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Overview

• Satisfiability Modulo Theories (SMT) solvers widely used tools
 the SMT solver cvc5

• cvc5 for strings and regular expressions
• Fast: new advances in SMT string solving

• Trustworthy: producing externally checkable proofs 

• Future Directions



Satisfiability Modulo Theories (SMT) Solvers

 SMT solvers are fully automated reasoners, widely used in applications
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 Best tool paper, ETAPS 2022

• cvc5 is latest SMT solver in CVC line of tools
• Open source, builds on code base of CVC4

• 1.0 launched in April 2022





cvc5: A Versatile SMT Solver

• Support for many theories
• Arithmetic, Bit-vectors, Arrays, Datatypes, Floating-Points, Strings

• Extended: Sets, Multisets, Finite Fields

• Many features:
• get-model, get-unsat-core, get-proof

• Extended: syntax-guided synthesis, get-interpolant, get-abduct, 
get-quant-elim

 If you have a new problem domain, we’d like to support it!



cvc5: SMT and beyond
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cvc5: An Industrial-Strength SMT Solver

• Efficient solving algorithms
• Best overall performance* SMT-COMP 2018, 2019, 2020, 2021, 2022

* shared with predecessor CVC4

• High coding standards
• Streamlined API, high code coverage, code reviews

• Extensively tested
• 3000+ hand-crafted regressions and counting
• Fuzzed internally (Murxla [Niemetz et al CAV22]) and by external groups

• New: Produces externally checkable proofs



cvc5: state-of-the-art SMT solver for Strings

• Fast solving techniques
• CDCL(T)

• Core calculus for strings and length constraints

• Extensions to extended functions and regular expressions

• Trustworthy results
• Proof production for the full theory of strings



Designing a Fast String Solver



Architecture of cvc5
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Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

CDCL(T)

Satisfying Assignments

Conflicts, Lemmas

Arithmetic

Arrays

Datatypes

Bit-vectors

StringsT-Combination

• Centralized methods (Nelson-Oppen, polite) for combining theories

Preprocessor



Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

CDCL(T)

Satisfying Assignments

Conflicts, Lemmas

Arithmetic

Arrays

Datatypes

Bit-vectors

StringsT-Combination

Preprocessor

• Focus of this talk: solver for the theory of strings and regular expressions



Strings and RegExp: Theoretical Challenges

• Many applications require extended string functions and RegEx memberships
• ctn(x,“a”), to_lower(x)=“abc”, xrange(“A”,”Z”)
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SMT Solvers for Strings: Timeline
2012 2017 202220142009

First release
CVC4 1.0

CVC4 project
begins

cvc5 1.0 release

[Liang et al 
CAV 14]

[Reynolds et al 
CAV 17]

Z3Str Z3Str2 Z3Seq Trau Z3Str3 Z3Str4 …. S3

Norn

Other SMT String Solvers

CVC4 support
for strings + RE

[Reynolds et al 
CAV 19]

[Reynolds et al 
FMCAD 20]

[Reynolds et al 
IJCAR 20]

Support for
Extended String

Functions

OSTRICH

2020

Support
For Proofs

[Noetzli et al
CAV 22]

[Noetzli et al
FMCAD 22]

CVC papers on strings



A Theory Solver for Strings [Liang et al, CAV 14]

• Designed a string solver for concat+length that is:
• Refutation and model sound (“unsat” and “sat” can be trusted)

• Not terminating in general

• Efficient in practice

x=“abc”·y

|y|=4

x=“b”·z

String solver x“abc”·y  x“b”·z

Conflict Clause



Extended Theory of Strings [Reynolds et al CAV17]

• Support extended string functions commonly used in applications
• substr(x,n,m) substring of x at position n of length at most m
• ctn(x,y) true if x contains substring y 
• indexof(x,y,n) position of y in x starting from position n
• replace(x,y,z) result of replacing first occurrence of y in x by z

• For example: ctn(x,“c”) denotes x does not contain substring “c”

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver



Extended Theory of Strings [Reynolds et al CAV17]

• Use reduction lemmas

• Expensive:
Introduces 3*|x| string vars

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver 0n<|x|.substr(x,n,1)“c”

substr(x,0,1)“c”  …  substr(x,n,1)“c”

x=z11k1z21 

|z11|=0 

k1“c” 

x=z1nknz2n 

|z1n|=n 

kn“c”

...

Bound length of x

Reduce substr

Reduction lemma



Context-Dependent Simplification [Reynolds et al CAV17]

• Alternatively: use context-dependent simplification:
x=“ab”·y  y=“c” ╞ x=“abc”

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver



• Alternatively: use context-dependent simplification:
x=“ab”·y  y=“c” ╞ x=“abc”

• Thus: 

ctn(x,“c”){x→“abc”}   ctn(“abc”,“c”)  ⊥

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver

By substitution By rewriting

x“ab”·y  y“c” 

ctn(x,“c”)

Conflict Clause

Context-Dependent Simplification [Reynolds et al CAV17]



Recent Developments for Theory of Strings

• Context-dependent simplifications
• Use aggressive rewriting [Reynolds et al CAV 2019]

• Applied eagerly [Noetzli et al CAV 2022]

• Reduction lemmas
• Leverage String-to-code point (code) conversion [Reynolds et al IJCAR 2020]

• Improved encodings [Reynolds et al FMCAD 2020]

• Applied lazily based on model [Noetzli et al CAV 2022]



Rewriting based on High-Level Abstractions

• Unlike arithmetic:

…rewrite rules for strings are highly non-trivial:

• Used syntax-guided synthesis to search for rewrite rules
• Wrote 3000+ new LOC (C++) in cvc5’s string rewriter module

x+x+7*y=y-4 2*x+6*y+4=0

ctn(“abcde”,“b” x “a”)

substr(x “abcd”,1+len(x),2)

indexof(“abc”x,“d”x,0)

“bc”

⊥

-1

Reynolds et al CAV19



Rewriting based on High-Level Abstractions

• Rules based on high-level abstractions 
• Strings as #characters (e.g. reasoning about their length):

• Strings as elements in containment lattice:

• Strings as multisets of characters:

 With more rewrites, context-dependent simplification applies more often

ctn(xy,substr(x,i,j)) T

xxy“ab”= x“bbbbbb”y ⊥

ctn(substr(x,i,j),x“a”) ⊥

…since LHS contains at least 1 more
occurrences of “a”

…since the second argument is
longer than the first

…since xy contains x, which
contains the second argument



A Decision Procedure for Code Points

• Even with aggressive simplification, still require reductions
• Many extended function reductions require reasoning about characters

• Idea: extend core solver for strings to reason about code points
• Assume ordering on characters of alphabet A:

• c1 < … < c|A|-1 where for each ci, we call i its code point

• code : Str → Int is interpreted as:
1. For w in A1, code(w) is the code point of the single character in w
2. For all other w, code(w) is -1

• Fragment with string length + string code point (w/o concatenation):
• Procedure is sound, complete, terminating
• Can be combined modularly with the existing string solver

Reynolds et al IJCAR20



A Decision Procedure for Code Points

• More efficient reductions that leverage code, including:

• Conversion between strings and integers to_int(x):
 ite(x[i]=“9”,9,ite(x[i]=“8”,8, … ite(x[i]=“0”,0,-1)…)

 ite(48code(x[i])57,code(x[i])-48, -1)

• Regular expression ranges xrange(c1,c2):
 len(x)=1(x=c1  …  x=c2)

 code(c1)  code(x)  code(c2)

• Similar for conversions to lower/upper case, lexicographic ordering

 Reasoning about code points is deferred to cvc5’s linear arithmetic solver

…note 48 is Unicode for “0”



Revisiting Reductions for Strings

• Observation: there exist equivalent ways of expressing the same constraint
• For strings x,y:

z.x=zy  len(z)=1

substr(x,1,len(x)-1)=y

x  Sto_re(y)

… y is the result of removing the first character from x

• Idea: reuse variables in extended functions and regular expression reductions

Reynolds et al FMCAD20



Revisiting Reductions for Strings
• Reduction for substr(x,1,n):

 (len(x)>0  n>0)  (x=z1z2z3  len(z1)=1len(z2)n  … )

• Map W from variables to “witness form”
• E.g. W(z1)=substr(x,0,1), W(z2)=substr(x,1,n), W(z3)= …

• Reduction for xSto_re(y):

 x=z4z5  z4S  z5to_re(y)

 x=z1z5  z1S  z5to_re(y)

… since first component z4 also corresponds to substr(x,0,1) 

• Witness forms can leverage rewriting , share variables zi and zj when W(zi)=W(zj)



Even Faster Conflicts and Lazier Reductions

• Idea: apply simplifications eagerly during CDCL(T) search

• Instrument congruence closure to detect conflicts via:
• Rewriting

• Inferred properties of equivalence classes
• Upper/lower bounds for integer equivalence classes

• Prefix and suffix approximations for string equivalence classes

• Report conflicts as soon as they arise
• Avoids redundant search space

Noetzli et al CAV22

x=“ab”·y

y=“c”

ctn(x,“c”)

…



Conflict

ctn(x,“c”)⊥



Even Faster Conflicts and Lazier Reductions

• Avoid reasoning about unnecessary reduction lemmas

• Regular expression inclusion tests
 E.g. do not reduce xS*aS* if already reduced xS*aS*bS*

• Since L(S*aS*bS*)  L(S*aS* )

• Fast incomplete procedure for language inclusion
• Can also be used for finding conflicts

• Model-based reductions
• Construct candidate model M
 Do not reduce e.g. string predicates p that are already satisfied by M
• Often, negative reg exp memberships are satisfied by current model

Noetzli et al CAV22



Even Faster Conflicts and Lazier Reductions

• Results on 10857 SMT-LIB string benchmarks, 1200 second timeout
• cvc5 solves 10347, z3 solves 8863

Noetzli et al CAV22



Designing a Trustworthy String 
Solver



The Need for SMT Proofs 

• Correctness of cvc5 is highly critical to applications
• In particular, refutational soundness

 An incorrect UNSAT response may tell a user a system is safe when it is not!

• cvc5 is a highly complex code base
• 150k+ LOC, constantly changing with new algorithmic advancements

 Infeasible to verify statically

• Solution: Instrument cvc5 to generate externally checkable proofs

UNSATSAT Proof+

Proof Checker



Proofs in cvc5

• Covers many parts of the system 

• Evaluated on many SMT-LIB theories
Barbosa et al IJCAR22

• Highly detailed and complete

• Fine-grained proofs for rewrites, for strings
Noetzli et al FMCAD22



Proofs in cvc5: Design Principles

• Flexible
• Target several backend formats: LFSC, Lean, Alethe, visualization formats

• Also internally checkable
• Use of native proof checker in cvc5 for the purposes of catching errors early 

• Provide proofs for all components required for fast solving
• User should not have to disable features when asking for proofs

• Acceptable performance overhead (~50% performance overhead)
• Make all optimizations capable of tracking proofs
• Lazy proof generation



Instrumenting cvc5 for Producing Proofs for Strings

• String solving involves many parts of the system:
• Preprocessing
• SAT solver (resolution)
• CNF conversion
• Theory Combination
• UF / Congruence closure
• Linear Arithmetic Solver
• Rewriting 
• Quantifier instantiation (for reductions) 
• Strings Theory Solver

• Core calculus (Liang et al CAV 2014)
• Extended function reductions
• Regular expression unfolding

Preprocessor

Rewriter

Arithmetic

Strings
T-Combination

Quantifiers

UF

SAT Solver



cvc5
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Future Directions



String Solving: Better, Faster

• Better proofs:
• Fine-grained proofs for string rewrites

• User control over granularity

• Better integration with external proof checkers

• Modular extraction of parts of the proof (e.g. SAT skeleton, theory lemmas)

• Faster solver:
• Techniques specialized to constraints of interest to applications

• More advanced solving architectures



Advanced Architectures in cvc5

cvc5

F

UNSAT SAT

• What if we used the CDCL(T) engine as a black box?



cvc5

Advanced Architectures in cvc5

CDCL(T)

UNSAT SAT

• What if we used the CDCL(T) engine as a black box?

F



cvc5

Advanced Architecture: Portfolio

CDCL(T)

UNSAT SAT

CDCL(T)

UNSAT SAT

…

Options #nOptions #1

F



cvc5

Advanced Architecture: Deep Restarts

CDCL(T)

UNSAT SAT

CDCL(T)

UNSAT SAT

…

F

CDCL(T)L1 L1L2

“Learned literals”

• Idea: Restart after learning a set of literals that are implied by F



Deep Restarts

• Given input formula F,a learnable literal l is:
• Meets some syntactic criteria, e.g. l is a literal from F

• Is entailed by input, F ╞ T l

• Strategy to apply deep restarts based on e.g. time threshold
• Restart, preprocess, solve again

 Preprocessing after learning may make problem significantly easier 



Deep Restarts: Possible Variants

• Restart while saving other learned formulas?
• E.g. theory lemmas based on usefulness criteria

• Maintain SAT solver state on restart?
• Dynamic mapping between SAT and theory literals

• Save state to disk and restart later?

• Only solve for part of the input formula at a time?



Summary

• SMT solver cvc5 is efficient tool widely used in applications
• Handles many problem domains

• State-of-the-art for string solving

• Always looking for new features, faster techniques, increased trust

• Thanks for listening!


