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Overview 

• Synthesis Problem :  f.x.P(f,x) 
 

 

 

• Most existing approaches for synthesis 

• Rely on specialized solver that makes subcalls to an SMT Solver 

• Approach for synthesis in this talk: 

• Instrumented entirely inside SMT solver 

There exists a function f such that for all x, P(f,x) 



SMT Solver + Quantified Formulas 

• SMT solver consists of:  

•  Ground solver maintains a set of ground (variable-free) constraints 

•  Quantifiers Module maintains a set of quantified formulas:  x.P(x) 
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SMT Solver + Quantified Formulas 

• Goal : add instances of axioŵs uŶtil grouŶd solǀer caŶ aŶsǁer ͞unsat͟ 
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P(a),P(b),P(c),… 

Quantifiers 

Module 

instances 

x.P(x) 

unsat? 



SMT Solver + Quantified Formulas 

• Generally, a sound but incomplete procedure 

• Difficult to answer sat (when have we added enough instances of x.P(x)?) 

SAT 

Solver 

Decision 

Procedure 

for T 

Ground solver 

DPLL(T) 
Quantifiers 

Module 

sat 
sat? 

 sat 

P(a),P(b),P(c),… x.P(x) 

instances 

unsat? 



Running Example : Max of Two Integers 

  f.xy.(f(x,y)≥x  f(x,y)≥y   

               (f(x,y)=x  f(x,y)=y)) 

 

• Specifies that f computes the maximum of integers x and y 

• Solution: 

f := lxy.ite(x≥y,x,y) 



• Direct approach: 

• Treat f as an uninterpreted function 

• Succeed if SMT solver can find correct interpretation of f, answer  

This is challenging 

• How does the solver know the right interpretation for f to pick? 

f : Int  Int  Int 

xy.(f(x,y)≥x  f(x,y)≥y   

               (f(x,y)=x  f(x,y)=y)) 

How does an SMT solver handle Max example? 

sat 



Refutation-Based Synthesis 

 f. x.P(f,x) 

• “iŶce it is challeŶgiŶg to aŶsǁer ͞sat͟ ǁheŶ  are present, 

 Can we instead use a refutation-based approach for synthesis?  



Refutation-Based Synthesis 

•  What if we negate the synthesis conjecture?   

•  If we are in a satisfaction-complete theory T (e.g. LIA, BV): 

• F is T-satisfiable if and only if F is T-unsatisfiable 

 

 Will suffice for us to show the above formula is 

  f. x.P(f,x) 

unsat 



Challenge: Second-Order Quantification 

• Challenge: negation introduces universal  over function f 

• No SMT solvers directly support second-order quantification 

f. x.P(f,x) 

  f. x.P(f,x) 

negate 



Challenge: Second-Order Quantification 

• Challenge: negation introduces universal  over function f 

• No SMT solvers directly support second-order quantification 

• However, we can avoid this quantification using two approaches: 

1. When property P is single invocation for f   

2. When f is given syntactic restrictions 

 

f. x.P(f,x) 

  f. x.P(f,x) 

negate 



Single Invocation Properties 

f.  xy.(f(x,y)<x  f(x,y)<y   

               (f(x,y)≠x  f(x,y)≠y)) 



Single Invocation Properties 

•  Single invocation properties 

• Are properties such that: 

• All occurrences of f are of a particular form, e.g. f(x,y) above 

• Are a common class of properties useful for: 

• Software Synthesis (post-conditions describing the result of a function) 

  

f.  xy.(f(x,y)<x  f(x,y)<y   

               (f(x,y)≠x  f(x,y)≠y)) 



Single Invocation Properties 

• Occurrences of f(x,y) are replaced with integer variable g 

• Resulting formula is equisatisfiable, and first-order 

f.  xy.(f(x,y)<x  f(x,y)<y   

               (f(x,y)≠x  f(x,y)≠y)) 

 xy.g.(g<x  g<y   

               (g≠x  g≠y)) 

Push quantification downwards 



Single Invocation Properties 

f.  xy.(f(x,y)<x  f(x,y)<y   

               (f(x,y)≠x  f(x,y)≠y)) 

 xy.g.(g<x  g<y   

               (g≠x  g≠y)) 

Push quantification downwards 

g.(g<a  g<b (g≠a  g≠b)) 

Skolemize, for fresh a and b 



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 

Ground 

solver 

Quantifiers 

Module 



Solving Max Example 

g.isMax(g,a,b) 

Ground 

solver 

Quantifiers 

Module 



Solving Max Example 

Quantifiers 

Module 
Ground 

solver 

instances 

a/g, b/g 

isMax(a,a,b) 
isMax(b,a,b) 

g.isMax(g,a,b) 



Solving Max Example 

Quantifiers 

Module 
Ground 

solver 

a<b  
b<a  simplify 

g.isMax(g,a,b) 



Solving Max Example 

Quantifiers 

Module 

unsat 

Ground 

solver 

a<b  
b<a  

 g.isMax(g,a,b) is unsatisfable 

                        by instances a/g, b/g, 

        implies original synthesis conjecture has a solution  

g.isMax(g,a,b) 



Solving Max Example 

Quantifiers 

Module 

unsat 

Ground 

solver 

 

Solution can be extracted from unsatisfiable core of instantiations a/g, b/g 

f:= lxy.ite( isMax(a,a,b), a, b)[x/a][y/b] 

g.isMax(g,a,b) 

 f. xy.isMax(f(x,y),x,y) 

isMax(a,a,b) 
isMax(b,a,b) 



Solving Max Example 

Quantifiers 

Module 

unsat 

Ground 

solver 

f:= lxy. ite(x≥y,x,y) 

 f. xy.isMax(f(x,y),x,y) 

g.isMax(g,a,b) 

 

 Desired function, after simplification 

isMax(a,a,b) 
isMax(b,a,b) 



How do we Choose Relevant Instances? 

Quantifiers 

Module 
Ground 

solver 

... 

? 

g.isMax(g,a,b) 



Counterexample-Guided Quantifier Instantiation 

Quantifiers 

Module 
Ground 

solver 

... 

solution 

Candidate programs 

... 

Counterexamples 

• Instances chosen counterexample-guided quantifier instantiation 
    Follows counterexample-guided inductive synthesis (CEGIS) approach  

 



Counterexample-Guided Quantifier Instantiation 

Quantifiers 

Module 
Ground 

solver 

... 

solution 

Candidate programs 

... 

Counterexamples 

•What makes our approach different:  

Leverage internal state of the SMT solver 



Counterexample-Guided Quantifier Instantiation 

Quantifiers 

Module 
Ground 

solver 

g.isMax(g,a,b) 

To choose instance: 

find interpretation  

for e in  

isMax(e,a,b)  

? 



Counterexample-Guided Quantifier Instantiation 

Quantifiers 

Module 
Ground 

solver 

g.isMax(g,a,b) 

To choose instance: 

find interpretation  

for e in  

 isMax(e,a,b)  

? 

e≥a   
e≥b  

(e=a  e=b) 



Counterexample-Guided Quantifier Instantiation 

Quantifiers 

Module 
Ground 

solver 

isMax(a,a,b) g.isMax(g,a,b) 

To choose instance: 

find interpretation  

for e in  

 isMax(e,a,b)  e≥a   
e≥b  

(e=a  e=b) 

 e.g. based on the equivalence class of e 



Counterexample-Guided Quantifier Instantiation 

Quantifiers 

Module 
Ground 

solver 

isMax(a,a,b) g.isMax(g,a,b) 

To choose instance: 

find interpretation  

for e in  

 isMax(e,a,b)  e≥a   
e≥b  

(e=a  e=b) 
isMax(a,a,b) 

 



Counterexample-Guided Quantifier Instantiation 

Quantifiers 

Module 
Ground 

solver 

isMax(a,a,b), isMax(b,a,b) g.isMax(g,a,b) 

To choose instance: 

find interpretation  

for e in  

 isMax(e,a,b)  e≥a   
e≥b  

(e=a  e=b) 
isMax(a,a,b) 

 
solution 



Non-Single Invocation Properties 

• What if property is not single invocation? 

 c. xy.c(x,y)=c(y,x) e.g. c is commutative 



Non-Single Invocation Properties 

• What if property is not single invocation? 

 c. xy.c(x,y)=c(y,x) 

c. xy.c(x,y)c(y,x) 

Negate 



Non-Single Invocation Properties 

• What if property is not single invocation? 

 c. xy.c(x,y)=c(y,x) 

c. xy.c(x,y)c(y,x) 

Negate 

Model domain of c as algebraic datatype D 

D := zero | one | x1 | x2 | plus(D1,D2) 

d:D. xy.eval(d,x,y)eval(d,y,x) 

xy.eval(zero,x,y)=0  xy.eval(one,x,y)=1  

xy.eval(x1,x,y)=x  xy.eval(x2,x,y)=y  

d1d2xy.eval(plus(d1,d2),x,y)=eval(d1,x,y)+eval(d2,x,y) 



D := 0 | 1 | x1 | x2 | ite(B1,D1,D2) 

B := ≤(D1,D2) | =(D1,D2) | (B1,B2) 

f. xy.isMax(f(x,y),x,y) 

Max example 

(single invocation) 

Syntactic restrictions for f 

• What if property is single invocation, but has syntactic restrictions? 

Single Invocation + Syntactic Restrictions 



Single Invocation + Syntactic Restrictions 

g.isMax(g,a,b) 

SMT Solver 
(CE-guided quantifier instantiation) 

Convert to first order 

based on transformation for 

single invocation properties 

D := 0 | 1 | x1 | x2 | ite(B1,D1,D2) 

B := ≤(D1,D2) | =(D1,D2) | (B1,B2) 

f. xy.isMax(f(x,y),x,y) 



Single Invocation + Syntactic Restrictions 

SMT Solver 
(CE-guided quantifier instantiation) 

lxy.ite(x+(-1)*y≥0,x,y) 

Solve, while ignoring syntactic restrictions 

D := 0 | 1 | x1 | x2 | ite(B1,D1,D2) 

B := ≤(D1,D2) | =(D1,D2) | (B1,B2) 
g.isMax(g,a,b) 

f. xy.isMax(f(x,y),x,y) 



Single Invocation + Syntactic Restrictions 

SMT Solver 
(CE-guided quantifier instantiation) 

lxy.ite(x+(-1)*y≥0,x,y) 

Solution Reconstruction 

D := 0 | 1 | x1 | x2 | ite(B1,D1,D2) 

B := ≤(D1,D2) | =(D1,D2) | (B1,B2) 
g.isMax(g,a,b) 

f. xy.isMax(f(x,y),x,y) 



Single Invocation + Syntactic Restrictions 

SMT Solver 
(CE-guided quantifier instantiation) 

lxy.ite(x+(-1)*y≥0,x,y) 

Solution Reconstruction 

lxy.ite(y≤x,x,y) 

Find equivalent function that meets syntactic restrictions 

fail 

D := 0 | 1 | x1 | x2 | ite(B1,D1,D2) 

B := ≤(D1,D2) | =(D1,D2) | (B1,B2) 
g.isMax(g,a,b) 

f. xy.isMax(f(x,y),x,y) 



Evaluation 

• Implemented techniques in SMT solver CVC4 

• Compared CVC4 against tools taken from 2014 SyGuS competition 

• In particular: enumerative CEGIS solver esolver (Upenn) 

• Of 243 benchmarks from this competition: 

• 176 were single invocation 

 



Results: Single-Invocation Properties 

• Considered CVC4: 

• With solution reconstruction cvc4+si 

• Without solution reconstruction cvc4+si-r 

• cvc4+si solves 35 that esolver does not 

• esolver solves 3 that cvc4+si does not 

• cvc4+si solves 25 benchmarks unsolved by any other known solver 

• Many of these in fraction of a second 



Non-single invocation Properties 

• cvc4+sg fairly competitive with esolver 

• cvc4+sg solves 2 that esolver does not 

• esolver solves 7 that cvc4+sg does not 



CVC4 in Sygus Comp 2015 

•  Won General and LIA tracks  

 

 
 

 

 

• In LIA track, solved 70/73 benchmarks, 60 of these in <1 second 
• Nearest competitor AlchemistCSDT solved 47/73 in a timeout of 1 hour 

•  Did not win INV track (won by IceDT) 
• Due to form of benchmarks, for transition relations T: 

 

 

Resorts to syntax-guided approach 

 inv.  x.(inv(x)T(x,x’))inv(x’) 



Max example : Sygus Comp 2015 

• Outperforms existing approaches by an order of magnitude or more 

 

 Our approach is highly efficient for synthesizing non-recursive 
functions that are defined by cases 



Summary 

• Refutation-based approach for synthesis 

• Highly competitive for single invocation properties 

• Uses Counterexample-Guided Quantifier Instantiation 

• Applicable to theorem proving, not just synthesis 

• Also used in SMT Comp 2014 and 2015, CASC J7 and 25 

• Solutions constructed from unsat core of instantiations 

• Implemented in CVC4 

 



Thanks! 

• CVC4 publicly available at: 

 http://cvc4.cs.nyu.edu/web/ 

 

• Handles inputs in the sygus language format *.sl 

http://cvc4.cs.nyu.edu/web/
http://cvc4.cs.nyu.edu/web/

