Quantifier Instantiation Techniques for Finite Model Finding in SMT

Andrew Reynolds, Cesare Tinelli Amit Goel, Sava Krstic Morgan Deters, Clark Barrett

Satisfiability Modulo Theories (SMT)

- SMT solvers are powerful tools
 - Used in many formal methods applications
 - Support many background theories
 - Arithmetic, bitvectors, arrays, datatypes, ...
 - May generate:
 - Proofs
 - Theorem proving, software/hardware verification
 - Models
 - Failing instances of aforementioned applications
 - Invariant synthesis, scheduling, test case generation

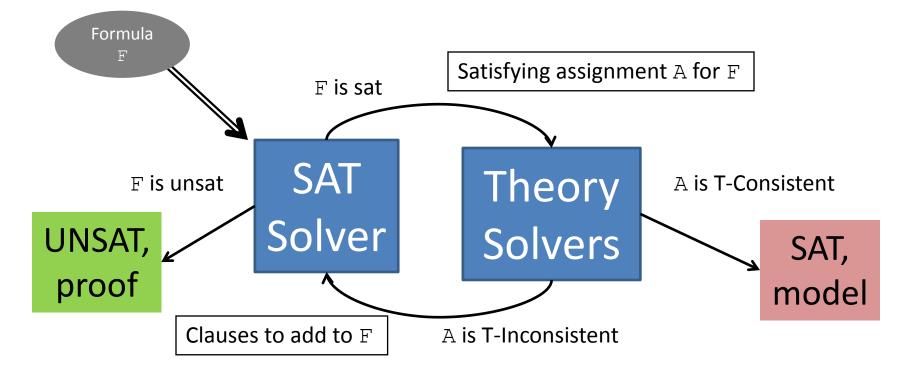
SMT: Limitations

- SMT solvers effective handling *ground* formulas
 Fast decision procedures for UF, arithmetic, ...
- Ongoing challenge: *quantified* formulas
 - Heuristic methods for answering "unsat"
 - Limited capability of answering "sat"
 - Often will return "unknown" after some effort

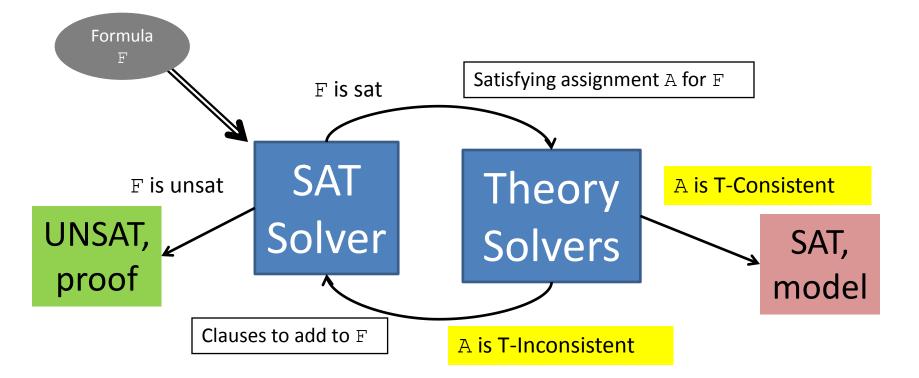
Contributions

- Finite Model Finding in SMT
 - Different from ATP finite model finders:
 - Native support for background (ground) theories
 - Different from SMT solvers:
 - Increased ability to answer "satisfiable"
- New techniques for:
 - Constructing good candidate models
 - Efficiently checking candidate models

DPLL(T) Architecture

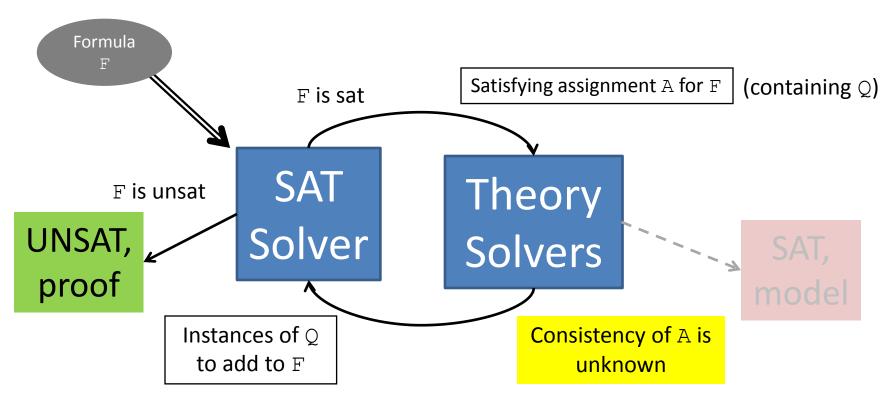


DPLL(T) Architecture : Challenge



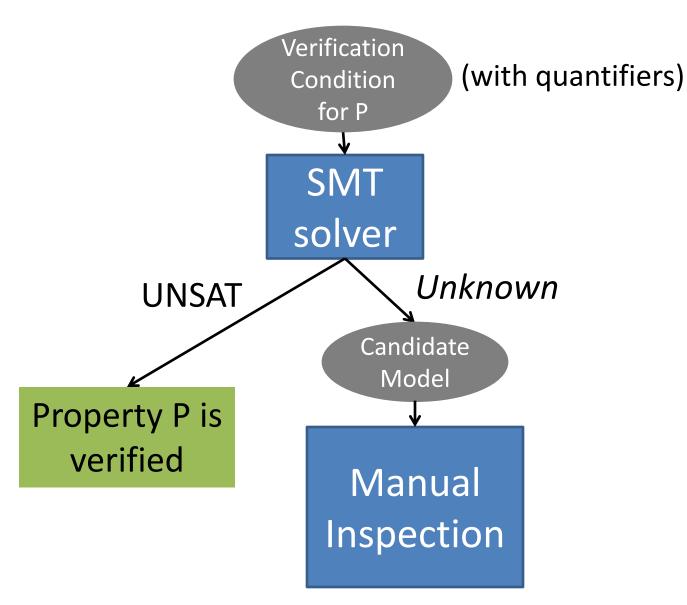
- Challenge: What if determining the consistency of A is difficult?
- For quantified formulas, determining consistency is undecidable

Heuristic Instantiation for $\ensuremath{\mathbb{Q}}$

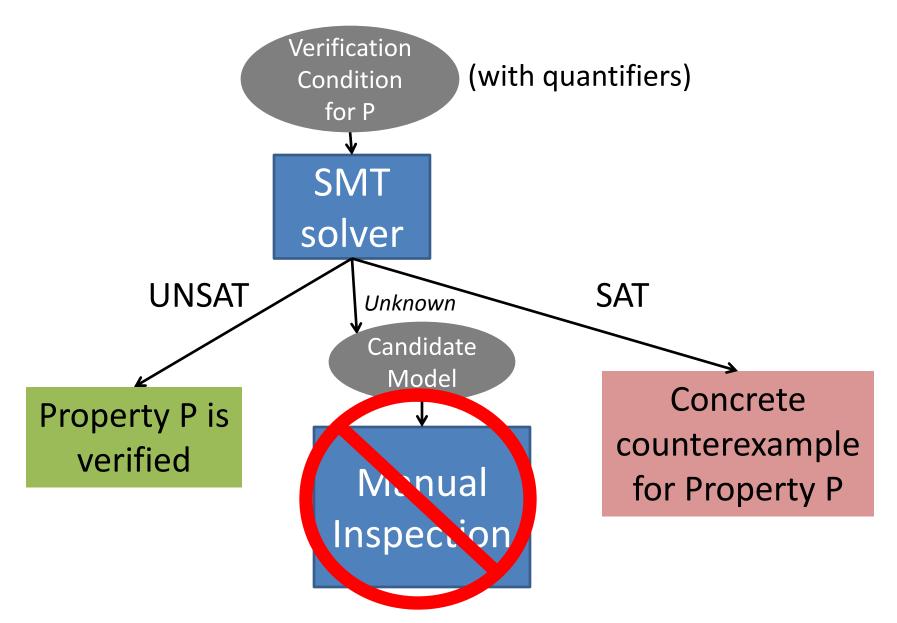


- If sat assignment contains quantified formula Q,
 - Heuristically add instances of $\ensuremath{\mathbb{Q}}$ to F
 - Typically based on pattern matching
 - May discover refutation, if right instances are added

Why Models are Important



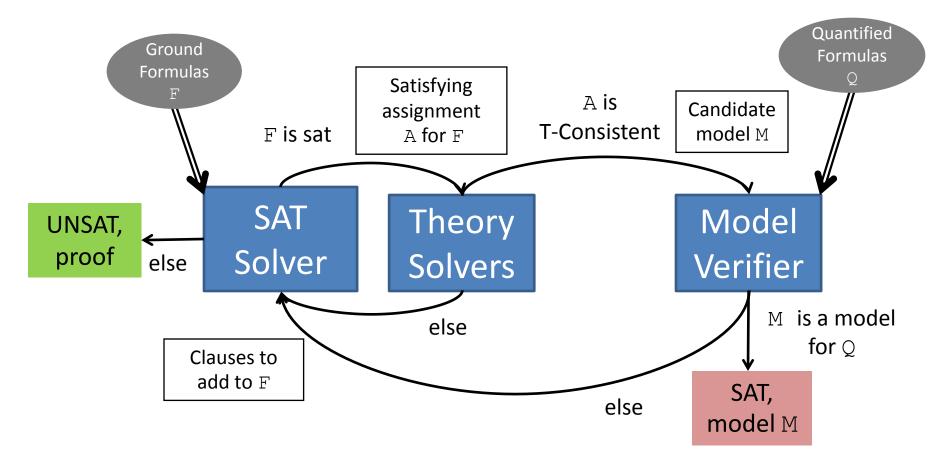
Why Models are Important



Model-Based Approach for Quantifiers

- Given:
 - Set of ground formulas ${\rm F}$
 - Set of universally quantified formulas $\ensuremath{\mathbb{Q}}$
- To determine the satisfiability of $\mathbb{F} \land \mathbb{Q}$,
 - Construct candidate models for Q, based on satisfying assignments for F
 - Model-Based Quantifier Instantiation (MBQI)
 - [Ge/deMoura 2009]

DPLL(T) Architecture (Extended)



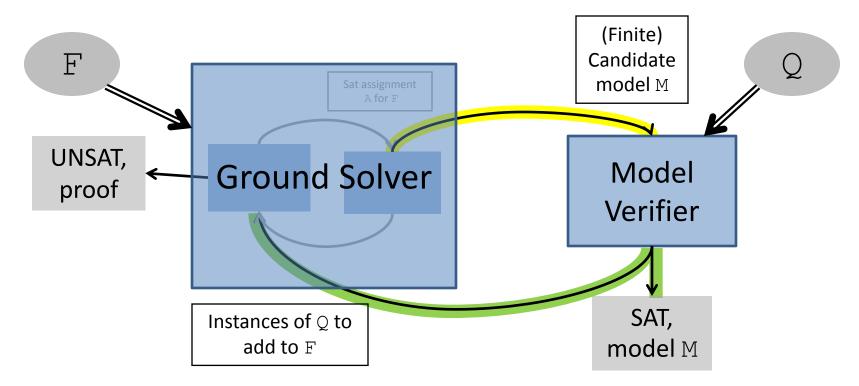
When can we represent/check models for Q?

- Focus of talk: Finite Model Finding
 - -Limited to quantifiers over:
 - Uninterpreted sorts
 - Can represent memory addresses, values, sets, etc.
 - Other finite sorts

- Fixed width bitvectors, datatypes, ...

- Useful in applications:
 - Software/hardware verification

Constructing/Checking Candidate Finite Models



1. How do we construct good candidate models M?

- 2. How do we efficiently check if M is a model for Q?
 - If we fail, which instances do we add to \mathbb{F} ?

Constructing Good Candidate Models

Constructing Good Candidate Models

• Naïvely, to determine whether M is model for Q:

– Check if M satisfies all instances S of Q

- Challenge: S can be very large
 - For Q with n variables, domain size d, |S| can be O(d^n)
- Solutions:
 - Find models with small domain sizes
 - Use theory of finite cardinality constraints [CAV 2013]
 - Only consider instances of ${\mathbb Q}$ that are false in ${\mathbb M}$
 - <u>Construct M such that most instances of Q are true</u>

Constructing Models : Example

person₁, person₂, person₃ : Person

NewYork, Boston, Seattle : City

salesman: Person \rightarrow Bool

travels : Person \times City \rightarrow Bool

distinct(NewYork, Boston, Seattle)

travels(person₁, Boston)

 \neg salesman(person₂)

ਜ

salesman(person₃)

 \forall x : Person, y : City.

salesman(x) \Rightarrow travels(x,y)

Constructing Models : Example

person₁, person₂, person₃ : Person

NewYork, Boston, Seattle : City

salesman: Person \rightarrow Bool

travels : Person \times City \rightarrow Bool

distinct(NewYork, Boston, Seattle) travels(person₁, Boston)

```
\negsalesman(person<sub>2</sub>)
```

ਜ

salesman(person₃)

Interpretation of "salesman": salesman(person₂) $\approx \perp$, salesman(person₃) \approx T, salesman(x₁) $\approx \perp$ \forall x : Person, y : City.

salesman(x) \Rightarrow travels(x,y)

Interpretation of "travels": travels(person₁, Boston) \approx T, travels(x₁, x₂) $\approx \perp$

Model Representation

- Represent functions/predicates using *defining maps*
- Given sort S with domain V,
 - A defining map for $f : S \times ... \times S \rightarrow S$ is:
 - Set of equations Δ_f of the form f(t₁, ..., t_n) ≈ v, where $-v \in V$

– Each \mathtt{t}_i is either a unique variable or in \mathtt{V}

• If $t_1 \approx v_1$ and $t_2 \approx v_2 \in \Delta_f$, unifiable with mgu σ , then: $-\sigma$ is non-empty

– $\texttt{t}_{1}\,\sigma\,\texttt{\sc v}\in\Delta_{\texttt{f}}$ for some v

- f(x_{1} , ..., x_{n}) ~ $v \in \Delta_{\texttt{f}}$ for some v

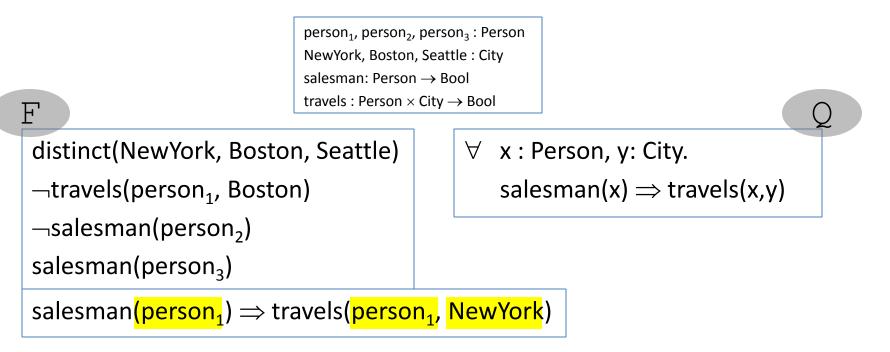
Interpretation in Model

- Interpretation $f(t_1, ..., t_n)$ is v, where:
 - $-\texttt{t} \texttt{*} \texttt{v} \in \Delta_\texttt{f}$
 - t is most specific generalization of f(t1, ..., tn) among LHS in $\Delta_{\rm f}$
 - Guaranteed to exist and be unique

Constructing Models

- Defining map $\Delta_{\rm f}$ is a union of:
 - Entailed ground equalities
 - Non-ground equalities for defining *default* values
- How to chose default values?
 - Guided by sat assignment for *distinguished elements*
 - See how one instance is satisfied, generalize this for all

Constructing Models : Example



Instantiate Q with distinguished elements

Constructing Models : Example

person₁, person₂, person₃ : Person NewYork, Boston, Seattle : City salesman: Person \rightarrow Bool travels : Person \times City \rightarrow Bool

distinct(NewYork, Boston, Seattle)

```
-travels(person<sub>1</sub>, Boston)
```

```
\negsalesman(person<sub>2</sub>)
```

```
salesman(person<sub>3</sub>)
```

F

salesman(person₁) \Rightarrow travels(person₁, NewYork)

Choose defaults based on distinguished instance

```
- Analagous to Inst Gen Calculus [Korovin 2008]
```

```
\Delta_{salesman}:
{ salesman(person<sub>2</sub>) ≈ ⊥,
salesman(person<sub>3</sub>) ≈ T,
salesman( x<sub>1</sub> ) ≈ T }
```

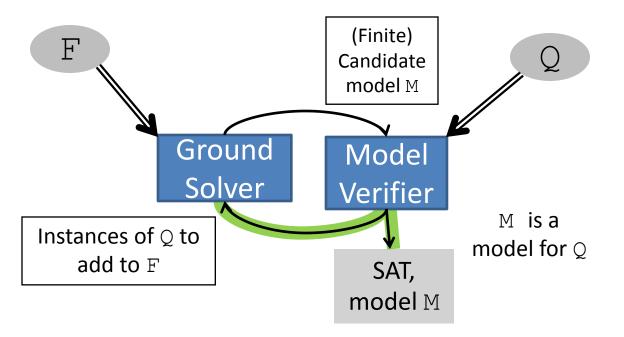
 $\Delta_{travels}$: { travels(person₁, NewYork) ≈ T travels(person₁, Boston) ≈ ⊥, travels(x₁, x₂) ≈ T }

 \forall x : Person, y: City.

salesman(x) \Rightarrow travels(x,y)

Efficiently Checking Candidate Models

Checking Candidate Models



- To check if M is a model for Q:
 - Naively, add every instance of ${\mathbb Q}$ to ${\mathbb F}$
 - Alternatively, only add instances that are false in ${\mathbb M}$
 - Identify sets of instances of $\ensuremath{\mathbb{Q}}$ that are equisatisfiable

Checking Candidate Models

A

person₁, person₂, person₃ : Person NewYork, Boston, Seattle : City salesman: Person \rightarrow Bool travels : Person \times City \rightarrow Bool

distinct(NewYork, Boston, Seattle)

```
–travels(person<sub>1</sub>, Boston)
```

```
\negsalesman(person<sub>2</sub>)
```

```
salesman(person<sub>3</sub>)
```

salesman(person₁) \Rightarrow travels(person₁, NewYork)

 $\Delta_{salesman}$:

ਜ

{ salesman(person₂) $\approx \perp$, salesman(person₃) \approx T,

```
salesman(x_1) \approx T }
```

Δ_{travels} :

{ travels(person₁, NewYork) \approx T travels(person₁, Boston) $\approx \perp$, travels(x₁, x₂) \approx T } $Q[person_1, NewYork]$ $Q[person_1, Boston]$ $Q[person_1, Seattle]$ $Q[person_2, NewYork]$ $Q[person_2, Boston]$ $Q[person_2, Seattle]$ $Q[person_3, NewYork]$ $Q[person_3, Boston]$ $Q[person_3, Seattle]$

x : Person, y: City.

salesman(x) \Rightarrow travels(x,y)

Q

Checking Candidate Models

person₁, person₂, person₃ : Person NewYork, Boston, Seattle : City salesman: Person \rightarrow Bool travels : Person \times City \rightarrow Bool

distinct(NewYork, Boston, Seattle)

-travels(person₁, Boston)

 \neg salesman(person₂)

```
salesman(person<sub>3</sub>)
```

salesman(person₁) \Rightarrow travels(person₁, NewYork)

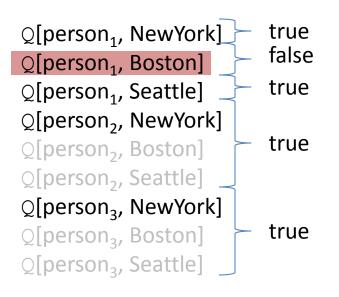
 Δ_{salesman} :

ਜ

{ salesman(person₂) $\approx \perp$, salesman(person₃) \approx T, salesman(x₁) \approx T }

Δ_{travels} :

{ travels(person₁, NewYork) \approx T travels(person₁, Boston) $\approx \perp$, travels(x₁, x₂) \approx T }



 \forall x : Person, y: City.

salesman(x) \Rightarrow travels(x,y)

Q

Enhancement: Heuristic Instantiation

- Idea:
 - First see if instantiations based on heuristics exist
 - If not, resort to model-based instantiation
- May lead to:
 - Discovering easy conflicts, if they exist
 - Arriving at model faster
 - Instantiations rule out spurious models

Experiments

- DVF Benchmarks
 - Taken from verification tool DVF used by Intel
 - Both SAT/UNSAT benchmarks
 - SAT benchmarks generated by removing necessary pf assumptions
 - Many theories: UF, arithmetic, arrays, datatypes
 - Quantifiers only over free sorts
 - Memory addresses, Values, Sets, ...
- TPTP Benchmarks
- Isabelle Benchmarks
 - Provable and unprovable goals, contains some arithmetic

Results: DVF

SAT	german	refcount	agree	apg	bmk	Total	Time
#	45	6	42	19	37	149	
z3	45	1	0	0	0	46	8.1
cvc4+i	2	0	0	0	0	2	0.0
cvc4+f	45	6	42	18	36	147	1413.1
cvc4+fi	45	6	42	19	36	148	1333.9
cvc4+fm	45	6	42	19	37	149	605.4
cvc4+fmi	45	6	42	19	37	149	409.8

UNSAT	german	refcount	agree	apg	bmk	Total	Time
#	145	40	488	304	244	1221	
z3	145	40	488	304	244	1221	31.0
cvc4+i	145	40	484	304	244	1217	21.3
cvc4+f	145	40	476	298	242	1201	7512.2
cvc4+fi	145	40	488	302	244	1219	1181.4
cvc4+fm	145	40	471	300	242	1198	6949.7
cvc4+fmi	145	40	488	302	244	1219	1185.0

cvc4:

•

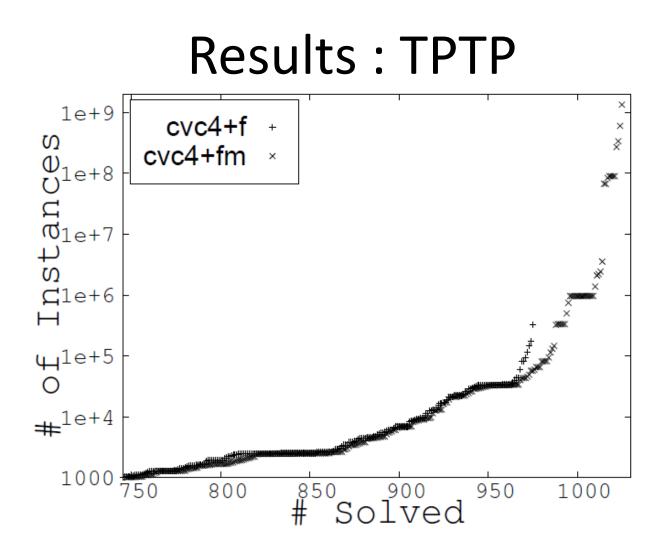
۲

- f : finite model
 - i : heuristic
 - m : model-based

- cvc4 with finite model finding (cvc4+f)
 - Effective for answering sat
 - Using heuristic instantiation, solves 4 unsat that cvc4 cannot

Results: TPTP

- Using techniques described in this work:
 - Of 1995 satisfiable benchmarks:
 - Paradox solves 1305
 - iProver solves 1231
 - cvc4 solves 1109 (with model-based instantiation)
 - Includes 2 problems with rating 1.0
 - Of 12568 unsatisfiable benchmarks:
 - z3 solves 5934
 - cvc4 solves 3028 (with model-based+heuristic instantiation)
 - Orthogonal, 282 cannot be solved by z3
- Placed 3rd in FNT (non-theorem) division of CASC 24



- Model-Based Instantiation is often essential
 - Solves where exh. instantiation require >1 billion instances

Results: Isabelle

SAT	Arrow	FFT	FTA	Hoare	NS	QEP	SNorm	TwoSq	TypeSafe	Total
z3	3	19	24	46	10	49	1	17	11	180
cvc4+i	0	9	0	0	0	0	0	8	0	17
cvc4+f	22	138	172	153	56	79	12	59	69	760
cvc4+fm	26	139	171	151	49	80	12	59	69	756
cvc4+fmi	26	151	174	159	60	81	12	60	78	801

UNSAT	Arrow	FFT	FTA	Hoare	NS	QEP	SNorm	TwoSq	TypeSafe	Total
z3	261	224	765	497	135	236	240	451	325	3134
cvc4+i	199	217	682	456	97	244	231	486	239	2851
cvc4+f	120	99	298	214	36	105	84	316	132	1404
cvc4+fm	102	91	330	246	26	117	80	310	128	1430
cvc4+fmi	155	170	467	328	42	161	97	411	188	2019

 cvc4+fmi solves 244 unsat that z3 cannot, 164 that cvc4 cannot cvc4:

- f : finite model
- i : heuristic
- m : model-based

Summary

- CVC4 with finite model finding:
 - Constructs "good" candidate models
 - Incorporates various instantiation strategies
 - Model-based quantifier instantiation
 - Heuristic instantiation (E-matching)
 - Increased ability to answer "satisfiable"
- Publicly available: <u>http://cvc4.cs.nyu.edu/web/</u>

Further Work

- Further work:
 - Would like to show:
 - Finite model completeness
 - Refutational completeness for certain fragments
 - Improved algorithm for checking candidate models
 - Apply similar techniques to:
 - Bounded integer quantification
 - Datatypes, strings with bounded length

Thank you

• Questions?