Counterexample-Guided Quantifier Instantiation for Synthesis in SMT

Andrew Reynolds, Morgan Deters, Viktor Kuncak,
Cesare Tinelli, Clark Barrett
July 24, 2015

Overview

• Synthesis Problem : $\exists f . \forall x . P (f, x)$

There exists a function f such that for all x, P(f, x)

- Most existing approaches for synthesis
 - Rely on specialized solver that makes subcalls to an SMT Solver
- Approach for synthesis in this talk:
 - Instrumented entirely inside SMT solver

SMT Solver + Quantified Formulas

- SMT solver consists of:
 - Ground solver maintains a set of ground (variable-free) constraints
 - Quantifiers Module maintains a set of quantified formulas: $\forall x . P(x)$

SMT Solver + Quantified Formulas

• Goal: add instances of axioms until ground solver can answer "unsat"

SMT Solver + Quantified Formulas

- Generally, a sound but incomplete procedure
 - Difficult to answer sat (when have we added enough instances of $\forall x \cdot P(x)$?)

Running Example: Max of Two Integers

$$\exists f. \forall xy. (f(x,y) \ge x \land f(x,y) \ge y \land (f(x,y) = x \lor f(x,y) = y))$$

- Specifies that f computes the maximum of integers x and y
- Solution:

$$f := \lambda xy.ite(x \ge y, x, y)$$

How does an SMT solver handle Max example?

```
f: Int × Int \rightarrow Int

\forall xy. (f(x,y) \ge x \land f(x,y) \ge y \land

(f(x,y) = x \lor f(x,y) = y))
```

- Direct approach:
 - Treat f as an uninterpreted function
 - Succeed if SMT solver can find correct interpretation of f, answer

sat

- ⇒This is challenging
 - How does the solver know the right interpretation for f to pick?

Refutation-Based Synthesis

$$\exists f. \forall x. P(f, x)$$

- Since it is challenging to answer "sat" when ∀ are present,
 - ⇒ Can we instead use a *refutation-based* approach for synthesis?

Refutation-Based Synthesis

$$\neg \exists f. \forall x. P(f,x)$$

- What if we negate the synthesis conjecture?
- If we are in a satisfaction-complete theory T (e.g. LIA, BV):
 - F is T-satisfiable if and only if $\neg F$ is T-unsatisfiable

 \Rightarrow Will suffice for us to show the above formula is unsat

Challenge: Second-Order Quantification

$$\neg \exists f. \forall x. P(f, x)$$
negate
$$\forall f. \exists x. \neg P(f, x)$$

- Challenge: negation introduces universal ∀ over function £
 - No SMT solvers directly support second-order quantification

Challenge: Second-Order Quantification

$$\neg \exists f. \forall x. P(f, x)$$
negate
$$\forall f. \exists x. \neg P(f, x)$$

- Challenge: negation introduces universal ∀ over function £
 - No SMT solvers directly support second-order quantification
- However, we can avoid this quantification using two approaches:
 - 1. When property P is single invocation for f
 - 2. When f is given syntactic restrictions

$$\forall f. \exists xy. (f(x,y) < x \lor f(x,y) < y \lor (f(x,y) \neq x \land f(x,y) \neq y))$$

```
\forall f. \exists xy. (f(x,y) < x \lor f(x,y) < y \lor (f(x,y) \neq x \land f(x,y) \neq y))
```

- Single invocation properties
 - Are properties such that:
 - All occurrences of f are of a particular form, e.g. f(x, y) above
 - Are a common class of properties useful for:
 - Software Synthesis (post-conditions describing the result of a function)

```
\forall f. \exists xy. (f(x,y) < x \lor f(x,y) < y \lor (f(x,y) \neq x \land f(x,y) \neq y))
| Push quantification downwards 
\exists xy. \forall g. (g < x \lor g < y \lor (g \neq x \land g \neq y))
```

- Occurrences of f(x, y) are replaced with integer variable g
- Resulting formula is equisatisfiable, and first-order

```
\forall f. \exists xy. (f(x,y) < x \lor f(x,y) < y \lor
                         (f(x,y)\neq x \land f(x,y)\neq y))
                                Push quantification downwards
           \exists xy. \forall g. (g < x \lor g < y \lor
                                    (q \neq x \land q \neq y))
                                 Skolemize, for fresh a and b
    \forall q. (q \leq a \vee q \leq b \vee (q \neq a \wedge q \neq b))
```

Ground solver

Ground solver

unsat

```
\neg isMax(a,a,b) \land
\negisMax(b, a, b)
 Ground
  solver
```

```
\exists f. \forall xy. isMax(f(x,y),x,y)
      \forall q. \neg isMax(q, a, b)
               Quantifiers
                 Module
```

```
f := \lambda xy.ite(isMax(a,a,b), a, b)[x/a][y/b]
```

⇒Solution can be extracted from unsatisfiable core of instantiations a/g, b/g

```
\neg isMax(a,a,b) \land
     \negisMax(b, a, b)
       Ground
        solver
unsat
```

```
\exists f. \forall xy. isMax(f(x,y),x,y)
      \forall g.\neg isMax(g,a,b)
              Quantifiers
                Module
```

 $f := \lambda xy$. ite $(x \ge y, x, y)$

⇒ Desired function, after simplification

How do we Choose Relevant Instances?

- Instances chosen counterexample-guided quantifier instantiation
 - ⇒ Follows counterexample-guided inductive synthesis (CEGIS) approach

 \Rightarrow e.g. based on the equivalence class of \in

What if property is not single invocation?

$$\exists c. \forall xy.c(x,y)=c(y,x)$$
 e.g. c is commutative

What if property is not single invocation?

$$\exists c. \forall xy.c(x,y) = c(y,x)$$

Negate

 $\forall c. \exists xy.c(x,y) \neq c(y,x)$

• What if property is *not single invocation*?

$$\exists c. \forall xy.c(x,y) = c(y,x)$$

Negate

 $\forall c. \exists xy.c(x,y) \neq c(y,x)$

Model domain of c as algebraic datatype D

```
D := zero | one | x1 | x2 | plus(D1,D2)

\forall d:D. \exists xy. eval(d,x,y) \neq eval(d,y,x) \land

\forall xy. eval(zero,x,y) = 0 \land \forall xy. eval(one,x,y) = 1 \land

\forall xy. eval(x1,x,y) = x \land \forall xy. eval(x2,x,y) = y \land

\forall d_1 d_2 xy. eval(plus(d_1,d_2),x,y) = eval(d_1,x,y) + eval(d_2,x,y)
```

What if property is single invocation, but has syntactic restrictions?

 $\exists f. \forall xy.isMax(f(x,y),x,y)$

$$D := 0 \mid 1 \mid x1 \mid x2 \mid ite(B1, D1, D2)$$

$$B := \leq (D1, D2) \mid = (D1, D2) \mid \wedge (B1, B2)$$

Max example (single invocation)

Syntactic restrictions for £

Evaluation

- Implemented techniques in SMT solver CVC4
- Compared CVC4 against tools taken from 2014 SyGuS competition
 - In particular: enumerative CEGIS solver esolver (Upenn)
- Of 243 benchmarks from this competition:
 - 176 were single invocation

Results: Single-Invocation Properties

	array (32)		bv (7)		hd (56)		icfp (50)		int (15)		let (8)		multf (8)		Total (176)	
	#	time	#	time	#	time	#	time	#	time	#	time	#	time	#	time
esolver	4	2250.7	2	71.2	50	878.5	0	0	5	1416.7	2	0.0	7	0.6	70	4617.7
cvc4+si-r	(32)	1.2	(6)	4.7	(56)	2.1	(43)	3403.5	(15)	0.6	(8)	1.0	(8)	0.2	(168)	3413.3
cvc4+si	30	1449.5	5	0.1	52	2322.9	0	0	6	0.1	2	0.5	7	0.1	102	3773.2

- Considered CVC4:
 - With solution reconstruction cvc4+si
 - Without solution reconstruction cvc4+si-r
- cvc4+si solves 35 that esolver does not
- esolver solves 3 that cvc4+si does not
- cvc4+si solves 25 benchmarks unsolved by any other known solver
 - Many of these in fraction of a second

Non-single invocation Properties

	int (3)		inv	gu (28)	invg (28)			ctrl (8)	Total (67)		
	#	time	#	time	#	time	#	time	#	time	
esolver											
cvc4+sg	3	1476.0	23	811.6	22	2283.2	5	2933.1	53	7503.9	

- cvc4+sg fairly competitive with esolver
 - cvc4+sg solves 2 that esolver does not
 - esolver solves 7 that cvc4+sg does not

CVC4 in Sygus Comp 2015

Won General and LIA tracks

LIA Track	73		
Solver	#solved	total-expr-size	average-expr-size
CVC4-1.5-syguscomp2015-v4	70	43726	624.66
AlchemistCSDT	47	6658	141.66
Alchemist CS	33	866	26.24

- In LIA track, solved 70/73 benchmarks, 60 of these in <1 second
 - Nearest competitor AlchemistCSDT solved 47/73 in a timeout of 1 hour
- Did not win INV track (won by IceDT)
 - Due to form of benchmarks, for transition relations T:

$$\exists inv. \forall x. (inv(x) \land T(x, x')) \Rightarrow inv(x')$$

⇒Resorts to syntax-guided approach

Max example : Sygus Comp 2015

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
cvc4+si	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.3	0.6	1.0	1.9	3.2	5.3	6.5
AlchemistCSDT	0.2	0.6	1.5	6.4	20.8	132.8	877.9	_	_	_	_	_	_	_
AlchemistCS	0.0	3.7	_	_	_	-	-	_	_	-	_	1	_	_

• Outperforms existing approaches by an order of magnitude or more

⇒ Our approach is highly efficient for synthesizing non-recursive functions that are defined by cases

Summary

- Refutation-based approach for synthesis
 - Highly competitive for single invocation properties
- Uses Counterexample-Guided Quantifier Instantiation
 - Applicable to theorem proving, not just synthesis
 - Also used in SMT Comp 2014 and 2015, CASC J7 and 25
- Solutions constructed from unsat core of instantiations
- Implemented in CVC4

Thanks!

CVC4 publicly available at:

http://cvc4.cs.nyu.edu/web/

Handles inputs in the sygus language format *.sl

