ, then there exists a T -
interpretation B that finitely witnesses wit(ϕ) ∧ δ w.r.t. S1 and for which∣∣σB∣∣ is infinite whenever

∣∣σA∣∣ is infinite, for each σ ∈ S2.

Example 8 Consider the signature Σ2 from Section 3.2 with two sorts, σ1 and σ2,
and no symbols other than equalities.

1. Let Tinf,inf be the Σ2-theory whose structures A are those in which σA
2 is

infinite whenever σA
1 is infinite. Then, Tinf,inf is stably infinite w.r.t. {σ1}, but

not w.r.t. ({σ1} , {σ2}). Indeed, consider the structure A in which σA
1 = σA

2 =
{1}. Then A can be extended to a Σ2-structure B such that σB

1 is infinite, but
then σB

2 is infinite as well, and so we cannot have
∣∣σB

2

∣∣ ≤ ∣∣σA
2

∣∣.
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2. Let Tinf,fin be the Σ2-theory whose structures A are those in which σA
2 is finite

whenever σA
1 is infinite. Then, Tinf,fin is smooth w.r.t. {σ1} (if σ1 has to be

interpreted as an infinite domain, we can make the interpretation of σ2 finite,
since the signature is empty). But, Tinf,fin is not smooth w.r.t. ({σ1} , {σ2}):
consider the structure A in which σA

1 = {1} and σA
2 = N. Then A can be

extended to a Σ2-structure B such that σB
1 is infinite, but then σB

2 must be
finite for B to be in Tinf,fin, even though σA

2 is infinite.
3. Let Tfin,fin be the Σ2-theory whose structures A are those in which σA

2 is finite
whenever σA

1 is finite. Tfin,fin is strongly finitely witnessable w.r.t. {σ1}, as
when forcing the interpretation of σ1 to be finite, we can do the same for σ2
because the signature is empty: if the formula has variables of sort σ2, we can
restrict the domain of σ2 to be the interpretations of these variables. Otherwise,
we can just have a single element as the domain of σ2. However, Tfin,fin is not
strongly finitely witnessable w.r.t. ({σ1} , {σ2}): consider the structure A in
which σA

1 = σA
2 = N. Then, for any structure B with a finite σB

1 , we must also
have that σB

2 is finite in order for B to be in the theory, even though σA
2 is

infinite.

Our main result is the following.

Theorem 4 Let Ssi ⊆ S and Snsi = S\Ssi. Suppose T1 is stably infinite w.r.t. Ssi

and one of the following holds:

1. T2 is strongly stably infinite w.r.t. (Ssi, Snsi) and strongly polite w.r.t. Snsi with
a witness wit.

2. T2 is stably infinite w.r.t. (Ssi, Snsi), smooth w.r.t. (Snsi, Ssi), and strongly
finitely witnessable w.r.t. Snsi with a witness wit.

3. T2 is stably infinite w.r.t. Ssi while smooth and strongly finitely-witnessable
w.r.t. (Snsi, Ssi) with a witness wit.

Then the following are equivalent:

1. φ1 ∧ φ2 is (T1 ⊕ T2)-satisfiable;
2. There exists an arrangement δV over V such that φ1∧δV is T1-satisfiable, and

wit(φ2) ∧ δV is T2-satisfiable,

where V =
⋃

σ∈S Vσ, with Vσ = varsσ(wit(φ2)) for every σ ∈ Snsi and Vσ =

varsσ(φ1) ∩ varsσ(wit(φ2)) for every σ ∈ Ssi.

All three items of Theorem 4 include assumptions guaranteeing that the two
theories agree on cardinalities of shared sorts. For example, in the first item, we
first shrink the Snsi-domains of the T2-model using strong finite witnessability, and
then expand them using smoothness. But then, to obtain infinite domains for the
Ssi sorts, stable infiniteness is not enough, as we need to maintain the cardinalities
of the Snsi domains while making the domains of the Ssi sorts infinite. For this,
the stronger property of strong stable infiniteness is used.

A proof of this theorem is provided in Section 4.2, below. Figure 3 is a vi-
sualization of the claims in Theorem 4. The theorem considers two variants of
strong finite witnessability (Definition 4 and Item 3 of Definition 6), two variants
of smoothness (Definition 3 and Item 2 of Definition 6), and three variants of stable
infiniteness (Definition 2 and the two new variants from Item 1 of Definition 6).
For each of the three cases of Theorem 4, Figure 3 shows which variant of each
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Case 1 Case 2 Case 3

regular

medium

strong

strong finite witnessability smoothness stable infiniteness

Fig. 3 Theorem 4. The height of each bar corresponds to the strength of the property.
The bars are ordered according to their usage in the proof.

property is assumed. The height of each bar corresponds to the strength of the
property. In the first case, we use ordinary strong finite witnessability and smooth-
ness, but the strongest variant of stable infiniteness; in the second, we use ordinary
strong finite witnessability with the new variants of smoothness and (non-strong)
stable infiniteness; and for the third, we use ordinary stable infiniteness and the
stronger variants of strong finite witnessability and smoothness. The order of the
bars corresponds to the order of their usage in the proof of each case. (This is
evident in the proof of Lemma 10.) The stage at which stable infiniteness is used
determines the required strength of the other properties: whatever is used before
is taken in ordinary form, and whatever is used after requires a stronger form.

Going back to the standard definitions of stable infiniteness, smoothness, and
strong finite witnessability, we get the following corollary.

Corollary 1 Let Ssi ⊆ S and Snsi = S\Ssi. Suppose T1 is stably infinite w.r.t. Ssi

and T2 is strongly finitely witnessable w.r.t. Snsi with witness wit and smooth w.r.t.
S. Then, the following are equivalent:

1. φ1 ∧ φ2 is (T1 ⊕ T2)-satisfiable;
2. there exists an arrangement δV over V such that φ1 ∧ δV is T1-satisfiable and

wit(φ2) ∧ δV is T2-satisfiable,

where V =
⋃

σ∈S Vσ, with Vσ = varsσ(wit(φ2)) for σ ∈ Snsi and Vσ = varsσ(φ1)∩
varsσ(wit(φ2)) for σ ∈ Ssi.

Proof T2 is smooth w.r.t. Ssi ∪ Snsi. In particular, it is smooth w.r.t. Snsi, and
so it is strongly polite w.r.t. Snsi. We show that it is also strongly stably infinite
w.r.t. (Ssi, Snsi), and then the result follows from case 1 of Theorem 4. Let ϕ be a
Σ-formula and A a T -interpretation that satisfies ϕ. Define κ(σ) to be ℵ0 for every
σ ∈ Ssi such that σA is finite, κ(σ) =

∣∣σA∣∣ for every σ ∈ Ssi such that σA is infinite,

and κ(σ) =
∣∣σA∣∣ for every σ ∈ Snsi. Since T is smooth w.r.t. Ssi∪Snsi, there exists

a T -interpretation B that satisfies ϕ with
∣∣σB∣∣ = κ(σ) (which is infinite) for every

σ ∈ Ssi and
∣∣σB∣∣ = κ(σ) =

∣∣σA∣∣ for every σ ∈ Snsi.
⊓⊔

Finally, the following result, which is closest to Theorem 3, is directly obtained
from Corollary 1.

Corollary 2 Let Ssi ⊆ S and Snsi = S \Ssi. If T1 is stably infinite w.r.t. Ssi and
T2 is strongly polite w.r.t. S with a witness wit, then the following are equivalent:
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1. φ1 ∧ φ2 is (T1 ⊕ T2)-satisfiable;
2. there exists an arrangement δV over V such that φ1 ∧ δV is T1-satisfiable and

wit(φ2) ∧ δV is T2-satisfiable,

where V =
⋃

σ∈S Vσ, with Vσ = varsσ(wit(φ2)) for each σ ∈ Snsi and Vσ =

varsσ(φ1) ∩ varsσ(wit(φ2)) for each σ ∈ Ssi.

Proof The strong politeness of T2 w.r.t. Ssi∪Snsi implies that it is strongly finitely
witnessable w.r.t. Snsi and smooth w.r.t. Ssi ∪ Snsi.

Compared to Theorem 3, Corollary 2 partitions S into Ssi and Snsi and requires
that T1 be stably infinite w.r.t. Ssi. The gain from this requirement is that the set
Vσ is potentially reduced for σ ∈ Ssi. Note that unlike Theorem 4 and Corollary 1,
Corollary 2 has the same assumptions regarding T2 as the original Theorem 3 from
[13]. We show its potential impact in the next example.

Example 9 Consider the theory TListIntBV4 from Example 4. It is strongly polite
w.r.t. list and is stably infinite w.r.t. int. Hence, our approach is applicable to it. Let
φ1 be x = 5∧v = 0000∧w = w & v, and let φ2 be a0 = cons(x, v, a1)∧

∧n
i=1 ai =

cons(yi, w, ai+1). Using the witness function wit from [20], wit(φ2) = φ2. The
polite combination approach reduces the TListIntBV4-satisfiability of φ1 ∧ φ2 to
the existence of an arrangement δ over {x, v, w} ∪ {y1, . . . , yn}, such that φ1 ∧ δ
is TIntBV4-satisfiable and wit(φ2) ∧ δ is TList-satisfiable. Corollary 2 shows that
we can do better. Since TIntBV4 is stably infinite w.r.t. {int}, it is enough to
check the existence of an arrangement over the variables of sort BV4 that occur
in wit(φ2), together with the variables of sort int that are shared between φ1 and
φ2. This means that arrangements over {x, v, w} are considered, instead of over
{x, v, w}∪{y1, . . . , yn}. As n becomes large, standard polite combination requires
considering exponentially more arrangements, while the number of arrangements
considered by our combination method remains the same.

Remark 4 We remark that various other theories can be given as examples for
being strongly polite w.r.t. some of the sorts and stably infinite w.r.t. other sorts.
Roughly speaking, in typical applications, the sorts with respect to which the
theory would be strongly polite are container sorts, such as lists, arrays, etc. The
sorts with respect to which the theory would be stably infinite may be element
sorts, such as integers, reals, etc.

We further note that, as Example 9 illustrates, we expect that the most useful
of the results in this section is Corollary 2. The motivation behind Theorem 4 is
that it provides the most general result we were able to prove, and makes the proof
of Corollary 2 simpler.

4.2 Proof of Theorem 4

The 1 → 2 direction is straightforward, using the reducts of the satisfying interpre-
tation of φ1∧φ2 to Σ1 and Σ2 and the arrangements induced by the satisfying in-
terpretations. We focus on the 2 → 1 direction and begin with the following lemma,
which strengthens Theorem 1, obtaining a many-sorted Löwenheim-Skolem The-
orem, where the cardinality of the finite sorts remains the same.
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Lemma 9 Let Σ be a signature, T a Σ-theory, ϕ a Σ-formula, and A a T -
interpretation that satisfies ϕ. Let SΣ = Sfin

A ⊎ Sinf
A , where σA is finite for every

σ ∈ Sfin
A and σA is infinite for every σ ∈ Sinf

A . Then there exists a T -interpretation

B that satisfies ϕ such that
∣∣σB∣∣ = ∣∣σA∣∣ for every σ ∈ Sfin

A and σB is countable for

every σ ∈ Sinf
A .

Proof Let Ax be the set of sentences that are satisfied by every T -structure. Define
the following sets, based on formulas that are defined in Figure 2:

finA :=
{
ψσ
=|σA| | σ ∈ Sfin

A

}
inf A :=

{
¬ψσ

=n | σ ∈ Sinf
A , n ∈ N

}
Θ := Ax ∪ finA ∪ inf A ∪ {ϕ}

Clearly, A |= Θ. By Theorem 1, there exists a Σ-interpretation B that satisfies Θ in
which σB is countable whenever it is infinite, for every σ ∈ SΣ . This in particular
holds for every σ ∈ Sinf

A . Now let σ ∈ Sfin
A , then since B |= finA,

∣∣σB∣∣ = ∣∣σA∣∣.
Finally, B |= ϕ and it is a T -interpretation.

⊓⊔

The proof of Theorem 4 continues with the following main lemma.

Lemma 10 (Main Lemma) Let Ssi ⊆ S and Snsi = S\Ssi, Suppose T1 is stably
infinite w.r.t. Ssi and that one of the three cases of Theorem 4 holds. Further,
assume there exists an arrangement δV over V such that φ1 ∧ δV is T1-satisfiable,
and wit(φ2)∧ δV is T2-satisfiable, where V =

⋃
σ∈S Vσ, with Vσ = varsσ(wit(φ2))

for each σ ∈ Snsi and Vσ = varsσ(φ1) ∩ varsσ(wit(φ2)) for each σ ∈ Ssi. Then,
there is a T1-interpretation A that satisfies φ1 ∧ δV and a T2-interpretation B that
satisfies wit(φ2) ∧ δV such that

∣∣σA∣∣ = ∣∣σB∣∣ for all σ ∈ S.

Proof Let ψ2 := wit(φ2). Since T1 is stably infinite w.r.t. Ssi, there is a T1-
interpretation A satisfying φ1 ∧ δV in which σA is infinite for each σ ∈ Ssi. By
Theorem 1, we may assume that σA is countable for each σ ∈ Ssi, as well as for
each σ ∈ Snsi such that σA is infinite. We consider the cases of Theorem 4:

Case 1 Suppose T2 is strongly stably infinite w.r.t. (Ssi, Snsi) and strongly polite
w.r.t. Snsi. Since T2 is strongly finitely-witnessable w.r.t. Snsi, there exists a
T2-interpretation B that satisfies ψ2 ∧ δV such that σB = V B

σ for each σ ∈
Snsi. Since A and B satisfy δV , we have that for every σ ∈ Snsi,

∣∣σB∣∣ =∣∣V B
σ

∣∣ =
∣∣V A

σ

∣∣ ≤
∣∣σA∣∣. T2 is also smooth w.r.t. Snsi, and so there exists a

T2-interpretation B′ satisfying ψ2 ∧ δV such that
∣∣∣σB′

∣∣∣ =
∣∣σA∣∣ for each σ ∈

Snsi. Finally, T2 is strongly stably infinite w.r.t. (Ssi, Snsi), so there is a T2-

interpretation B′′ that satisfies ψ2∧δV such that σB′′
is infinite for each σ ∈ Ssi

and
∣∣∣σB′′

∣∣∣ = ∣∣∣σB′
∣∣∣ = ∣∣σA∣∣ for each σ ∈ Snsi. By Lemma 9, we may assume that

σB′′
is countable for each σ ∈ Ssi. Thus,

∣∣∣σB′′
∣∣∣ = ∣∣σA∣∣ for each σ ∈ S.
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Case 2 : Suppose T2 is stably infinite w.r.t (Ssi, Snsi), smooth w.r.t. (Snsi, Ssi), and
strongly finitely witnessable w.r.t. Snsi. Then, there exists a T2-interpretation
B that satisfies ψ2 ∧ δV such that σB = V B

σ for every σ ∈ Snsi. Since A and B
satisfy δV , we have that for every σ ∈ Snsi,

∣∣σB∣∣ = ∣∣V B
σ

∣∣ = ∣∣V A
σ

∣∣ ≤ ∣∣σA∣∣. T2 is

stably infinite w.r.t. (Ssi, Snsi), and so there exists a T2-interpretation B′ that

satisfies ψ2 ∧ δV such that σB′
is infinite for every σ ∈ Ssi and

∣∣∣σB′
∣∣∣ ≤ ∣∣σB∣∣ ≤∣∣σA∣∣ for every σ ∈ Snsi. T2 is smooth w.r.t. (Snsi, Ssi) and so there is a T2-

interpretation B′′ satisfying ψ2 ∧ δV such that
∣∣∣σB′′

∣∣∣ = ∣∣σA∣∣ for every σ ∈ Snsi

and
∣∣∣σB′′

∣∣∣ is infinite for every σ ∈ Ssi. Using Lemma 9, we may assume σB′′
is

countable for each σ ∈ Ssi, and hence
∣∣∣σB′′

∣∣∣ = ∣∣σA∣∣ for every σ ∈ S.

Case 3 : Suppose T2 is stably infinite w.r.t. Ssi, smooth w.r.t. (Snsi, Ssi), and
strongly finitely witnessable w.r.t. (Snsi, Ssi). Since it is stably infinite w.r.t. Ssi,
there exists a T2-interpretation B that satisfies ψ2 ∧ δV such that σB is infinite
for every σ ∈ Ssi. T2 is strongly finitely-witnessable w.r.t. (Snsi, Ssi), and hence

there exists a T2-interpretation B′ that satisfies ψ2 ∧ δV such that σB′
= V B′

σ

for every σ ∈ Snsi and
∣∣∣σB′

∣∣∣ is infinite for every σ ∈ Ssi. Since A and B′

satisfy δV , we have that for every σ ∈ Snsi,
∣∣∣σB′

∣∣∣ =
∣∣∣V B′

σ

∣∣∣ =
∣∣V A

σ

∣∣ ≤
∣∣σA∣∣.

T2 is smooth w.r.t. (Snsi, Ssi), and so there exists a T2-interpretation B′′ that

satisfies ψ2∧ δV such that
∣∣∣σB′′

∣∣∣ = ∣∣σA∣∣ for every σ ∈ Snsi and
∣∣∣σB′′

∣∣∣ is infinite
for every σ ∈ Ssi. By Lemma 9, we may assume that σB′′

is countable for
every σ ∈ Ssi, with the same cardinalities for sorts of Snsi, and so we have∣∣∣σB′′

∣∣∣ = ∣∣σA∣∣ also for every σ ∈ S.

⊓⊔

We now conclude the proof of Theorem 4. Lemma 10 gives us a T1 inter-
pretation A with A |= φ1 ∧ δV and a T2 interpretation B with B |= ψ2 ∧ δV ,
and

∣∣σA∣∣ =
∣∣σB∣∣ for σ ∈ S. Set φ′

1 := φ1 ∧ δV and φ′
2 := ψ2 ∧ δV . Then,

Vσ = varsσ(φ
′
1) ∩ varsσ(φ

′
2) for σ ∈ S. Now, A |= φ′

1 ∧ δV and B |= φ′
2 ∧ δV .

Also, |σA| = |σB| for σ ∈ S. By Theorem 2, φ′
1 ∧ φ′

2 is T1 ⊕ T2-satisfiable. In
particular, φ1 ∧ {ψ2} is T1 ⊕ T2-satisfiable, and hence also φ1 ∧ {∃w.ψ2}, with
w = vars (wit(φ2)) \ vars (φ2). Finally, ∃w.wit(φ2) is T2-equivalent to φ2, hence
φ1 ∧ φ2 is T1 ⊕ T2-satisfiable.

5 Preliminary Case Study

The results presented in Section 4 were motivated by a set of smart contract
verification benchmarks. We obtained these benchmarks by applying the open-
source Move Prover verifier [26] to smart contracts found in the open-source Diem
project [10]. The Move prover is a formal verifier for smart contracts written in the
Move language [7] and was designed to target smart contracts used in the Diem
blockchain [1]. It works via a translation to the Boogie verification framework
[16], which in turn produces SMT-LIB 2 benchmarks that are dispatched to SMT
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solvers. The benchmarks we obtained involve datatypes, integers, Booleans, and
quantifiers. Our case study began by running cvc5 [2] (the successor of CVC4 [5])
on the benchmarks. For most of the benchmarks that were solved by cvc5, theory
combination took a small percentage of the overall runtime of the solver, account-
ing for 10% or less in all but 1 benchmark. However, solving that benchmark took
81 seconds, of which 20 seconds was dedicated to theory combination.

Remark 5 This paper, as most of the combination literature, considers for sim-
plicity but without loss of generality only mixed quantifier-free formulas that are
conjunctions of pure subformulas. For such mixed formulas, the only symbols that
two pure subformulas from different theories may share are variables. However, all
combination results can be lifted to more general mixed quantifier-free formulas by
using a suitable notion of shared term [4]. This is convenient in practice, if not in
theory, since it does not require a conversion of mixed formulas to equisatisfiable
conjunctions of pure formulas. Since cvc5 follows this approach, in the following
we will talk about shared terms, and arrangements over them, instead of shared
variables.

We implemented an optimization to the datatype solver of cvc5 based on Corol-
lary 2. With the original polite combination method, every term that originates
from the theory of datatypes with another sort is shared with the other theories,
triggering an analysis of the arrangements of these terms. In our optimization,
we limit the sharing of such terms to those of Boolean sort. In the language of
Corollary 2, T1 is the combined theory of Booleans, uninterpreted functions, and
integers, which is stably infinite w.r.t. the uninterpreted sorts and integer sorts. T2

is an instance of the theory of datatypes, which is strongly polite w.r.t. its element
sorts, which in this case are the sorts of T1.

A comparison of an original and optimized run on the difficult benchmark is
shown in Figure 4.7 The experiment was run on a machine running Ubuntu with
a 3.5GHz Intel Xeon E5-2636 processor and 32GB of memory. As shown, the op-
timization reduces the total running time by 82%, and the time spent on theory
combination in particular by 95%. To further isolate the effectiveness of our opti-
mization, we report the number of terms that each theory solver considered. Each
theory solver maintains its own data structure for tracking equality information.
These data structures contain terms belonging to the theory that either come from
the input assertions or are shared with another theory. A data structure is also
maintained that contains all shared terms belonging to any theory.

The last 4 columns of Figure 4 count the number of times (in thousands) a
term was added to the equality data structure for the theory of datatypes (DT),
integers (INT), and uninterpreted functions and Booleans (UFB), as well as to
the the shared term data structure (shared). With the optimization, the datatype
solver keeps more inferred assertions internally, which leads to an increase in the
number of additions of terms to its data structure. However, sharing fewer terms,
reduces the number of terms in the data structures for the other theories. Moreover,
the number of shared terms decreases by 55%. This suggests that although the
workload on the datatypes theory solver is similar, a decrease in the number of

7 An artifact which includes the compiled binary of the implementation, the benchmark,
the raw results, as well as reproduction instructions is available at https://doi.org/10.5281/
zenodo.6538824.

https://doi.org/10.5281/zenodo.6538824
https://doi.org/10.5281/zenodo.6538824
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total (s) comb (s) DT INT UFB shared
optimized 19.7 1.5 203.5 111.9 46.0 108.7
original 111.6 37.2 192.2 352.5 67.6 242.5

Fig. 4 Runtimes (in seconds) and number of terms (in thousands) added to the data
structures of DT, INT, UFB, and the number of shared terms (shared).

shared terms originating from the theory of datatypes in the optimized run results
in a significant improvement in the overall runtime. Although our evidence is only
anecdotal at the moment, we believe this benchmark is highly representative of
the potential benefits of our optimization.

6 Conclusion

In this paper, we have made two contributions to the study of theory combination.
First, we separated politeness and strong politeness, which shows that sometimes,
the (typically harder) task of finding a strong witness is not a waste of effort. Then,
we introduced an optimization to the polite combination method, which applies
when one of the theories in the combination is stably infinite w.r.t. a subset of the
sorts.

We envision several directions for future work. First, the separation of polite-
ness from strong politeness demonstrates a need to identify sufficient criteria for
the equivalence of these notions — such as, for instance, the additivity criterion
introduced by Sheng et al. [20]. Finding other similar conditions for equivalence
would provide additional opportunities for reducing proofs of strong politeness
for a theory to simpler proofs of politeness. We also plan to extend the initial
implementation in cvc5 and evaluate its impact on more benchmarks.
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