A Decision Procedure for (Co)datatypes in SMT Solvers

Andrew Reynolds
Jasmin Christian Blanchette
CADE August 4, 2015

Introductory Examples

Introductory Examples

datatype nat $=$ Z
| S(nat)
datatype list $_{\tau}=$
Nil_{τ}
| Cons $_{\tau}\left(\tau\right.$, list $\left._{\tau}\right)$

Introductory Examples

datatype nat = Z
| S(nat)
datatype list $_{\tau}=$ Nil_{τ}
| Cons $_{\tau}\left(\tau\right.$, list $\left._{\tau}\right)$
codatatype enat $=$ EZ
| ES(enat)
codatatype list $_{\tau}=$ LNil $_{\tau}$
| LCons $_{\tau}\left(\tau\right.$, llist $\left._{\tau}\right)$

Introductory Examples

datatype nat = Z
| S(nat)
datatype list $_{\tau}=$ Nil_{τ}
| Cons $_{\tau}\left(\tau\right.$, list $\left._{\tau}\right)$
codatatype enat = EZ

ES(enat)
codatatype llist $_{\tau}=$ LNil $_{\tau}$
| LCons $_{\tau}\left(\tau\right.$, llist $\left._{\tau}\right)$
codatatype stream ${ }_{\tau}=$
$\operatorname{SCons}_{\tau}\left(\tau\right.$, stream $\left._{\tau}\right)$

Introductory Examples

datatype nat = Z
| S(nat)
datatype list $_{\tau}=$
Nil_{τ}
| Cons $_{\tau}(\tau$, list $)$
Codatatypes need not be well-founded
codatatype enat = EZ
| ES(enat)
codatatype llist $_{\tau}=$ LNil $_{\tau}$
| LCons $_{\tau}\left(\tau\right.$, llist $\left._{\tau}\right)$
codatatype stream ${ }_{\tau}=$ $\operatorname{SCons}_{\tau}\left(\tau\right.$, stream $\left._{\tau}\right)$

Introductory Examples

Introductory Examples
$x \neq S(x)$

Introductory Examples

Introductory Examples

$x \neq S(x) \mid \exists x . x \approx E S(x)$

Cyclic values exist

Introductory Examples

$x \not \approx S(x) |$| $\exists x \cdot x \approx E S(x)$ |
| :--- |
| $x \approx E S(x)$ |
| $y \approx E S(y)$ |

Cyclic values exist

Introductory Examples

$x \neq S(x) \quad$| $\exists x . x \approx E S(x) \quad$ Cyclic values exist |
| :--- |
| $x \approx E S(x) \approx \operatorname{ES}(\operatorname{ES}(E S(\ldots)))$ |
| $y \approx E S(y) \approx \operatorname{ES}(\operatorname{ES}(E S(\ldots)))$ |

Introductory Examples

$\left.x \neq S(x) \quad \begin{array}{l}\exists x . x \approx E S(x) \\ x \approx E S(x) \approx \operatorname{ES}(E S(E S(\ldots))) \\ y \approx E S(y) \approx \operatorname{ES}(E S(E S(\ldots)))\end{array}\right\} \approx$

Introductory Examples

$x \neq S(x)$	$\exists \mathrm{x} . \mathrm{x} \approx \mathrm{ES}(\mathrm{x}) \quad \text { Cyclic values exist }$
...but they are equal up to their expansion	$\left.\begin{array}{l} x \approx \operatorname{ES}(x) \approx \operatorname{ES}(\operatorname{ES}(\operatorname{ES}(\ldots))) \\ y \approx \operatorname{ES}(y) \approx \operatorname{ES}(\operatorname{ES}(\operatorname{ES}(\ldots))) \end{array}\right\} \approx$

Introductory Examples

$x \neq S(x)$	$\exists x . x \approx \operatorname{ES}(x) \quad$ Cyclic values exist
...but they are equal up to their expansion	$\left.\begin{array}{l}x \approx \operatorname{ES}(x) \approx \operatorname{ES}(\operatorname{ES}(\operatorname{ES}(\ldots))) \\ y \approx \operatorname{ES}(y) \approx \operatorname{ES}(\operatorname{ES}(\operatorname{ES}(\ldots .)))\end{array}\right] \approx$
	μ-notation: $x s \approx \operatorname{LCons}(1, \mu$ ys. $\operatorname{LCons}(0, \operatorname{LCons}(9, y s))$ $x \approx \mu y . \operatorname{ES}(y)$

Introductory Examples

Introductory Examples

$$
\text { xs } \approx \operatorname{LCons}(0, \operatorname{LCons}(1, \operatorname{LCons}(2, \ldots .)))
$$

Introductory Examples

$$
\mathrm{xs} \approx \operatorname{LCons}(0, \text { LCons(} 1, \operatorname{LCons}(2, \ldots .)))
$$

Acyclic infinite values exist too, but they cannot be specified by finite q.f. formulas

Introductory Examples

	$\begin{gathered} \left.\mathrm{xs}_{\mathrm{s}} \approx \operatorname{LCons}(0, \operatorname{LCons(}(1, \text { LCons (} 2, \ldots .))\right) \\ \text { Acyclic infinite values } \\ \text { exist too, but they cannot be } \\ \text { specified by finite } 9 . f \text {. formulas } \end{gathered}$
datatype values $=$ all finite ground constructor terms (and only those)	

Introductory Examples

$$
\text { xs } \approx \text { LCons(0, LCons(1, LCons(2,...))) }
$$

Acyclic infinite values exist too, but they cannot be specified by finite q.f. formulas
datatype values = all finite ground constructor terms (and only those)
codatatype values $=$ all finite or infinite ground constructor terms (and only those)

Our contributions

- Generalized [Barrett et al. 2007] (used in CVC3) to codatatypes
- First decision procedure for codatatypes in SMT solvers
- Efficient implementation in CVC4
- Evaluation on Isabelle benchmarks

$\mathcal{D C}$: Theory of (Co)datatypes

$\mathcal{D C}$: Theory of (Co)datatypes

- Specification:

$$
\begin{aligned}
&\left(\text { co datatype } \delta_{1}\right.=\mathrm{C}_{11}\left(\left[\mathrm{~s}_{11}^{1}:\right] \tau_{11}^{1}, \ldots,\left[\mathrm{~s}_{11}^{n_{11}}:\right] \tau_{11}^{n_{11}}\right)|\cdots| \mathrm{C}_{1 m_{1}}(\ldots) \\
& \vdots \\
& \text { and } \delta_{\ell}=\mathrm{C}_{\ell 1}(\ldots)|\cdots| \mathrm{C}_{\ell m_{\ell}}(\ldots)
\end{aligned}
$$

$\mathscr{D C}$: Theory of (Co)datatypes

- Specification:

$$
\begin{aligned}
&\left(\text { co datatype } \delta_{1}\right.=\mathrm{C}_{11}\left(\left[\mathrm{~s}_{11}^{1}:\right] \tau_{11}^{1}, \ldots,\left[\mathrm{~s}_{11}^{n_{11}}:\right] \tau_{11}^{n_{11}}\right)|\cdots| \mathrm{C}_{1 m_{1}}(\ldots) \\
& \vdots \\
& \text { and } \delta_{\ell}=\mathrm{C}_{\ell 1}(\ldots)|\cdots| \mathrm{C}_{\ell m_{\ell}}(\ldots)
\end{aligned}
$$

- Properties:

$$
\begin{aligned}
& \text { Distinctness: } \mathrm{C}_{i j}(\bar{x}) \not \approx \mathrm{C}_{i j^{\prime}}(\bar{y}) \quad \text { if } j \neq j^{\prime} \\
& \text { Injectivity: } \mathrm{C}_{i j}\left(x_{1}, \ldots, x_{n_{i j}}\right) \approx \mathrm{C}_{i j}\left(y_{1}, \ldots, y_{n_{i j}}\right) \longrightarrow x_{k} \approx y_{k} \\
& \text { Exhaustiveness: } \mathrm{d}_{i 1}(x) \vee \cdots \vee \mathrm{d}_{i m_{i}}(x) \\
& \text { Selection: } \mathrm{s}_{i j}^{k}\left(\mathrm{C}_{i j}\left(x_{1}, \ldots, x_{n_{i j}}\right)\right) \approx x_{k} \\
& \text { + induction resp. coinduction (and more) }
\end{aligned}
$$

$\mathscr{D C}$: Theory of (Co)datatypes

- Specification:

$$
\begin{aligned}
&\left(\text { co datatype } \delta_{1}\right.=\mathrm{C}_{11}\left(\left[\mathrm{~s}_{11}^{1}:\right] \tau_{11}^{1}, \ldots,\left[\mathrm{~s}_{11}^{n_{11}}:\right] \tau_{11}^{n_{11}}\right)|\cdots| \mathrm{C}_{1 m_{1}}(\ldots) \\
& \vdots \\
& \text { and } \delta_{\ell}=\mathrm{C}_{\ell 1}(\ldots)|\cdots| \mathrm{C}_{\ell m_{\ell}}(\ldots)
\end{aligned}
$$

- Properties:

Distinctness: $\quad \mathrm{C}_{i j}(\bar{x}) \not \approx \mathrm{C}_{i j^{\prime}}(\bar{y}) \quad$ if $j \neq j^{\prime}$
Injectivity: $\quad \mathrm{C}_{i j}\left(x_{1}, \ldots, x_{n_{i j}}\right) \approx \mathrm{C}_{i j}\left(y_{1}, \ldots, y_{n_{i j}}\right) \longrightarrow x_{k} \approx y_{k}$
Exhaustiveness: $\mathrm{d}_{i 1}(x) \vee \cdots \vee \mathrm{d}_{i m_{i}}(x)$
Selection: $\quad \mathrm{s}_{i j}^{k}\left(\mathrm{C}_{i j}\left(x_{1}, \ldots, x_{n_{i j}}\right)\right) \approx x_{k}$

+ induction resp. coinduction (and more)
acyclicity resp. uniqueness
are sufficient for q.f. formulas

A Degenerate Case

- Recursive datatypes are infinite
- Corecursive codatatypes admit infinite values
- Ergo: corecursive codatatypes are infinite?

A Degenerate Case

- Recursive datatypes are infinite
- Corecursive codatatypes admit infinite values
- Ergo: corecursive codatatypes are infinite?

Counterexamples:
codatatype $a=A(a)$ codatatype
datatype unit = Unity

$$
\begin{aligned}
& b=B(b, c, b, \text { unit }) \text { and } \\
& c=C(a, b, c)
\end{aligned}
$$

\Rightarrow "Corecursive singletons"

Calculus for Theory of (Co)datatypes DC

- Inputs:
- A finite set of $\mathscr{D C}$-literals E
- Outputs:
- Either " E is $\mathscr{D} C$-unsatisfiable" or " E is $\mathcal{D C}$-satisfiable"
- Can be described as a set of derivation rules which
- Add additional literals to E until saturated or conflict
- Is a decision procedure for $\mathcal{D C}$

Calculus: Guarded Assignment Form

- Derivation rules of calculus written in guarded assignment form:
$\frac{\ldots \text { premises on } \mathrm{E} . . .}{\mathrm{E}:=\mathrm{E}^{\prime}}$ [rule]
- For example:

$$
\frac{t \approx s, s \approx r \in E}{E:=E, t \approx s} \text { trans }
$$

- Derivation rules may have \perp as conclusion:

$$
\frac{t \approx s, t \not \approx s \in E}{\perp} \text { conflict }
$$

Calculus: Derivation Tree

- A node is a set of $\mathscr{D C}$-literals
- Each node obtained as result of successfully applying rule to parent
- The derivation terminates when:
- All leaves are $\perp \ldots$ input is $\mathscr{D C}$-unsatisfiable
- Some node is saturated ... input is $\mathscr{D C}$-satisfiable

Calculus: Overview

- Part 1:
- Apply bidirectional closure (uniformly to both datatypes and codatatypes)
- Part 2:
- Ensure all datatype values are acyclic
- Ensure all codatatype values are unique
- Part 3:
- Apply splitting/search, if necessary

Part 1: Bidirectional Closure

$$
\begin{aligned}
& \frac{t \in \mathcal{T}(E)}{E:=E, t \approx t} \operatorname{Refl} \quad \frac{t \approx u \in E}{E:=E, u \approx t} \operatorname{Sym} \quad \frac{s \approx t, t \approx u \in E}{E:=E, s \approx u} \text { Trans } \\
& \frac{\bar{t} \approx \bar{u} \in E \quad \mathrm{f}(\bar{t}), \mathrm{f}(\bar{u}) \in \mathcal{T}(E)}{E:=E, \mathrm{f}(\bar{t}) \approx \mathrm{f}(\bar{u})} \text { Cong } \quad \frac{t \approx u, t \not \approx u \in E}{\perp} \text { Conflict } \\
& \frac{\mathrm{C}(\bar{t}) \approx \mathrm{C}(\bar{u}) \in E}{E:=E, \bar{t} \approx \bar{u}} \text { Inject } \quad \frac{\mathrm{C}(\bar{t}) \approx \mathrm{D}(\bar{u}) \in E \quad \mathrm{C} \neq \mathrm{D}}{\perp} \text { Clash }
\end{aligned}
$$

- E contains its upwards (congruence) and downwards (unification) closure
- Ensures: E induces a set of equivalence classes

Part 2: Acyclicity and Uniqueness

- To determine datatype values are acyclic, codatatype values are unique
- Compute the class of values for each (co)datatype term
- Assignment map \mathcal{A} map from equivalence classes to μ-terms
- For example:
$\mathcal{A}\{t\}:=\mu \mathrm{x} . \mathrm{C}(\mathrm{x}) \quad:$ the value of t is $\mathrm{C}(\mathrm{C}(\mathrm{C}(\ldots)))$
$\mathcal{A}\{t\}:=\mu \mathrm{x} . \mathrm{C}(\mathrm{y})$: the top symbol of t is C
- Model construction will be based on \mathcal{A}

Part 2: Acyclicity and Uniqueness

$\mathrm{E}:=\{y \approx C(x), x \approx D(y)\}$

- Given input E

Part 2: Acyclicity and Uniqueness

$E:=\{y \approx C(x), x \approx D(y), y \approx y, x \approx x, \ldots\}$

- Given input E
- Compute bidirectional closure (as in step 1)

Part 2: Acyclicity and Uniqueness

$$
\begin{aligned}
& E:=\{y \approx C(x), x \approx D(y), y \approx y, x \approx x, \ldots\} \\
& \{y, C(x)\},\{x, D(y)\} \\
& {[y]}
\end{aligned}
$$

- Given input E
- Compute bidirectional closure, equivalence classes induced by E

Part 2: Acyclicity and Uniqueness

```
\(E:=\{y \approx C(x), x \approx D(y), y \approx y, x \approx x, \ldots\}\)
\{y,C(x)\}, \{x,D(y)\}
A : =
\([y] \rightarrow \tilde{y}\)
\([\mathrm{x}] \rightarrow \tilde{\mathrm{x}}\)
```

- Given input E
- Compute bidirectional closure, equivalence classes induced by E
- Compute assignment map \mathcal{A}
- Initially unconstrained

Part 2: Acyclicity and Uniqueness

$$
E:=\{y \approx C(x), x \approx D(y), y \approx y, x \approx x, \ldots\}
$$

$$
\{y, C(x)\},\{x, D(y)\}
$$

$$
\begin{aligned}
& \mathcal{A}:= \\
& {[\mathrm{y}] \rightarrow \mu \tilde{\mathrm{y}} \cdot \mathrm{C}(\tilde{\mathrm{x}})} \\
& {[\mathrm{x}] \rightarrow \tilde{\mathrm{x}}}
\end{aligned}
$$

$$
\{\tilde{y} \rightarrow \mu \tilde{y} \cdot C(\tilde{x})\}
$$

- Given input E
- Compute bidirectional closure, equivalence classes induced by E
- Compute assignment map \mathcal{A}
- Initially unconstrained, updated based on constructor terms

Part 2: Acyclicity and Uniqueness

$$
\begin{aligned}
& E:=\{y \approx C(x), x \approx D(y), y \approx y, x \approx x, \ldots\} \\
& \{y, C(x)\},\{x, D(y)\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}:= \\
& {[y] \rightarrow \mu \tilde{y} \cdot C(\mu \tilde{x} \cdot D(\tilde{y}))} \\
& {[x] \rightarrow \mu \tilde{x} \cdot D(\tilde{y})}
\end{aligned}\{\{\tilde{x} \rightarrow \mu \tilde{x} \cdot D(\tilde{y})\}
$$

- Given input E
- Compute bidirectional closure, equivalence classes induced by E
- Compute assignment map \mathcal{A}
- Initially unconstrained, updated based on constructor terms

Part 2: Acyclicity and Uniqueness

$$
E:=\{y \approx C(x), x \approx D(y), y \approx y, x \approx x, \ldots\}
$$

$$
\{y, C(x)\},\{x, D(y)\}
$$

$$
\begin{aligned}
& \mathcal{A}:= \\
& {[\mathrm{y}] \rightarrow \mu \tilde{y} \cdot C(\mu \tilde{x} \cdot D(\tilde{y}))} \\
& {[\mathrm{x}] \rightarrow \mu \tilde{x} \cdot D(\mu \tilde{y} \cdot C(\tilde{x}))}
\end{aligned}
$$

$$
\{\tilde{y} \rightarrow \mu \tilde{y} \cdot \mathrm{C}(\tilde{\mathrm{x}})\}
$$

- Given input E
- Compute bidirectional closure, equivalence classes induced by E
- Compute assignment map \mathcal{A}
- Initially unconstrained, updated based on constructor terms

Part 2: Acyclicity and Uniqueness

$$
E:=\{y \approx C(x), x \approx D(y), y \approx y, x \approx x, \ldots\}
$$

$$
\{y, C(x)\},\{x, D(y)\}
$$

$$
\begin{aligned}
& \mathcal{A}:= \\
& {[\mathrm{y}] \rightarrow \mu \tilde{\mathrm{y}} \cdot \mathrm{C}(\mu \tilde{\mathrm{x}} \cdot \mathrm{D}(\tilde{\mathrm{y}}))} \\
& {[\mathrm{x}] \rightarrow \mu \tilde{\mathrm{x}} \cdot \mathrm{D}(\mu \tilde{\mathrm{y}} \cdot \mathrm{C}(\tilde{\mathrm{x}}))}
\end{aligned}
$$

- Given input E
- Compute bidirectional closure, equivalence classes induced by E
- Compute assignment map \mathcal{A}
- Initially unconstrained, updated based on constructor terms, until no free variables

Part 2: Acyclicity and Uniqueness

$$
\begin{aligned}
& E:=\{y \approx C(x), \quad x \approx D(y), \quad y \approx y, x \approx x, \ldots\} \\
& \{y, C(x)\}, \quad\{x, D(y)\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}:= \\
& {[\mathrm{y}] \rightarrow \mu \tilde{\mathrm{y}} \cdot \mathrm{C}(\mu \tilde{\mathrm{x}} \cdot \mathrm{D}(\tilde{\mathrm{y}}))} \\
& {[\mathrm{x}] \rightarrow \mu \tilde{\mathrm{x}} \cdot \mathrm{D}(\mu \tilde{\mathrm{y}} \cdot \mathrm{C}(\tilde{\mathrm{x}}))}
\end{aligned}
$$

- This indicates:
- The value of y in all models is of the form $\mathrm{C}(\mathrm{D}(\mathrm{C}(\mathrm{D}(\mathrm{C}(\ldots) \mathrm{I} . .)))$.
- The value of x in all models is of the form $D(C(D(C(D(\ldots)) . .))$.

Part 2: Acyclicity and Uniqueness

$$
\frac{\delta \in \mathscr{Y}_{\mathrm{dt}} \quad \mathscr{A}\left[t^{\delta}\right]=\mu x . u \quad x \in \mathrm{FV}(u)}{\perp} \text { Acyclic } \quad \frac{\delta \in \mathscr{Y}_{\mathrm{codt}} \quad \mathcal{A}\left[t^{\delta}\right]={ }_{\alpha} \mathscr{A}\left[u^{\delta}\right]}{E:=E, t \approx u} \text { Unique }
$$

- Rule Acyclic:
- Checks whether a $\mathcal{A}[t]$ contains a bound variable for some datatype term t
- For example: $\mathrm{E}=\{\mathrm{x} \approx \mathrm{C}(\mathrm{x})\}$
- $\mathcal{A}[\mathrm{x}]=\mu \tilde{\mathrm{x}} . \mathrm{C}(\tilde{\mathrm{x}})$, thus $\mathrm{E} \mathrm{F}_{D_{C}} \perp$
- Rule Unique:
- Checks whether $\mathcal{A}[t], \mathcal{A}[u]$ are α-equivalent for some codatatype terms t, u
- For example: $\mathrm{E}=\{\mathrm{x} \approx \mathrm{C}(\mathrm{x}), \mathrm{y} \approx \mathrm{C}(\mathrm{y})\}$
- $\mathcal{A}[\mathrm{x}]=\mu \tilde{\mathrm{x}} \cdot \mathrm{C}(\tilde{\mathrm{x}})={ }_{\alpha} \mu \tilde{\mathrm{y}} \cdot \mathrm{C}(\tilde{\mathrm{y}})=\mathcal{A}[\mathrm{y}]$, thus $\mathrm{E} \boldsymbol{F}_{\mathscr{D C}} \mathrm{x} \approx \mathrm{y}$

Part 3: Splitting

$$
\begin{gathered}
t^{\delta} \in \mathcal{T}(E) \quad \mathcal{F}_{\mathrm{ctr}}^{\delta}=\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{m}\right\} \\
\left(\mathrm{s}(t) \in \mathcal{T}(E) \text { and } \mathrm{s} \in \mathcal{F}_{\mathrm{sel}}^{\delta}\right) \text { or }\left(\delta \in \mathcal{Y}_{\mathrm{dt}} \text { and } \delta \text { is finite }\right) \\
E:=E, t \approx \mathrm{C}_{1}\left(\mathrm{~s}_{1}^{1}(t), \ldots, \mathrm{s}_{1}^{n_{1}}(t)\right) \quad \cdots \quad E:=E, t \approx \mathrm{C}_{m}\left(\mathrm{~s}_{m}^{1}(t), \ldots, \mathrm{s}_{m}^{n_{m}}(t)\right) \\
\frac{t^{\delta}, u^{\delta} \in \mathcal{T}(E) \quad \delta \in \mathcal{Y}_{\mathrm{codt}} \quad \delta \text { is a singleton }}{E:=E, t \approx u} \text { Single }
\end{gathered}
$$

- Split on the type of constructor for terms t such that either:
- There exists a selector applied to t, or
- t is of finite type
- Add equalities between all pairs of corecursive singleton terms t, u

Calculus is a Decision Procedure for $\mathcal{D C}$

- Calculus is:
- Terminating
- All derivation trees are finite
- Refutation-sound
- If a closed derivation tree exists, then indeed E is $\mathscr{D} C$-unsatisfiable
- Model-sound
- If a saturated node exists, then indeed E is $\mathscr{D} C$-satisfiable
- Proof is constructive
- Thus, is a decision procedure for $\mathcal{D C}$

Implementation in SMT Solver

- Calculus is implemented as a DPLL(T) theory solver in CVC4

- SAT solver reasons about $\mathcal{D C}$-formulas at propositional level

Implementation in SMT Solver

- Calculus is implemented as a DPLL(T) theory solver in CVC4

Implementation in SMT Solver

- Calculus is implemented as a DPLL(T) theory solver in CVC4

Implementation in SMT Solver

- Calculus is implemented as a DPLL(T) theory solver in CVC4

Evaluation

- Evaluated SMT solvers
- CVC4 : support for (co)datatypes from this talk
- Z3 : supports datatypes only
- ...on Isabelle benchmarks from three libraries:
- Isabelle Distribution (Distro)
- Archive of Formal Proofs (AFP)
- Two unpublished theories involving Bird and Stern-Brocot trees (G\&L)
\Rightarrow Benchmarks involve quantified formulas + (co)datatypes

Evaluation : Results

		Distro			AFP		G\&L		Overall	
		CVC4	Z3	CVC4	Z3	CVC4	Z3	CVC4	Z3	
Weaker	No (co)datatypes	221	209	775	777	52	51	1048	1037	
	Datatypes without Acyclic	227	-	780	-	52	-	1059	-	
	Full datatypes	227	213	786	791	52	51	1065	1055	
Stronger	Codatatypes without Unique	222	-	804	-	56	-	1082	-	
Full codatatypes	223	-	804	-	$\mathbf{5 9}$	-	1086	-		
	Full (co)datatypes	$\mathbf{2 2 9}$	-	$\mathbf{8 1 5}$	-	$\mathbf{5 9}$	-	$\mathbf{1 1 0 3}$	-	

- Stronger decision procedures subsume weaker ones
- Rules for acyclicity, uniqueness contribute to precision of solvers
- Dedicated support for codatatypes in CVC4 improves state of the art
- CVC4 with full (co)datatypes solves 1103
- CVC4 and Z3 with only datatypes solve 1065 and 1055 respectively

Summary

- Decision procedure for theory of (co)datatypes
- Proved correct
- Can be implemented in SMT solvers
- Evaluation on Isabelle benchmarks
- Beneficial to use stronger decision procedures

Future Work

- Reconstruction proofs in Isabelle
- Apply to higher-order model finding
(Our original motivation)

