A DPLL(T) Theory Solver for Strings and Regular Expressions

Tianyi Liang
Andrew Reynolds
Cesare Tinelli
Morgan Deters
Clark Barrett

\quad New York University

Motivation : Security Applications

char buff[15]; char pass;
cout << "Enter the password :";
gets(buff);
if (regex_match(buff, std::regex("([A-Z]+)"))) \{
if(strcmp(buff, "PASSWORD")) \{ Encode
\quad cout << "Wrong Password";
\} else \{
\quad cout << "Correct Password";
pass = 'Y';
\}
if(pass == 'Y') \{
\}/* Grant the root permission*/
(set-logic QF_S)
(declare-const input String)
(declare-const buff String)
(declare-const pass0 String)
(declare-const rest String)
(declare-const pass1 String)
(assert (= (str.len buff) 15))
(assert (= (str.len pass1) 1))
(assert (or (< (str.len input) 15)
(= input (str.++ buff pass0 rest)))
(assert (str.in.re buff
(re.+ (re.range "A" "Z")))
(assert (ite (= buff "PASSWORD")
(= pass1 "Y")
(= pass1 pass0)))
(assert (not (= buff "PASSWORD")))
(assert (= pass1 "Y"))

```
tiliang@milner:~/workspace/security/benchmarks/homemade$ ~/CVC4/bin/pt-cvc4 propsalex.smt2
sat
(model
```



```
(define-fun buff () String "A,A,A,A,A,A,A,A,A,A")
(define-fun pass0 () String "Y")
(define-fun rest () String "")
(define-fun pass1 () String "Y")
```


Objectives

- Want solver to handle:
- (Unbounded) string constraints
- Length constraints
- Regular language memberships, ...
- Theoretical complexity of:
- Word equation problem: PSPACE
- ...with length constraints: OPEN
- ...with other functions (e.g. replace): UNDECIDABLE

Objectives

- Instead, focus on solver that is:
- Efficient in practice
- Tightly integrated into SMT architecture
- Conflict analysis, T-propagation, lemma learning, combination of theories, ...
- Robust

Core Language for Theory of Strings

- Terms are:
- Constants from a fixed finite alphabet $\Sigma^{*}(\mathrm{a}, \mathrm{ab}, \mathrm{cbc} . .$.
- Free constants or "variables" ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w} . .$.)
- String concatenation
${ }_{-}$_ : String \timesString \rightarrow String
- Length terms
len (_) : String \rightarrow Int
- Example input:

$$
\operatorname{len}(x)>\operatorname{len}(y) \wedge(x \cdot b=y \cdot a b \vee x=y)
$$

DPLL(T): Find Satisfying Assignment

Find satisfying assignment

$$
\begin{gathered}
\operatorname{len}(x)>\operatorname{len}(y) \\
x \cdot b=y \cdot a b \\
\vdots
\end{gathered}
$$

DPLL(T): Cooperating Theory Solvers

DPLL(T): Cooperating Theory Solvers

Communicate
(dis)equalities over
shared terms
Theory
[Nelson-Oppen]
$\operatorname{len}(x) \neq \operatorname{len}(y)$

Theory

 Stringslen (x) > len (y)

$$
\begin{gathered}
x \cdot z=y \cdot a b \\
\operatorname{len}(x) \neq \operatorname{len}(y)
\end{gathered}
$$

DPLL(T): Cooperating Theory Solvers

Theory Strings

$A\{\operatorname{len}(x)>\operatorname{len}(y)$

Summary of Approach

- Approach for $A \cup S \cup L$ in four steps:

1. Check arithmetic constraints A
2. Normalize equalities in S
3. Normalize disequalities in S
4. Check cardinality of Σ

Check Length Constraints

2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

- Add equalities to A based on terms from S

Theory Strings

$L\left\{\begin{array}{l}\operatorname{len}(x)=\operatorname{len}(y) \\ \operatorname{len}(z) \neq \operatorname{len}(w)\end{array}\right.$

Check Length Constraints

2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

\Rightarrow Check if A is satisfiable

Normalize Equalities

2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

$$
S\left\{x \cdot z=y \cdot w \cdot a b \quad L\left\{\begin{array}{l}
\operatorname{len}(x)=\operatorname{len}(y) \\
\operatorname{len}(z) \neq \operatorname{len}(w)
\end{array}\right.\right.
$$

- To check satisfiability of equalities in S,
- Add additional equalities to S
- Until pairs of equiv. terms have same normal form

Normalize Equalities

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

$$
S\left\{\begin{array}{l}
x \cdot z=y \cdot w \cdot a . b \\
l \\
\operatorname{len}(x)=\operatorname{len}(y) \\
\operatorname{len}(z) \neq \operatorname{len}(w)
\end{array}\right.
$$

Normalize Equalities

2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

II Propagate, since len (x)=len (y)

Normalize Equalities

2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

II
: We have that len (z) \neq len (w)

Normalize Equalities

2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

II
Decide $\mathrm{z}=\mathrm{w} \cdot \mathrm{z}^{\prime}$
II

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

$$
S\left\{\begin{array}{c}
x \cdot z=y \cdot w \cdot a b \\
x=y \\
z=w \cdot z^{\prime}
\end{array}\right.
$$

II
II

II Reflexive

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

$$
S\left\{\begin{array}{c}
x \cdot z=y \cdot w \cdot a b \\
x=y \\
z=w \cdot z^{\prime} \\
z^{\prime}=a b
\end{array}\right\}
$$

II
II

W	z^{\prime}
II	II Propagate

y	w	$a b$

\Rightarrow Normal form

Normalize Disequalities

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

- Disequalities normalized analogously

$$
S\left\{\begin{array}{c}
x \cdot z \cdot z^{\prime} \neq y \cdot w \cdot a b \\
x=y
\end{array}\right.
$$

$$
L\left\{\begin{array}{l}
\operatorname{len}(x)=\operatorname{len}(y) \\
\operatorname{len}(z)=\operatorname{len}(w)
\end{array}\right.
$$

\square

Normalize Disequalities

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

$$
S\left\{\begin{array} { c }
{ x \cdot z \cdot z ^ { \prime } \neq y \cdot w \cdot a b } \\
{ x = y }
\end{array} \quad L \left\{\begin{array}{l}
\operatorname{len}(x)=\operatorname{len}(y) \\
\operatorname{len}(z)=\operatorname{len}(w)
\end{array}\right.\right.
$$

II Given

Normalize Disequalities

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

$$
S\left\{\begin{array} { c }
{ x \cdot z \cdot z ^ { \prime } \neq y \cdot w \cdot a b } \\
{ x = y } \\
{ z \neq w }
\end{array} \quad L \left\{\begin{array}{l}
\operatorname{len}(x)=\operatorname{len}(y) \\
\operatorname{len}(z)=\operatorname{len}(w)
\end{array}\right.\right.
$$

X	Z	Z^{\prime}

II
4 Decide $z \neq \mathrm{w}$

\Rightarrow Normal form

Check Cardinality of Σ

- S may be unsatisfiable since Σ is finite
- For instance, if:
$-\Sigma$ is a finite alphabet of 256 characters, and
- S entails that 257 distinct strings of length 1 exist

Then:

- S is unsatisfiable
- Performed as a last step of our procedure

Rule-Based Procedure

F-Unify $\frac{\mathrm{F} s=\left(\boldsymbol{w}, u, u_{1}\right) \quad \mathrm{F} t=\left(\boldsymbol{w}, v, \boldsymbol{v}_{1}\right) \quad s \approx t \in \mathcal{C}(\mathrm{~S}) \quad \mathrm{S} \models \text { len } u \approx \text { len } v}{\mathrm{~S}:=\mathrm{S}, u \approx v}$

$$
\begin{array}{r}
\mathrm{F} s=\left(\boldsymbol{w}, u, \boldsymbol{u}_{1}\right) \quad \mathrm{F} t=\left(\boldsymbol{w}, v, \boldsymbol{v}_{1}\right) \quad s \approx t \in \mathcal{C}(\mathrm{~S}) \quad \mathrm{S} \models \text { len } u \not \approx \text { len } v \\
u \notin \mathcal{V}\left(\boldsymbol{v}_{1}\right) \quad v \notin \mathcal{V}\left(\boldsymbol{u}_{1}\right)
\end{array}
$$

$$
\text { F-Loop } \frac{\mathrm{F} s=\left(\boldsymbol{w}, x, \boldsymbol{u}_{1}\right) \quad \mathrm{F} t=\left(\boldsymbol{w}, v, \boldsymbol{v}_{1}, x, \boldsymbol{v}_{2}\right) \quad s \approx t \in \mathcal{C}(\mathrm{~S}) \quad x \notin \mathcal{V}\left(\left(v, \boldsymbol{v}_{1}\right)\right)}{\mathrm{S}:=\mathrm{S}, x \approx \operatorname{con}\left(z_{2}, z\right), \operatorname{con}\left(v, \boldsymbol{v}_{1}\right) \approx \operatorname{con}\left(z_{2}, z_{1}\right), \operatorname{con}\left(\boldsymbol{u}_{1}\right) \approx \operatorname{con}\left(z_{1}, z_{2}, \boldsymbol{v}_{2}\right)}
$$

$$
\mathrm{R}:=\mathrm{R}, z \text { in } \operatorname{star}\left(\operatorname{set} \operatorname{con}\left(z_{1}, z_{2}\right)\right) \quad \mathrm{C}:=\mathrm{C}, t
$$

- Approach is algebraic
- Rules model interaction of string + arithmetic solvers
- A closed derivation tree \Rightarrow problem is UNSAT
- A state where no rule applies \Rightarrow problem is SAT

Theoretical Results

- Our approach is:
- Refutation sound
- When it answers "UNSAT", it can be trusted
- Even for strings of unbounded length
- Solution sound
- When it answers "SAT", it can be trusted
- (A version of) our approach is:

- Solution complete

- When problem is "SAT", it will eventually find a model
- Somewhat trivially, by finite model finding
- Our approach is:
- Refutation incomplete
- When problem is "UNSAT", it is not guaranteed to derive refutation

Experimental Results

- Implemented in SMT solver CVC4
- Tested:
- 50,000 benchmarks from Kudzu
- Correspond to VCs in web security applications
- Compared against solvers:
- Kaluza (UBerkeley)
- Z3-STR (Purdue, Waterloo)

Experimental Results

	CVC4	Z3-STR		Kaluza	
Result		Incorrect 3		Incorrect 3	
unsat	$11,625^{1}$	317	$11,769^{2}$	7,154	$13,435^{2}$
sat	33,271	1,583	31,372	$\mathrm{n} / \mathrm{a}^{4}$	$25,468^{4}$
unknown	0		0		3
timeout	2,388		2,123		84
error	0		120^{5}		1,140

1. For the problems where CVC4 answers UNSAT, neither Z3-STR nor Kaluza answer SAT
2. We cannot verify the problems where CVC4 does not answer UNSAT
3. We verified these errors by asserting a model back as assertions to the tool
4. We cannot verify these answers due to bugs in Kaluza's model generation
5. One is because of non-trivial regular expression, and 119 are because of escaped characters

Experimental Results

Further Work

- Theoretical:
- Identify fragments when approach is refutation complete
- [Abdullah et al CAV14]
- Regular language membership $t \in R$ *
- Currently handled, but naively (unrolling)
- More functions

```
- substr, contains, replace, prefixOf,
    suffixOf, str.indexOf, str.to.int, int.to.str
```

- Generalize to theory of sequences

Thank You!

- CVC4 is publicly available at: http://cvc4.cs.nyu.edu/

Challenge: Looping Word Equations

- Say we are given: $x \cdot a=b \cdot x$

Challenge: Looping Word Equations

$$
\begin{gathered}
x \cdot a=b \cdot x \\
x=b \cdot x^{\prime}
\end{gathered}
$$

Challenge: Looping Word Equations

$$
x \cdot a=b \cdot x
$$

- Solution:
- Recognize when these cases occur
- Reduce to regular language membership:
$x \cdot a=b \cdot x \Leftrightarrow \exists y z \cdot(a=y \cdot z \wedge b=z \cdot y \wedge x \in(z \cdot y) * z)$

