Counterexample-Guided

Quantifier Instantiation for
Synthesis in SMT

Andrew Reynolds, Morgan Deters, Viktor Kuncalk,

Cesare Tinelli, Clark Barrett
July 24, 2015

Overview

* Synthesis Problem : f.Vx.P (T y X)

There exists a function f such that forall x, P (£, x)

* Most existing approaches for synthesis
* Rely on specialized solver that makes subcalls to an SMT Solver

e Approach for synthesis in this talk:
* Instrumented entirely inside SMT solver

SMT Solver + Quantified Formulas

Vx.P(x)

Ground solver

Quantifiers

Decision
DPLL(T)

Procedure
for T

Module

 SMT solver consists of:
* Ground solver maintains a set of ground (variable-free) constraints
* Quantifiers Module maintains a set of quantified formulas: V x. P (x)

SMT Solver + Quantified Formulas
P(a),P(b),P(c),.. VX.P(X)

Ground solver

Decision Instances Quantifiers
DPLL(T)

oo B

* Goal : add instances of axioms until ground solver can answer “unsat”

Procedure
for T

Module

SMT Solver + Quantified Formulas

P(a),P(b),P(c),.. Vx.P(x)
l

Ground solver

Decision Instances Quantifiers
DPLL(T)

Procedure
for T

Module

Y sat

sat

e Generally, a sound but incomplete procedure
 Difficult to answer sat (when have we added enough instances of Vx . P (x) ?)

Running Example : Max of Two Integers

Jf£f.Vxy. (£(x,V)2XxAf(X,V)2V A
(£ (x,y)=xVvI(x,y)=Yy))

* Specifies that f computes the maximum of integers x and y
* Solution:

f := AxXy.lte (x2Vy,X,V)

How does an SMT solver handle Max example?

f : Int x Int > Int
Vxy. (£(x,y)2xAf(x,¥)2y A
(f(x,y)=xVvIi(x,vy)=Vy))

* Direct approach:
* Treat £ as an uninterpreted function
* Succeed if SMT solver can find correct interpretation of £, answer

=This is challenging
 How does the solver know the right interpretation for £ to pick?

Refutation-Based Synthesis
df.Vx.P(f, x)

* Since it is challenging to answer “sat” when V are present,
—> Can we instead use a refutation-based approach for synthesis?

Refutation-Based Synthesis
—d1f.Vx.P(f, x)

 What if we negate the synthesis conjecture?

* |f we are in a satisfaction-complete theory T (e.g. LIA, BV):
» ['is T-satisfiable if and only if —F is T-unsatisfiable

— Will suffice for us to show the above formula is

Challenge: Second-Order Quantification
—-d1f.Vx.P(f, x)

negate

Vi.dx.—-P (£, x)

* Challenge: negation introduces universal V over function £
* No SMT solvers directly support second-order quantification

Challenge: Second-Order Quantification
—-d1f.Vx.P(f, x)

negate

Vf.dx.—P(f, x)

* Challenge: negation introduces universal V over function £
* No SMT solvers directly support second-order quantification

* However, we can avoid this quantification using two approaches:
1. When property P is single invocation for £
2. When £ is given syntactic restrictions

Single Invocation Properties

V. dxy. (f(x,y)<xVvIi(x,y)<yV
(£ (x,v)#FxAL(X,V)7#Y))

Single Invocation Properties

VEi.dxy. (f(x,y)<xVvIi(x,yv)<yV
(£ (x,V)#FXAL(X,V)#Y))

e Single invocation properties
* Are properties such that:
e All occurrences of £ are of a particular form, e.g. £ (x, v) above

* Are a common class of properties useful for:
» Software Synthesis (post-conditions describing the result of a function)

Single Invocation Properties

VE.dxy. (f(x,y)<xVvi(x,vy)<yV
(£ (%, V) #FXAL(X,¥)7#Y))

|
i Push quantification downwards

dxv.Vg. (g<x v g<y Vv
(g#X A g#Yy))

* Occurrences of £ (x, y) are replaced with integer variable g
e Resulting formula is equisatisfiable, and first-order

Single Invocation Properties

VE.dxy. (f(x,yv)<xVv(x,y)<yV
(£ (X, y)#FXAL(X,¥)7#Y))

|
i Push quantification downwards

dxv.Vg. (g<x v g<y Vv
(g#X AN g#Y))

: Skolemize, for fresh a and b
4

Vg. (g<avg<bv(g#a A g#b))

Solving Max Example

Ground

solver

Vg. (g<avg<bv (g#a/\g#b))

Quantifiers

Module

Solving Max Example

Ground

solver

Vg.—=isMax (g, a, b)

Quantifiers

Module

Solving Max Example

—isMax (a, a,b)A
—isMax (b, a, b)

Vg.—=isMax (g, a, b)

Ground

solver

instances
a/g, b/g

Solving Max Example

a<b A Vg.—-isMax (g, a,b)

simplify

b<a

Quantifiers

Ground
Module

solver

Solving Max Example

a<b A

Vg.—=isMax (g, a, b)

b<a

Ground

solver

by instances a/g, b/g,

Quantifiers

Module

= Vg.—isMax (g, a,b)is unsatisfable

implies original synthesis conjecture has a solution

df. Vxy.isMax (f(x,Vv),X,V)

Solving Max Example \

—isMax (a, a,b)A Vg.—=isMax (g, a, b)

—isMax (b, a, b)

Ground Quantifiers

solver

Module

fi=Axy.ite(isMax(a,a,b), a, b)[x/ally/b]
—Solution can be extracted from unsatisfiable core of instantiations a/g, b/g

Solving Max Example

df. Vxy.isMax (f(x,Vv),X,V)

—isMax (a, a,b)A

|

Vg.—=isMax (g, a, b)

Ground
solver

Quantifiers

Module

fi=Axy. ite (x2y,X,V)

—> Desired function, after simplification

How do we Choose Relevant Instances?

Ground

solver

Vg.—=isMax (g, a, b)

Quantifiers

Module

Counterexample-Guided Quantifier Instantiation

Candidate programs

Ground Quantifiers

solver

Module

Counterexamples

solution

* Instances chosen counterexample-quided quantifier instantiation
—> Follows counterexample-guided inductive synthesis (CEGIS) approach

Counterexample-Guided Quantifier Instantiation

Candidate program

* What makes our approach different:
—>Leverage internal state of the SMT solver

Counterexamples

Counterexample-Guided Quantifier Instantiation

Ground

solver

Vg.—=isMax (g, a, b)

Quantifiers

To choose instance:
Module

find interpretation
forein
1sMax (e, a, b)

Counterexample-Guided Quantifier Instantiation

Ground

solver

Vg.—=isMax (g, a, b)

Quantifiers

To choose instance:
Module

find interpretation
for e in
eza A
e2b A
(e=a Vv e=D)

Counterexample-Guided Quantifier Instantiation

—isMax (a, a, b) Vg.—=isMax (g, a, b)

Quantifiers
Ground To choose instance:
o . \Yi[eYs [B1[=
solver find interpretation
for e in
eza A
ezb A

(e=a Vv e=D)

—> e.g. based on the equivalence class of e

Counterexample-Guided Quantifier Instantiation

—isMax (a, a, b) Vg.—=isMax (g, a, b)

Quantifiers
Ground To choose instance:
o . \Yi[eYs [B1[=
solver find interpretation
for e in
eza A
ezb A

(e=a Vv e=Db) A
—isMax (a, a,b)

Counterexample-Guided Quantifier Instantiation

—isMax (a, a,b), misMax (b, a,b)

Vg.—=isMax (g, a, b)

Ground To choose instance:
solver find interpretation
for e in
eza A
solution ezb A

(e=a Vv e=Db)

Quantifiers

Module

A\

—isMax (a, a,b)

Non-Single Invocation Properties

 What if property is not single invocation?

dc. Vxy.c(x,vy)=c(y,x) e.g. ciscommutative

Non-Single Invocation Properties

 What if property is not single invocation?
dc. Vxy.c(x,vy)=c(y,X)

Negate

Ve.dxy.c(x,v)#c (y, X)

Non-Single Invocation Properties

 What if property is not single invocation?

dc. Vxy.c(x,vy)=c(y,X)

. Negate

Ve.dxy.c(x,v)#c (y, X)

. Model domain of c as algebraic datatype D

D := zero | one | x1 | x2 | plus(D1,D2)
Vd:D. dxy.eval (d, x,y)#eval (d, y,x)A
Vxy.eval (zero,x,y)=0 A Vxy.eval (one,x,vy)=1 A

Vxy.eval (x1,x%x,y)=x A Vxy.eval (x2,X,Y)=y A

Vd,d,xy.eval (plus(d,,d,) ,x,vy)=eval (d{, x,vy) teval (d,, x, V)

Single Invocation + Syntactic Restrictions

 What if property is single invocation, but has syntactic restrictions?

D := | 1 | x1 | x2 | 1te(B1l,D1,D2)

0
B := <(D1,D2) | =(D1,D2) | A(B1l,B2)

df. Vxy.isMax (f(x,V),X,V)

Max example Syntactic restrictions for £

(single invocation)

Single Invocation + Syntactic Restrictions

df. Vxy.isMax (f (x,V),X,V)

| —

Vg.—isMax (g, a,b)

~— Convert to first order
~| based on transformation for
SMT Solver single invocation properties

(CE-guided quantifier instantiation)

Single Invocation + Syntactic Restrictions

df. Vxy.isMax (f (x,V),X,V)

!

Vg.—isMax (g, a,b)

SMT Solver

(CE-guided quantifier instantiation)

Axy.ite (x+(-1) *y20,x,V)

} Solve, while ignoring syntactic restrictions

Single Invocation + Syntactic Restrictions

df. Vxy.isMax (f(x,Vv),x,V) | 1 | x1 | x2 | ite(B1l,D1,D2)

:= 0
: B := <(D1,D2) | =(D1,D2) | A(B1l,B2)

Vg.—isMax (g, a,b)

SMT Solver

(CE-guided quantifier instantiation)

Axy.ite (x+(-1) *y20,x,V)

Solution Reconstruction

Single Invocation + Syntactic Restrictions

df. Vxy.isMax (f (x,V),X,V)

!

Vg.—isMax (g, a,b)

SMT Solver

(CE-guided quantifier instantiation)

1 | x1 | x2 | 1te(B1,D1,D2)

0
:= <(D1,D2) | =(D1,D2) | A(B1l,B2)

Axy.ite (x+(-1) *y20,x,V)

Solution Reconstruction

Axy.ite (V<x,X,V)

} Find equivalent function that meets syntactic restrictions

Evaluation

* Implemented techniques in SMT solver CVC4

* Compared CVC4 against tools taken from 2014 SyGuS competition
* |In particular: enumerative CEGIS solver esolver (Upenn)

* Of 243 benchmarks from this competition:
e 176 were single invocation

Results: Single-Invocation Properties

array (32) | bv (7) hd (56) icfp (50) int (15) let (8) |multf (8)| Total (176)
time| # time| # time| # time| # time| # time| # time| # time
esolver 4 2250.71 2 T71.21 50 87835 0O Of 5 1416.7{ 2 0.0] 7 0.6 70 4617.7
cved+si-r|(32) 1.21(6) 4.7((56) 2.11(43) 3403.5|(15) 0.6{(8) 1.0[(8) 0.2{(168) 3413.3
cved+si | 30 1449515 0.1 52 23229(0 0] 6 0112 0.5]7 0.1 102 3773.2

 Considered CV(C4:
 With solution reconstruction cvc4+si
 Without solution reconstruction cvc4+si-r

e cvcd+si solves 35 that esolver does not
e esolver solves 3 that cvcd+si does not

 cvcd+si solves 25 benchmarks unsolved by any other known solver
* Many of these in fraction of a second

Non-single invocation Properties

int (3)
time

invgu (28)
time

invg (28)
time

vetrl (8)
time

Total (67)
time

esolver
cvedtsg

3 16
3 1476.0

25 86.3
23 811.6

25 856
22 22832

5 295
5 2933.1

58 203.0
53 7503.9

* cvcl+sg fairly competitive with esolver

e cvcd+sg solves 2 that esolver does not
* esolver solves 7 that cvcd+sg does not

CVC4 in Sygus Comp 2015

e \Won General and LIA tracks

LIA Track

Solver total-expr-size average-expr-size

CVC4-1.5-syguscomp2015-v4) 70 43726 624.66
Alchemis 47 6658 141.66

Alchemist CS 33 866 26.24
* In LIA track, solved 70/73 benchmarks, 60 of these in <1 second
* Nearest competitor AlchemistCSDT solved 47/73 in a timeout of 1 hour

* Did not win INV track (won by lceDT)
* Due to form of benchmarks, for transition relations T:

dinv. V. (inv(x)AT(x,x"))=inv(x’)

—>Resorts to syntax-guided approach

Max example : Sygus Comp 2015

n 2131415 6 7 8 | 91011 |12]13]14]15
cved+si 0.010.010.010.01 0.1 | 0.1 0.2 [0.3]10.6]11.011.9]3.2(5.3(6.5
AlchemistCSDT [0.2(0.6]1.516.4|120.8(132.8(8779| - | - | - | -| - - | -
AlchemistCS [0.0(3.7]| - | = | - — U N R A I N I

e Qutperforms existing approaches by an order of magnitude or more

—> Our approach is highly efficient for synthesizing non-recursive
functions that are defined by cases

summary

» Refutation-based approach for synthesis
* Highly competitive for single invocation properties

* Uses Counterexample-Guided Quantifier Instantiation

* Applicable to theorem proving, not just synthesis
* Also used in SMT Comp 2014 and 2015, CASC J7 and 25

e Solutions constructed from unsat core of instantiations
* Implemented in CVC4

Thanks!

e CVC4 publicly available at:
http://cvcd.cs.nyu.edu/web/

* Handles inputs in the sygus language format *.sl

http://cvc4.cs.nyu.edu/web/
http://cvc4.cs.nyu.edu/web/

