
…some of the Secrets of cvc5
Andrew Reynolds

Centaur Annual Meeting 2022

July 12, 2022

cvc5: SMT and beyond

Equality
with UF, Arrays

Boolean,
Bit-vectors, FP

Datatypes,
Sets, Bags

Linear
Arithmetic

Strings+
Length

-Free
Satisfiability

First-Order 
Satisfiability

Non-linear
Arithmetic

Higher-Order 
Satisfiability

Problem

SAT

EPR Reals Ints

Reals Ints

QBF

Function
Synthesis

BV

…

Theories

QF_BV

Decidable My Research

cvc5: a Versatile and Industrial-Strength SMT Solver

• Architecture and the design of theory solvers
• Focus on theory of strings

• Future Directions in cvc5
• Deep restarts

• Difficulty estimates

Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

Theory
Solver(s)

CDCL(T)

Satisfying Assignments

UNSAT SAT

Conflicts, Lemmas

Preprocessor

Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

CDCL(T)

Satisfying Assignments

Conflicts, Lemmas

Arithmetic

Arrays

Datatypes

Bit-vectors

StringsT-Combination

• Centralized methods for combining theories (Nelson-Oppen, polite)

Preprocessor

Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

CDCL(T)

Satisfying Assignments

Conflicts, Lemmas

Arithmetic

Arrays

Datatypes

Bit-vectors

Strings

Eq Engine

Eq Engine

Eq Engine

Eq Engine

Eq Engine

• Eq reasoning, interface to T-combination managed by an equality engine
• Standardized, mandatory for theories

T-Combination

Preprocessor

Design of Theory Solvers in cvc5

• Kinds file and type checker
• Defines the signature of the theory T

• Rewriter

• Theory solver
• Maintains an equality engine

• Manages theory combination, T-propagation

• Given calls to check a set of T-literals M:
• Return a subset of M that is T-unsat (conflict clause)

• Return a T-valid lemma

• Return a model for the variables of M

 In this talk: the theory solver for strings and regular expressions

Designing the cvc5 Strings Solver

Strings and RegExp: Theoretical Challenges

• Many applications require extended string functions and RegEx memberships
• ctn(x,“a”), to_lower(x)=“abc”, xrange(“A”,”Z”)

Membership
Constraints

Extended

Functions

Length
Constraints

Word
Equations

PSPACE

OPEN

UNDECIDABLE

A DPLL(T) Theory solver for Strings [Liang et al CAV 2014]

• A theory solver for a core theory of strings with concatenation and length

• Design a theory solver that is:
• Refutation and model sound (“unsat” and “sat” can be trusted)

• Not terminating in general

• Efficient in practice

x=“abc”·y

|y|=4

x=“b”·z

String solver x“abc”·y  x“b”·z

Conflict Clause

Extended Theory of Strings [Reynolds et al CAV 2017]

• Support extended string functions commonly used in applications

• For example: ctn(x,“c”) denotes x contains the substring “c”

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver

Extended Theory of Strings [Reynolds et al CAV 2017]

• Use reduction lemmas

• Expensive:
Introduces 3*|x| string vars

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver 0n<|x|.substr(x,n,1)“c”

substr(x,0,1)“c”  …  substr(x,n,1)“c”

x=z11k1z21 

|z11|=0 

k1“c” 

x=z1nknz2n 

|z1n|=n 

kn“c”

...

Bound length of x

Reduce substr

Reduction lemma

Extended Theory of Strings [Reynolds et al CAV 2017]

• Alternatively: use context-dependent simplification:
x=“ab”·y  y=“c” ╞ x=“abc”

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver

Extended Theory of Strings [Reynolds et al CAV 2017]

• Alternatively: use context-dependent simplification:
x=“ab”·y  y=“c” ╞ x=“abc”

• Thus:

ctn(x,“c”){x→“abc”}  ctn(“abc”,“c”)  ⊥

x=“ab”·y

y=“c”

ctn(x,“c”)

String solver

By substitution By rewriting

x“ab”·y  y“c” 

ctn(x,“c”)

Conflict Clause

Recent Developments for Theory of Strings

• Context-dependent simplifications:
• Highly aggressive rewrite techniques for strings [Reynolds et al CAV 2019]
• Applied eagerly, integrated with equality engine [Noetzli et al CAV 2022]

• Reduction lemmas:
• Improved encodings, witness sharing [Reynolds et al FMCAD 2020]
• Model-based reductions [Noetzli et al CAV 2022]

• Broadening the core theory of strings:
• String-to-code point (code) conversions [Reynolds et al IJCAR 2020]
• Theory of sequences, support for nth and update [Sheng et al IJCAR 2022]

Designing Efficient Theory Solvers

• Use of standard engine for equality reasoning

• Cooperation with other theories

• Fast conflicts, context-dependent simplifications

• Lazy dependence upon expensive reasoning, e.g. reductions

• Other features not mentioned:
• Proof support

Future Directions in cvc5

Advanced Architectures in cvc5

cvc5

F

UNSAT SAT

• What if we used the CDCL(T) engine as a black box?

cvc5

Advanced Architectures in cvc5

CDCL(T)

UNSAT SAT

• What if we used the CDCL(T) engine as a black box?

F

cvc5

Advanced Architecture: Portfolio

CDCL(T)

UNSAT SAT

CDCL(T)

UNSAT SAT

…

Options #nOptions #1

F

cvc5

cvc5cvc5

Advanced Architecture: Parallel

CDCL(T)

F

CDCL(T)

F1 Fn

…

…

Split F  F1  …  Fn

UNSAT


SAT SAT

cvc5

Advanced Architecture: Deep Restarts

CDCL(T)

UNSAT SAT

CDCL(T)

UNSAT SAT

…

F

CDCL(T)L1 L1L2

“Learned literals”

• Idea: Restart after learning a set of literals that are implied by F

Deep Restarts

• Given input formula F
• A learnable literal l is:

• Meets some syntactic criteria, e.g. l is a literal from F
• F ╞ T l

• Can instrument the SAT solver to record learned literals
• Literals l that are propagated at decision level zero

• A strategy for deep restarts:
• The solver has learned at least one literal
• No literal has been learned after some threshold (based on size of F)

• Learned literals may drastically impact preprocessing
DEMO

Deep Restarts

•Possible variants:
• In-processing: maintain SAT solver state?

• Preprocessing changes mapping from SAT to theory literals

• Restart while saving certain theory lemmas?
• Based on usefulness criteria

• Save to disk and restart later?

Difficulty Estimation

F1  …  Fn

cvc5

UNSAT SAT

F1 → d1
…

Fn → dn

• When cvc5 can’t solve an input, can we estimate why it was difficult?

Difficulty map

The larger di, the
harder Fi was to
solve for

get-difficulty

Difficulty Estimation

• Given input F1  …  Fn
• Model-based:

• When a candidate model M is constructed
• Increment difficulty measure for each Fj that M does not satisfy

• Conflict-based:
• When a conflict clause (l1… ln) is raised

• For each literal li, increment difficulty measure for the Fj s.t. Fj╞ li

DEMO

• Thanks for listening!

