Fast and Trustworthy
SMT Solving for String Constraints

Andrew Reynolds
Aug 24, 2022

L

i

The UNIVERSITY
OF lowa

Overview

e Satisfiability Modulo Theories (SMT) solvers widely used tools
= the SMT solver cvc5

* cvc5 for strings and regular expressions
* Fast: new advances in SMT string solving
e Trustworthy: producing externally checkable proofs

 Future Directions CVCS

Satisfiability Modulo Theories (SMT) Solvers

Software Interactive Symbolic Synthesis :

e . : Security
Verification Proof Execution Tools,
:) Analyzers
Tools Assistants Engines Planners
Verification Conditions Conjectures Path Constraints Specifications Queries
l 9,
CVvC

/\
* UNSAT

= SMT solvers are fully automated reasoners, widely used in applications

cvch: A Versatile and Industrial-Strength
SMT Solver*

Haniel Barbosa?@®, Clark Barrett'@®, Martin Brain*@®, Gereon Kremer!®,
Hanna Lachnitt!@, Makai Mann!@®, Abdalrhman Mohamed?@®, Mudathir
Mohamed?®, Aina Niemetz! ®)@®, Andres Notzli'®, Alex Ozdemir'®,
Mathias Preiner!@®, Andrew Reynolds?®, Ying Sheng!®, Cesare Tinelli2®,

and Yoni Zohar®®

! Stanford University, Stanford, USA
2 The University of Iowa, Iowa City, USA
3 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
4 City, University of London, London, UK
® Bar-Ilan University, Tel Aviv, Israel

e cvch is latest SMT solver in CVC line of tools l C '

e Open source, builds on code base of CVC4
* 1.0 launched in April 2022 — Best tool paper, ETAPS 2022

cveh: Aand Industrial-Strength
SMT Solver*

Haniel Barbosa?@®, Clark Barrett'®, Martin Brain*@®, Gereon Kremer!'®,
Hanna Lachnitt!@, Makai Mann!@®, Abdalrhman Mohamed?@®, Mudathir
Mohamed?®, Aina Niemetz! &)@, Andres Notzli'®, Alex Ozdemir!®
Mathias Preiner'@®, Andrew Reynolds?®, Ying Sheng'@®, Cesare Tinelli?®
and Yoni Zohar®@®

! Stanford University, Stanford, USA
2 The University of Iowa, Iowa City, USA
3 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
4 City, University of London, London, UK
® Bar-Ilan University, Tel Aviv, Israel

cvch: A SMT Solver

e Support for many theories
* Arithmetic, Bit-vectors, Arrays, Datatypes, Floating-Points, Strings
* Extended: Sets, Multisets, Finite Fields

* Many features:
* get-model, get—-unsat-core, get-proof

* Extended: syntax-guided synthesis, get-interpolant, get-abduct,
get—-quant-elim

= If you have a new problem domain, we’d like to support it!

cve5: SMT and beyond

Problem

Higher-Order V
Satisfiability

Function
Synthesis

First-Order V
Satisfiability

QBF BV

Ints

V-Free SAT QF BV
Satisfiability

Boolean, Equality Datatypes, Linear Non-linear
Bit-vectors, FP with UF, Arrays Sets, Bags Arithmetic Arithmetic

B Decidable My Research

Ints

Strings+
Length

Theories

This Talk

cveh: A Versatile and|Industrial-Strength

SMT Solver*

Haniel Barbosa?@®, Clark Barrett'®, Martin Brain*@®, Gereon Kremer!'®,
Hanna Lachnitt!@®, Makai Mann!@®, Abdalrhman Mohamed?@®, Mudathir
Mohamed?®, Aina Niemetz! ®®, Andres Notzli'®, Alex Ozdemir'®,
Mathias Preiner'®, Andrew Reynolds?®, Ying Sheng!®, Cesare Tinelli’®,
and Yoni Zohar>®

! Stanford University, Stanford, USA
2 The University of Iowa, Iowa City, USA
3 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
4 City, University of London, London, UK
® Bar-Ilan University, Tel Aviv, Israel

cvch: An SMT Solver

* Efficient solving algorithms

* Best overall performance* SMT-COMP 2018, 2019, 2020, 2021, 2022
* shared with predecessor CVC4

* High coding standards

* Streamlined API, high code coverage, code reviews

e Extensively tested
e 3000+ hand-crafted regressions and counting
* Fuzzed internally (Murxla [Niemetz et al CAV22]) and by external groups

* New: Produces externally checkable proofs

cvch: state-of-the-art SMT solver for Strings

* Fast solving techniques
e CDCL(T)
e Core calculus for strings and length constraints
* Extensions to extended functions and regular expressions

* Trustworthy results
* Proof production for the full theory of strings

Designing a Fast String Solver

Architecture of cvch

*.smt2, ...

Preprocessor

SAT Solver m Theory
Solver(s)

Nieuwenhius et al
JACM 2006

Architecture of cvch

*.smt2, ...

Preprocessor

SAT Solver

cveh

Satisfying Assignments

——>

< CDCL(T) >

Conflicts, Lemmas

Arithmetic

T-Combination

Datatypes

| strings

* Centralized methods (Nelson-Oppen, polite) for combining theories

Architecture of cvch

*.smt2, ...

Preprocessor cveh
Satisfying Assignments |—

T-Combination
SAT Solver < CDCL(T) >

.
Conflicts, Lemmas [¢—

* Focus of this talk: solver for the theory of strings and reqular expressions

Strings and Regkxp: Theoretical Challenges

Membership
Constraints

Extended

Functions

() UNDECIDABLE

Length

Constraints

() OPEN

Word
Equations

PSPACE

O

* Many applications require extended string functions and RegEx memberships
* ctn(x,%a”), to lower(x)=%“abc”, xerange (“A”,"72")

SMT Solvers for Strings: Timeline

2009 2012 2014 2017 2020 2022
| | | | | R
| | | | | |
CvCa p.roject First release CVC4 support Support for Support oveS 1.0 release
begins CvC4 1.0 for strings + RE Extended String For Proofs
Functions

[Reynolds et al

CVC pabers on strings [Liang et al [Reynolds et al [Reynolds et al FMCAD 20]
pap g CAV 14] CAV 17] CAV 19] [Reynolds et al
IJCAR 20]
Z3Str S3 Z3Str2 7Z3Seq Trau Z3Str3 Z3Str4

Other SMT String Solvers
Norn OSTRICH

[Noetzli et al
CAV 22]

[Noetzli et al
FMCAD 22]

A Theory Solver for Strings [Liang et al, CAV 14]

String solver x#Vabc” 'y v x#£“b” -z

\)
f

Conflict Clause

* Designed a string solver for concat+length that is:
e Refutation and model sound (“unsat” and “sat” can be trusted)
* Not terminating in general
 Efficient in practice

Extended Theory of Strings [Reynolds et al CAV17]

X=“ab” . y

y="c” String solver

—ctn(x,Vc”)

* Support extended string functions commonly used in applications

e substr (x,n,m) substring of x at position n of length at most m
* ctn (x,V) true if x contains substring v

* indexof (x, vy, n) position of v in x starting from position n

* replace(xX,vy, z) result of replacing first occurrence of v in x by z

e For example: —ctn (x, “c”) denotes x does not contain substring “c”

Extended Theory of Strings [Reynolds et al CAV17]

Reduction lemma

)

(\

String solver

Bound length of x

e Use reduction lemmas Reduce substr

* Expensive:
Introduces 3* | x| string vars

Context-Dependent Simplification [Reynolds et al CAV17]

String solver

 Alternatively: use context-dependent simplification:
X:\\ab// ,y /\ y:\\C,, FX:\\abC/I

Context-Dependent Simplification [Reynolds et al CAV17]

\\ 144

Xz“ ab o,
Y x#Yab” ry v y#EYC” v

— W\ 144 0
y=¢C String solver b (5, Ve

—ctn(x,"'c”) \ Y]

Conflict Clause

 Alternatively: use context-dependent simplification:

\ 144

x="ab” -y A y="cC Fx=“abc”
* Thus:
—ctn (x, “c”) {x—>Yabc”} <& —ctn(Mabc”,%“"W’) & 1L

By substitution By rewriting

Recent Developments for Theory of Strings

* Context-dependent simplifications

* Use aggressive rewriting [Reynolds et al CAV 2019]
* Applied eagerly [Noetzli et al CAV 2022]

* Reduction lemmas
* Leverage String-to-code point (code) conversion [Reynolds et al IJCAR 2020}
* Improved encodings [Reynolds et al FMICAD 2020]
* Applied lazily based on model [Noetzli et al CAV 2022]

Rewriting based on High-Level Abstractions

 Unlike arithmetic:

X+x+/7*y=y-4

...rewrite ru

es for strings are highly non-trivial:

ctn (“abcde”, “b”. X “a”) ——

substr (x- Yabcd”, 1+len(x),2)

indexof (“abc”-x, “"d"”-x, 0)

2*x+6*y+4=0

e Used syntax-guided synthesis to search for rewrite rules
* Wrote 3000+ new LOC (C++) in cvc5’s string rewriter module

Reynolds et al CAV19

Rewriting based on High-Level Abstractions

* Rules based on high-level abstractions
 Strings as #characters (e.g. reasoning about their length):

\\ 144

ctn (substr(x,1,7]),x%a

)

 Strings as elements in containment lattice:

ctn (x'y, substr (x,1,7))

 Strings as multisets of characters:

x-x-y-vab”= x-“bbbbbb”-y

1

1

...since the second argument is
longer than the first

...since x-y contains x, which
contains the second argument

...since LHS contains at least 1 more
occurrences of “a”

—> With more rewrites, context-dependent simplification applies more often

A Decision Procedure for Code Points

* Even with aggressive simplification, still require reductions
 Many extended function reductions require reasoning about characters

* |dea: extend core solver for strings to reason about code points
* Assume ordering on characters of alphabet A:
* ¢, < .. < C| 4., Where for each c;, we call i its code point

e code : Str > Int isinterpreted as:
1. Forwin A} code (w) isthe code point of the single character in w
2. Forall other w, code (w) is -1

* Fragment with string length + string code point (w/o concatenation):
* Procedure is sound, complete, terminating

e Can be combined modularly with the existing string solver Reynolds et al IJCAR20

A Decision Procedure for Code Points

* More efficient reductions that leverage code, including:

* Conversion between strings and integers to int (x):
® ite(x[1]1="9",9,ite(x[1]="8",8, ..ite(x[i]="07,0,-1)..)
— 1te (48<code(x[1])<57,code(x[1])-48, -1)
...note 48 is Unicode for “0”

* Regular expression ranges xerange (c,,C,):
® len(x)=1A(X=C, V .. V X=C,)
= code (c;) < code(x) < code(c,)

 Similar for conversions to lower/upper case, lexicographic ordering

—> Reasoning about code points is deferred to cvc5’s linear arithmetic solver

Revisiting Reductions for Strings

* Observation: there exist equivalent ways of expressing the same constraint
* For strings x,v:

dz.x=zy A len(z)=1
substr(x,1,len(x)-1)=y
x € X-to re(y)

... y is the result of removing the first character from x

* Idea: reuse variables in extended functions and regular expression reductions

Reynolds et al FMCAD20

Revisiting Reductions for Strings

Reduction for substr (x,1,n) :

= (len(x)>0 A n>0) = (x=2;2,25 A len(z;)=1Alen(z,)<n A ..

Map W from variables to “witness form”
* Eg.W(z,)=substr(x,0,1), W(z,)=substr(x,1,n), W(z;)= ..

Reduction for xeX-to re(y) :

® x=z,72: N Z,€X A Z:€t0o re(y)

= X=Z;'Z: A Z;€EXL A z:€t0o re(y)

... since first component z, also corresponds to substr (x, 0, 1)

Witness forms can leverage rewriting 1, share variables z, and z, when W (

)= (2

R

Even Faster Conflicts and Lazier Reductions
* ldea: apply simplifications eagerly during CDCL(T) search meEn et /\

* Instrument congruence closure to detect conflicts via: [y2vap” .y/\
* Rewriting
* Inferred properties of equivalence classes y="c” /\

* Upper/lower bounds for integer equivalence classes
* Prefix and suffix approximations for string equivalence classes Conflict

* Report conflicts as soon as they arise /\

* Avoids redundant search space ®
Noetzli et al CAV22

—ctn (x,“c”)<=1

Even Faster Conflicts and Lazier Reductions

* Avoid reasoning about unnecessary reduction lemmas

* Regular expression inclusion tests

® E.g.do notreduce xeX*-a-2* if already reduced xeX*-a-Z*-b-Xx*
e Since L(X*-a-Z*xb-2*) C L(Z*-a-X*)

* Fast incomplete procedure for language inclusion

e Can also be used for finding conflicts

* Model-based reductions
e Construct candidate model M
® Do not reduce e.g. string predicates p that are already satisfied by M
e Often, negative reg exp memberships are satisfied by current model

Noetzli et al CAV22

Even Faster Conflicts and Lazier Reductions

103§

101

10-1 10° 10! 102 107

cvcS-vemr

* Results on 10857 SMT-LIB string benchmarks, 1200 second timeout

e cvc5 solves 10347, z3 solves 8863
Noetzli et al CAV22

Designing a Trustworthy String
Solver

The Need for SMT Proofs

* Correctness of cvc5 is highly critical to applications

* |n particular, refutational soundness
= An incorrect UNSAT response may tell a user a system is safe when it is not!

e cvc5 is a highly complex code base

e 150k+ LOC, constantly changing with new algorithmic advancements
= Infeasible to verify statically

 Solution: Instrument cvc5 to generate externally checkable proofs

cves!

Proof Checker
/\> ' '

SAT UNSAT + [RGBl @

]

Flexible Proof Production in an

Pro OfS INn cveh Industrial-Strength SMT Solver*

Haniel Barbosa!, Andrew Reynolds?, Gereon Kremer®, Hanna Lachnitt®, Aina
Niemetz?, Andres Notzli®, Alex Ozdemir®, Mathias Preiner?, Arjun

¢ Cove 'S Ma ny pa rtS Of the SYStem Viswanathan?, Scott Viteri®, Yoni Zohar?, Cesare Tinelli?, Clark Barrett?
: ! Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
e Evaluated on many SMT-LIB theories AT i o T, o TS
3 Stanford University, Stanford, USA
Ba rbosa et al ”CARZZ 4 Bar-Ilan University, Ramat Gan, Israel

Reconstructing Fine-Grained Proofs of Complex
Rewrites Using a Domain-Specific Language

Andres Notzli*, Haniel Barbosat, Aina Niemetz*, Mathias Preiner®,
Andrew ReynoldsT, Clark Barrett*, and Cesare Tinellif

® H igh Iy d eta i I ed an d com p I ete *Stanford University, fThe University of Towa, Universidade Federal de Minas Gerais

* Fine-grained proofs for rewrites, for strings
Noetzli et al FMICAD22

Proofs in cvch: Design Principles

* Flexible
* Target several backend formats: LFSC, Lean, Alethe, visualization formats

* Also internally checkable
* Use of native proof checker in cvc5 for the purposes of catching errors early

* Provide proofs for all components required for fast solving
e User should not have to disable features when asking for proofs

e Acceptable performance overhead (~¥50% performance overhead)
* Make all optimizations capable of tracking proofs
* Lazy proof generation

Instrumenting cvc5 for Producing Proofs for Strings

* String solving involves many parts of the system:

* Preprocessing
e SAT solver (resolution)
* CNF conversion

3 0

Arithmetic

Preprocessor

* UF / Congruence closure UF

* Linear Arithmetic Solver Rewriter _ :
Quantifiers

* Rewriting

e Quantifier instantiation (for reductions)

e Strings Theory Solver
e Core calculus (Liang et al CAV 2014)
e Extended function reductions
e Regular expression unfolding

Proof Architecture

SAT Solver

4< Arithmetic

T-Combination> Strings

/

UNSAT

+ | Proof Sketch

Proof
(internal format)

Proof Converter X

Proof Converter Y

Future Directions

String Solving: Better, Faster

* Better proofs:

* Fine-grained proofs for string rewrites
e User control over granularity

* Better integration with external proof checkers
* Modular extraction of parts of the proof (e.g. SAT skeleton, theory lemmas)

* Faster solver:

* Techniques specialized to constraints of interest to applications
* More advanced solving architectures

Advanced Architectures in cvch

* What if we used the CDCL(T) engine as a black box?

F

cvch

!

UNSAT SAT

Advanced Architectures in cvch

* What if we used the CDCL(T) engine as a black box?

Advanced Architecture: Portfolio

| CVCS |
vOptlons #1 \O;ztlons #n
CDCL(T) CDCL(T)

Advanced Architecture: Deep Restarts

* |dea: Restart after learning a set of literals that are implied by F

F
___ cves
v— _—a —
CDCL(T) 1.~ CDCL(T) - t.AL. CDCL(T)

Deep Restarts

* Given input formula F, a learnable literal 1 is:
* Meets some syntactic criteria, e.g. 1 is a literal from F
* |s entailed by input, F |=T 1

 Strategy to apply deep restarts based on e.g. time threshold
e Restart, preprocess, solve again

—> Preprocessing after learning may make problem significantly easier

Deep Restarts: Possible Variants

e Restart while saving other learned formulas?
* E.g. theory lemmas based on usefulness criteria

* Maintain SAT solver state on restart?
* Dynamic mapping between SAT and theory literals

e Save state to disk and restart later?

* Only solve for part of the input formula at a time?

Summary

* SMT solver cvc5 is efficient tool widely used in applications
* Handles many problem domains
 State-of-the-art for string solving

* Always looking for new features, faster techniques, increased trust

* Thanks for listening!

