
Fast and Trustworthy
SMT Solving for String Constraints

Andrew Reynolds

Aug 24, 2022

Overview

• Satisfiability Modulo Theories (SMT) solvers widely used tools
 the SMT solver cvc5

• cvc5 for strings and regular expressions
• Fast: new advances in SMT string solving

• Trustworthy: producing externally checkable proofs

• Future Directions

Satisfiability Modulo Theories (SMT) Solvers

 SMT solvers are fully automated reasoners, widely used in applications

Software
Verification

Tools

Interactive
Proof

Assistants

Symbolic
Execution
Engines

Verification Conditions Conjectures Path Constraints

Synthesis
Tools,

Planners

Specifications

Security
Analyzers

Queries

UNSATSAT

 Best tool paper, ETAPS 2022

• cvc5 is latest SMT solver in CVC line of tools
• Open source, builds on code base of CVC4

• 1.0 launched in April 2022

cvc5: A Versatile SMT Solver

• Support for many theories
• Arithmetic, Bit-vectors, Arrays, Datatypes, Floating-Points, Strings

• Extended: Sets, Multisets, Finite Fields

• Many features:
• get-model, get-unsat-core, get-proof

• Extended: syntax-guided synthesis, get-interpolant, get-abduct,
get-quant-elim

 If you have a new problem domain, we’d like to support it!

cvc5: SMT and beyond

Equality
with UF, Arrays

Boolean,
Bit-vectors, FP

Datatypes,
Sets, Bags

Linear
Arithmetic

Strings+
Length

-Free
Satisfiability

First-Order 
Satisfiability

Non-linear
Arithmetic

Higher-Order 
Satisfiability

Problem

SAT

EPR Reals Ints

Reals Ints

QBF

Function
Synthesis

BV

…

Theories

QF_BV

Decidable My Research This Talk

cvc5: An Industrial-Strength SMT Solver

• Efficient solving algorithms
• Best overall performance* SMT-COMP 2018, 2019, 2020, 2021, 2022

* shared with predecessor CVC4

• High coding standards
• Streamlined API, high code coverage, code reviews

• Extensively tested
• 3000+ hand-crafted regressions and counting
• Fuzzed internally (Murxla [Niemetz et al CAV22]) and by external groups

• New: Produces externally checkable proofs

cvc5: state-of-the-art SMT solver for Strings

• Fast solving techniques
• CDCL(T)

• Core calculus for strings and length constraints

• Extensions to extended functions and regular expressions

• Trustworthy results
• Proof production for the full theory of strings

Designing a Fast String Solver

Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

Theory
Solver(s)

CDCL(T)

Satisfying Assignments

UNSAT SAT

Conflicts, Lemmas

Preprocessor

Nieuwenhius et al
JACM 2006

Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

CDCL(T)

Satisfying Assignments

Conflicts, Lemmas

Arithmetic

Arrays

Datatypes

Bit-vectors

StringsT-Combination

• Centralized methods (Nelson-Oppen, polite) for combining theories

Preprocessor

Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

CDCL(T)

Satisfying Assignments

Conflicts, Lemmas

Arithmetic

Arrays

Datatypes

Bit-vectors

StringsT-Combination

Preprocessor

• Focus of this talk: solver for the theory of strings and regular expressions

Strings and RegExp: Theoretical Challenges

• Many applications require extended string functions and RegEx memberships
• ctn(x,“a”), to_lower(x)=“abc”, xrange(“A”,”Z”)

Membership
Constraints

Extended

Functions

Length
Constraints

Word
Equations

PSPACE

OPEN

UNDECIDABLE

SMT Solvers for Strings: Timeline
2012 2017 202220142009

First release
CVC4 1.0

CVC4 project
begins

cvc5 1.0 release

[Liang et al
CAV 14]

[Reynolds et al
CAV 17]

Z3Str Z3Str2 Z3Seq Trau Z3Str3 Z3Str4 …. S3

Norn

Other SMT String Solvers

CVC4 support
for strings + RE

[Reynolds et al
CAV 19]

[Reynolds et al
FMCAD 20]

[Reynolds et al
IJCAR 20]

Support for
Extended String

Functions

OSTRICH

2020

Support
For Proofs

[Noetzli et al
CAV 22]

[Noetzli et al
FMCAD 22]

CVC papers on strings

A Theory Solver for Strings [Liang et al, CAV 14]

• Designed a string solver for concat+length that is:
• Refutation and model sound (“unsat” and “sat” can be trusted)

• Not terminating in general

• Efficient in practice

x=“abc”·y

|y|=4

x=“b”·z

String solver x“abc”·y  x“b”·z

Conflict Clause

Extended Theory of Strings [Reynolds et al CAV17]

• Support extended string functions commonly used in applications
• substr(x,n,m) substring of x at position n of length at most m
• ctn(x,y) true if x contains substring y
• indexof(x,y,n) position of y in x starting from position n
• replace(x,y,z) result of replacing first occurrence of y in x by z

• For example: ctn(x,“c”) denotes x does not contain substring “c”

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver

Extended Theory of Strings [Reynolds et al CAV17]

• Use reduction lemmas

• Expensive:
Introduces 3*|x| string vars

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver 0n<|x|.substr(x,n,1)“c”

substr(x,0,1)“c”  …  substr(x,n,1)“c”

x=z11k1z21 

|z11|=0 

k1“c” 

x=z1nknz2n 

|z1n|=n 

kn“c”

...

Bound length of x

Reduce substr

Reduction lemma

Context-Dependent Simplification [Reynolds et al CAV17]

• Alternatively: use context-dependent simplification:
x=“ab”·y  y=“c” ╞ x=“abc”

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver

• Alternatively: use context-dependent simplification:
x=“ab”·y  y=“c” ╞ x=“abc”

• Thus:

ctn(x,“c”){x→“abc”}  ctn(“abc”,“c”)  ⊥

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver

By substitution By rewriting

x“ab”·y  y“c” 

ctn(x,“c”)

Conflict Clause

Context-Dependent Simplification [Reynolds et al CAV17]

Recent Developments for Theory of Strings

• Context-dependent simplifications
• Use aggressive rewriting [Reynolds et al CAV 2019]

• Applied eagerly [Noetzli et al CAV 2022]

• Reduction lemmas
• Leverage String-to-code point (code) conversion [Reynolds et al IJCAR 2020]

• Improved encodings [Reynolds et al FMCAD 2020]

• Applied lazily based on model [Noetzli et al CAV 2022]

Rewriting based on High-Level Abstractions

• Unlike arithmetic:

…rewrite rules for strings are highly non-trivial:

• Used syntax-guided synthesis to search for rewrite rules
• Wrote 3000+ new LOC (C++) in cvc5’s string rewriter module

x+x+7*y=y-4 2*x+6*y+4=0

ctn(“abcde”,“b” x “a”)

substr(x “abcd”,1+len(x),2)

indexof(“abc”x,“d”x,0)

“bc”

⊥

-1

Reynolds et al CAV19

Rewriting based on High-Level Abstractions

• Rules based on high-level abstractions
• Strings as #characters (e.g. reasoning about their length):

• Strings as elements in containment lattice:

• Strings as multisets of characters:

 With more rewrites, context-dependent simplification applies more often

ctn(xy,substr(x,i,j)) T

xxy“ab”= x“bbbbbb”y ⊥

ctn(substr(x,i,j),x“a”) ⊥

…since LHS contains at least 1 more
occurrences of “a”

…since the second argument is
longer than the first

…since xy contains x, which
contains the second argument

A Decision Procedure for Code Points

• Even with aggressive simplification, still require reductions
• Many extended function reductions require reasoning about characters

• Idea: extend core solver for strings to reason about code points
• Assume ordering on characters of alphabet A:

• c1 < … < c|A|-1 where for each ci, we call i its code point

• code : Str → Int is interpreted as:
1. For w in A1, code(w) is the code point of the single character in w
2. For all other w, code(w) is -1

• Fragment with string length + string code point (w/o concatenation):
• Procedure is sound, complete, terminating
• Can be combined modularly with the existing string solver

Reynolds et al IJCAR20

A Decision Procedure for Code Points

• More efficient reductions that leverage code, including:

• Conversion between strings and integers to_int(x):
 ite(x[i]=“9”,9,ite(x[i]=“8”,8, … ite(x[i]=“0”,0,-1)…)

 ite(48code(x[i])57,code(x[i])-48, -1)

• Regular expression ranges xrange(c1,c2):
 len(x)=1(x=c1  …  x=c2)

 code(c1)  code(x)  code(c2)

• Similar for conversions to lower/upper case, lexicographic ordering

 Reasoning about code points is deferred to cvc5’s linear arithmetic solver

…note 48 is Unicode for “0”

Revisiting Reductions for Strings

• Observation: there exist equivalent ways of expressing the same constraint
• For strings x,y:

z.x=zy  len(z)=1

substr(x,1,len(x)-1)=y

x  Sto_re(y)

… y is the result of removing the first character from x

• Idea: reuse variables in extended functions and regular expression reductions

Reynolds et al FMCAD20

Revisiting Reductions for Strings
• Reduction for substr(x,1,n):

 (len(x)>0  n>0)  (x=z1z2z3  len(z1)=1len(z2)n  …)

• Map W from variables to “witness form”
• E.g. W(z1)=substr(x,0,1), W(z2)=substr(x,1,n), W(z3)= …

• Reduction for xSto_re(y):

 x=z4z5  z4S  z5to_re(y)

 x=z1z5  z1S  z5to_re(y)

… since first component z4 also corresponds to substr(x,0,1)

• Witness forms can leverage rewriting , share variables zi and zj when W(zi)=W(zj)

Even Faster Conflicts and Lazier Reductions

• Idea: apply simplifications eagerly during CDCL(T) search

• Instrument congruence closure to detect conflicts via:
• Rewriting

• Inferred properties of equivalence classes
• Upper/lower bounds for integer equivalence classes

• Prefix and suffix approximations for string equivalence classes

• Report conflicts as soon as they arise
• Avoids redundant search space

Noetzli et al CAV22

x=“ab”·y

y=“c”

ctn(x,“c”)

…



Conflict

ctn(x,“c”)⊥

Even Faster Conflicts and Lazier Reductions

• Avoid reasoning about unnecessary reduction lemmas

• Regular expression inclusion tests
 E.g. do not reduce xS*aS* if already reduced xS*aS*bS*

• Since L(S*aS*bS*)  L(S*aS*)

• Fast incomplete procedure for language inclusion
• Can also be used for finding conflicts

• Model-based reductions
• Construct candidate model M
 Do not reduce e.g. string predicates p that are already satisfied by M
• Often, negative reg exp memberships are satisfied by current model

Noetzli et al CAV22

Even Faster Conflicts and Lazier Reductions

• Results on 10857 SMT-LIB string benchmarks, 1200 second timeout
• cvc5 solves 10347, z3 solves 8863

Noetzli et al CAV22

Designing a Trustworthy String
Solver

The Need for SMT Proofs

• Correctness of cvc5 is highly critical to applications
• In particular, refutational soundness

 An incorrect UNSAT response may tell a user a system is safe when it is not!

• cvc5 is a highly complex code base
• 150k+ LOC, constantly changing with new algorithmic advancements

 Infeasible to verify statically

• Solution: Instrument cvc5 to generate externally checkable proofs

UNSATSAT Proof+

Proof Checker

Proofs in cvc5

• Covers many parts of the system

• Evaluated on many SMT-LIB theories
Barbosa et al IJCAR22

• Highly detailed and complete

• Fine-grained proofs for rewrites, for strings
Noetzli et al FMCAD22

Proofs in cvc5: Design Principles

• Flexible
• Target several backend formats: LFSC, Lean, Alethe, visualization formats

• Also internally checkable
• Use of native proof checker in cvc5 for the purposes of catching errors early

• Provide proofs for all components required for fast solving
• User should not have to disable features when asking for proofs

• Acceptable performance overhead (~50% performance overhead)
• Make all optimizations capable of tracking proofs
• Lazy proof generation

Instrumenting cvc5 for Producing Proofs for Strings

• String solving involves many parts of the system:
• Preprocessing
• SAT solver (resolution)
• CNF conversion
• Theory Combination
• UF / Congruence closure
• Linear Arithmetic Solver
• Rewriting
• Quantifier instantiation (for reductions)
• Strings Theory Solver

• Core calculus (Liang et al CAV 2014)
• Extended function reductions
• Regular expression unfolding

Preprocessor

Rewriter

Arithmetic

Strings
T-Combination

Quantifiers

UF

SAT Solver

cvc5

Proof Architecture

Preprocessor

Input F

Postprocessor

Proof Sketch

Proof
(internal format)

Proof Converter X

Proof
(format X)

SAT Solver

Arithmetic

StringsT-Combination

UF

UNSAT

UNSAT

+

+

Proof Checker X

Proof Converter Y…

…

Future Directions

String Solving: Better, Faster

• Better proofs:
• Fine-grained proofs for string rewrites

• User control over granularity

• Better integration with external proof checkers

• Modular extraction of parts of the proof (e.g. SAT skeleton, theory lemmas)

• Faster solver:
• Techniques specialized to constraints of interest to applications

• More advanced solving architectures

Advanced Architectures in cvc5

cvc5

F

UNSAT SAT

• What if we used the CDCL(T) engine as a black box?

cvc5

Advanced Architectures in cvc5

CDCL(T)

UNSAT SAT

• What if we used the CDCL(T) engine as a black box?

F

cvc5

Advanced Architecture: Portfolio

CDCL(T)

UNSAT SAT

CDCL(T)

UNSAT SAT

…

Options #nOptions #1

F

cvc5

Advanced Architecture: Deep Restarts

CDCL(T)

UNSAT SAT

CDCL(T)

UNSAT SAT

…

F

CDCL(T)L1 L1L2

“Learned literals”

• Idea: Restart after learning a set of literals that are implied by F

Deep Restarts

• Given input formula F,a learnable literal l is:
• Meets some syntactic criteria, e.g. l is a literal from F

• Is entailed by input, F ╞ T l

• Strategy to apply deep restarts based on e.g. time threshold
• Restart, preprocess, solve again

 Preprocessing after learning may make problem significantly easier

Deep Restarts: Possible Variants

• Restart while saving other learned formulas?
• E.g. theory lemmas based on usefulness criteria

• Maintain SAT solver state on restart?
• Dynamic mapping between SAT and theory literals

• Save state to disk and restart later?

• Only solve for part of the input formula at a time?

Summary

• SMT solver cvc5 is efficient tool widely used in applications
• Handles many problem domains

• State-of-the-art for string solving

• Always looking for new features, faster techniques, increased trust

• Thanks for listening!

