
Counterexample-Guided

Quantifier Instantiation for

Synthesis in SMT
Andrew Reynolds, Morgan Deters, Viktor Kuncak,

Cesare Tinelli, Clark Barrett

July 24, 2015

Overview

• Synthesis Problem : f.x.P(f,x)

• Most existing approaches for synthesis

• Rely on specialized solver that makes subcalls to an SMT Solver

• Approach for synthesis in this talk:

• Instrumented entirely inside SMT solver

There exists a function f such that for all x, P(f,x)

SMT Solver + Quantified Formulas

• SMT solver consists of:

• Ground solver maintains a set of ground (variable-free) constraints

• Quantifiers Module maintains a set of quantified formulas:  x.P(x)

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)
Quantifiers

Module

x.P(x)

SMT Solver + Quantified Formulas

• Goal : add instances of axioŵs uŶtil grouŶd solǀer caŶ aŶsǁer ͞unsat͟

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)

P(a),P(b),P(c),…

Quantifiers

Module

instances

x.P(x)

unsat?

SMT Solver + Quantified Formulas

• Generally, a sound but incomplete procedure

• Difficult to answer sat (when have we added enough instances of x.P(x)?)

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)
Quantifiers

Module

sat
sat?

 sat

P(a),P(b),P(c),… x.P(x)

instances

unsat?

Running Example : Max of Two Integers

  f.xy.(f(x,y)≥x  f(x,y)≥y 

 (f(x,y)=x  f(x,y)=y))

• Specifies that f computes the maximum of integers x and y

• Solution:

f := lxy.ite(x≥y,x,y)

• Direct approach:

• Treat f as an uninterpreted function

• Succeed if SMT solver can find correct interpretation of f, answer

This is challenging

• How does the solver know the right interpretation for f to pick?

f : Int  Int  Int

xy.(f(x,y)≥x  f(x,y)≥y 

 (f(x,y)=x  f(x,y)=y))

How does an SMT solver handle Max example?

sat

Refutation-Based Synthesis

 f. x.P(f,x)

• “iŶce it is challeŶgiŶg to aŶsǁer ͞sat͟ ǁheŶ  are present,

 Can we instead use a refutation-based approach for synthesis?

Refutation-Based Synthesis

• What if we negate the synthesis conjecture?

• If we are in a satisfaction-complete theory T (e.g. LIA, BV):

• F is T-satisfiable if and only if F is T-unsatisfiable

 Will suffice for us to show the above formula is

  f. x.P(f,x)

unsat

Challenge: Second-Order Quantification

• Challenge: negation introduces universal  over function f

• No SMT solvers directly support second-order quantification

f. x.P(f,x)

  f. x.P(f,x)

negate

Challenge: Second-Order Quantification

• Challenge: negation introduces universal  over function f

• No SMT solvers directly support second-order quantification

• However, we can avoid this quantification using two approaches:

1. When property P is single invocation for f

2. When f is given syntactic restrictions

f. x.P(f,x)

  f. x.P(f,x)

negate

Single Invocation Properties

f.  xy.(f(x,y)<x  f(x,y)<y 

 (f(x,y)≠x  f(x,y)≠y))

Single Invocation Properties

• Single invocation properties

• Are properties such that:

• All occurrences of f are of a particular form, e.g. f(x,y) above

• Are a common class of properties useful for:

• Software Synthesis (post-conditions describing the result of a function)

f.  xy.(f(x,y)<x  f(x,y)<y 

 (f(x,y)≠x  f(x,y)≠y))

Single Invocation Properties

• Occurrences of f(x,y) are replaced with integer variable g

• Resulting formula is equisatisfiable, and first-order

f.  xy.(f(x,y)<x  f(x,y)<y 

 (f(x,y)≠x  f(x,y)≠y))

 xy.g.(g<x  g<y 

 (g≠x  g≠y))

Push quantification downwards

Single Invocation Properties

f.  xy.(f(x,y)<x  f(x,y)<y 

 (f(x,y)≠x  f(x,y)≠y))

 xy.g.(g<x  g<y 

 (g≠x  g≠y))

Push quantification downwards

g.(g<a  g<b (g≠a  g≠b))

Skolemize, for fresh a and b

Solving Max Example

g.(g<a  g<b (g≠a  g≠b))

Ground

solver

Quantifiers

Module

Solving Max Example

g.isMax(g,a,b)

Ground

solver

Quantifiers

Module

Solving Max Example

Quantifiers

Module
Ground

solver

instances

a/g, b/g

isMax(a,a,b)
isMax(b,a,b)

g.isMax(g,a,b)

Solving Max Example

Quantifiers

Module
Ground

solver

a<b 
b<a  simplify

g.isMax(g,a,b)

Solving Max Example

Quantifiers

Module

unsat

Ground

solver

a<b 
b<a 

 g.isMax(g,a,b) is unsatisfable

 by instances a/g, b/g,

 implies original synthesis conjecture has a solution

g.isMax(g,a,b)

Solving Max Example

Quantifiers

Module

unsat

Ground

solver

Solution can be extracted from unsatisfiable core of instantiations a/g, b/g

f:= lxy.ite(isMax(a,a,b), a, b)[x/a][y/b]

g.isMax(g,a,b)

 f. xy.isMax(f(x,y),x,y)

isMax(a,a,b)
isMax(b,a,b)

Solving Max Example

Quantifiers

Module

unsat

Ground

solver

f:= lxy. ite(x≥y,x,y)

 f. xy.isMax(f(x,y),x,y)

g.isMax(g,a,b)

 Desired function, after simplification

isMax(a,a,b)
isMax(b,a,b)

How do we Choose Relevant Instances?

Quantifiers

Module
Ground

solver

...

?

g.isMax(g,a,b)

Counterexample-Guided Quantifier Instantiation

Quantifiers

Module
Ground

solver

...

solution

Candidate programs

...

Counterexamples

• Instances chosen counterexample-guided quantifier instantiation
  Follows counterexample-guided inductive synthesis (CEGIS) approach

Counterexample-Guided Quantifier Instantiation

Quantifiers

Module
Ground

solver

...

solution

Candidate programs

...

Counterexamples

•What makes our approach different:

Leverage internal state of the SMT solver

Counterexample-Guided Quantifier Instantiation

Quantifiers

Module
Ground

solver

g.isMax(g,a,b)

To choose instance:

find interpretation

for e in

isMax(e,a,b)

?

Counterexample-Guided Quantifier Instantiation

Quantifiers

Module
Ground

solver

g.isMax(g,a,b)

To choose instance:

find interpretation

for e in

 isMax(e,a,b)

?

e≥a 
e≥b 

(e=a  e=b)

Counterexample-Guided Quantifier Instantiation

Quantifiers

Module
Ground

solver

isMax(a,a,b) g.isMax(g,a,b)

To choose instance:

find interpretation

for e in

 isMax(e,a,b) e≥a 
e≥b 

(e=a  e=b)

 e.g. based on the equivalence class of e

Counterexample-Guided Quantifier Instantiation

Quantifiers

Module
Ground

solver

isMax(a,a,b) g.isMax(g,a,b)

To choose instance:

find interpretation

for e in

 isMax(e,a,b) e≥a 
e≥b 

(e=a  e=b)
isMax(a,a,b)



Counterexample-Guided Quantifier Instantiation

Quantifiers

Module
Ground

solver

isMax(a,a,b), isMax(b,a,b) g.isMax(g,a,b)

To choose instance:

find interpretation

for e in

 isMax(e,a,b) e≥a 
e≥b 

(e=a  e=b)
isMax(a,a,b)


solution

Non-Single Invocation Properties

• What if property is not single invocation?

 c. xy.c(x,y)=c(y,x) e.g. c is commutative

Non-Single Invocation Properties

• What if property is not single invocation?

 c. xy.c(x,y)=c(y,x)

c. xy.c(x,y)c(y,x)

Negate

Non-Single Invocation Properties

• What if property is not single invocation?

 c. xy.c(x,y)=c(y,x)

c. xy.c(x,y)c(y,x)

Negate

Model domain of c as algebraic datatype D

D := zero | one | x1 | x2 | plus(D1,D2)

d:D. xy.eval(d,x,y)eval(d,y,x)

xy.eval(zero,x,y)=0  xy.eval(one,x,y)=1 

xy.eval(x1,x,y)=x  xy.eval(x2,x,y)=y 

d1d2xy.eval(plus(d1,d2),x,y)=eval(d1,x,y)+eval(d2,x,y)

D := 0 | 1 | x1 | x2 | ite(B1,D1,D2)

B := ≤(D1,D2) | =(D1,D2) | (B1,B2)

f. xy.isMax(f(x,y),x,y)

Max example

(single invocation)

Syntactic restrictions for f

• What if property is single invocation, but has syntactic restrictions?

Single Invocation + Syntactic Restrictions

Single Invocation + Syntactic Restrictions

g.isMax(g,a,b)

SMT Solver
(CE-guided quantifier instantiation)

Convert to first order

based on transformation for

single invocation properties

D := 0 | 1 | x1 | x2 | ite(B1,D1,D2)

B := ≤(D1,D2) | =(D1,D2) | (B1,B2)

f. xy.isMax(f(x,y),x,y)

Single Invocation + Syntactic Restrictions

SMT Solver
(CE-guided quantifier instantiation)

lxy.ite(x+(-1)*y≥0,x,y)

Solve, while ignoring syntactic restrictions

D := 0 | 1 | x1 | x2 | ite(B1,D1,D2)

B := ≤(D1,D2) | =(D1,D2) | (B1,B2)
g.isMax(g,a,b)

f. xy.isMax(f(x,y),x,y)

Single Invocation + Syntactic Restrictions

SMT Solver
(CE-guided quantifier instantiation)

lxy.ite(x+(-1)*y≥0,x,y)

Solution Reconstruction

D := 0 | 1 | x1 | x2 | ite(B1,D1,D2)

B := ≤(D1,D2) | =(D1,D2) | (B1,B2)
g.isMax(g,a,b)

f. xy.isMax(f(x,y),x,y)

Single Invocation + Syntactic Restrictions

SMT Solver
(CE-guided quantifier instantiation)

lxy.ite(x+(-1)*y≥0,x,y)

Solution Reconstruction

lxy.ite(y≤x,x,y)

Find equivalent function that meets syntactic restrictions

fail

D := 0 | 1 | x1 | x2 | ite(B1,D1,D2)

B := ≤(D1,D2) | =(D1,D2) | (B1,B2)
g.isMax(g,a,b)

f. xy.isMax(f(x,y),x,y)

Evaluation

• Implemented techniques in SMT solver CVC4

• Compared CVC4 against tools taken from 2014 SyGuS competition

• In particular: enumerative CEGIS solver esolver (Upenn)

• Of 243 benchmarks from this competition:

• 176 were single invocation

Results: Single-Invocation Properties

• Considered CVC4:

• With solution reconstruction cvc4+si

• Without solution reconstruction cvc4+si-r

• cvc4+si solves 35 that esolver does not

• esolver solves 3 that cvc4+si does not

• cvc4+si solves 25 benchmarks unsolved by any other known solver

• Many of these in fraction of a second

Non-single invocation Properties

• cvc4+sg fairly competitive with esolver

• cvc4+sg solves 2 that esolver does not

• esolver solves 7 that cvc4+sg does not

CVC4 in Sygus Comp 2015

• Won General and LIA tracks

• In LIA track, solved 70/73 benchmarks, 60 of these in <1 second
• Nearest competitor AlchemistCSDT solved 47/73 in a timeout of 1 hour

• Did not win INV track (won by IceDT)
• Due to form of benchmarks, for transition relations T:

Resorts to syntax-guided approach

 inv.  x.(inv(x)T(x,x’))inv(x’)

Max example : Sygus Comp 2015

• Outperforms existing approaches by an order of magnitude or more

 Our approach is highly efficient for synthesizing non-recursive
functions that are defined by cases

Summary

• Refutation-based approach for synthesis

• Highly competitive for single invocation properties

• Uses Counterexample-Guided Quantifier Instantiation

• Applicable to theorem proving, not just synthesis

• Also used in SMT Comp 2014 and 2015, CASC J7 and 25

• Solutions constructed from unsat core of instantiations

• Implemented in CVC4

Thanks!

• CVC4 publicly available at:

 http://cvc4.cs.nyu.edu/web/

• Handles inputs in the sygus language format *.sl

http://cvc4.cs.nyu.edu/web/
http://cvc4.cs.nyu.edu/web/

