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Overview

• Satisfiability Modulo Theories (SMT)
– Challenge of quantifiers in SMT

• SMT approaches to quantifiers
– Heuristic Instantiation/E-matching– Heuristic Instantiation/E-matching
– Model-Based Quantifier Instantiation
– Finite Model Finding

• Automated Theorem Proving
• Current Research
– CVC4 + Finite Model Finding



Satisfiability Modulo Theories (SMT)

• SMT solvers:
– Are powerful tools for determining satisfiability of ground 

formulas 
• Built-in decision procedures for many theories

– Arithmetic, Arrays, BitVectors, Datatypes, …– Arithmetic, Arrays, BitVectors, Datatypes, …

– Have applications in:
• Software/Hardware verification
• Planning and scheduling
• Design automation

– Had significant performance improvement in past 10 years
– Key to success of many industrial verification applications



Strengths of SMT Solvers

• Performance
– Built on top of high performance SAT solvers
– Use fast decision procedures for theories
– Designed to work incrementally– Designed to work incrementally

• Usability
– Enable rich encodings of problems
– Accept SMT LIB v2 common language
– Produce more than SAT/UNSAT answer:

• Models, proofs, unsat cores, interpolants, …



What is SMT?



( a = 5 ∨ select( R, a ) = b ) ∧ g( 5 ) ≥  g( a ) + 1

Abstract to boolean satisfiability problem⇒

( A    ∨ B                ) ∧ C

⇒



( a = 5 ∨ select( R, a ) = b ) ∧ g( 5 ) ≥  g( a ) + 1

⇒

( A    ∨ B                ) ∧ C

Find satisfying assignment: A, C
⇒

True True



( a = 5 ∨ select( R, a ) = b ) ∧ g( 5 ) ≥  g( a ) + 1

( A    ∨ B                ) ∧ C

⇒

( A    ∨ B                ) ∧ C

• However, A and C are inconsistent according to theory
- a = 5 and g( 5 ) ≥ g( a ) + 1 cannot both be true according to UF + Int

• Can add additional clause:

( ¬ A   ∨ ¬ C   )

True True



( a = 5 ∨ select( R, a ) = b ) ∧ g( 5 ) ≥  g( a ) + 1

( A    ∨ B                ) ∧ C                 ∧

⇒

( A    ∨ B                ) ∧ C                 ∧

( ¬ A   ∨ ¬ C   )
⇒ answer SAT

False True

True

True



DPLL(T) Architecture [Nieuwenhuis et al 03]

SAT Theory 

Satisfying assignment M

M is T-Consistent

F is SAT

F is UNSAT

Formula 
F

SAT 
Solver

Theory 
Solvers

Clauses to add to F

UNSAT SAT
M is T-Consistent

M is T-Inconsistent

F is UNSAT



Challenge: Quantifiers in SMT

For all integers x…



⇒

TrueTrue



• Divide problem into:
– Ground portion G, and quantified portion Q:

Quantifier Instantiation

• Determine if G is T-inconsistent
– If not, instantiate Q with some set of ground terms

QG



Quantifier Instantiation

QG

instantiate



Instantiation-Based Approaches

• Given set of literals ( G, Q ): 
– Set of ground constraints G
– Set of quantified assertions Q

• Questions:• Questions:
– (1) How to choose instantiations for Q
– (2) When can we answer SAT?



• Idea: Determine instantiations heuristically
– Find terms in Q with same shape as ground terms in G

• Example:
a = b, f( a, a ) ≠ b, ∀x. f( x, b ) = a

Pattern-Based Quantifier Instantiation 
[Detlefs et al 05]

QG
– Consider f( x, b ) as trigger term
– Determine if f( a, a ) and f( x, b ) match,

• Modulo set of background equalities E = { a=b }
– Here, f( x, b ) E-matches f( a, a ) with { x → a }

• Add instantiation [a/x] for quantifier
– Adds constraint f( a, b ) = a, leading to T-inconsistency

QG



Pattern-Based Quantifier Instantiation

• Challenges:
– Trigger selection is highly non-trivial
– Sensitive to syntactic changes in formulas
– Matching loops can occur

• Repeating pattern of generated terms, f(a), f(f(a)), f(f(f(a))), …• Repeating pattern of generated terms, f(a), f(f(a)), f(f(f(a))), …

– # instantiations may explode
– It is an incomplete procedure, i.e. cannot answer SAT

• As a result, tends to:
– Discover easy conflicts if they exist
– Otherwise, overloads SMT solver with instances

• Run indefinitely or answer unknown



Model-Based Quantifier Instantiation 
(MBQI) [Ge, deMoura 08]

• Idea:  Try to show that no instance of Q falsifies 
the current model M for G

• To check if an instance of ∀x. F falsifies M:
⇒ Suffices to check if ¬FM[e/x] is satisfable

• If unsat, then no instance of ∀x. F falsifies M
• Otherwise, we must refine M
– Instantiate ∀x. F using sat assignment to ¬FM[e/x] 



MBQI : Example

P( a, a ), a ≠ b, ∀z. ¬ P( z, b )

Find model M : { a, b }, 

QG
representativesFind model M : { a, b }, 

PM := λ xy. (x=a ∧ y=a)

representatives

interpretations for 
uninterpreted
symbols in Q



MBQI : Example

P( a, a ), a ≠ b, ∀z. ¬ P( z, b )

Find model M : { a, b }, 

QG
Find model M : { a, b }, 

PM := λ xy. (x=a ∧ y=a)

¬ PM( z, b )  ≡ ¬( z=a ∧ b=a )  ≡ true

• Is (¬ true )[e/z] ≡ false satisfiable?

⇒ unsat, therefore Q does not falsify M



MBQI as Model Refinement

P( a, a ), a ≠ b, ∀z. ¬ P( z, b )

Find model M’ : { a, b }, 
PM’ := λ xy. x = a

QG

PM’ := λ xy. x = a

¬ PM’( z, b )  ≡ ¬ ( z = a )

• Is (¬¬ ( z = a ))[e/z] ≡ ( z = a )[e/z] ≡ (e = a) satisfiable?
⇒ sat with valuation { e → a }

• Add instantiation [a/z], add ¬ P( a, b ) to G
– Guaranteed to rule out M’ on subsequent iterations



Model-Based Quantifier Instantiation

• Challenges:
– Hard to determine interpretations in M

• Default values chosen heuristically

– External model checking calls are expensive– External model checking calls are expensive

• Typically:
– Is effective at answering SAT for simple cases
– Can be paired with E-matching to improve coverage



Finite Model Finding

• Idea:  Build model for G that is small enough to 
test Q exhaustively

• Given set of literals ( G, Q ): 
– Find a “smallest” model for G– Find a “smallest” model for G

• One with fewest # of ground equivalence classes

– Try every instance of Q in the model
• Feasible if the number of instances is finite

– If every instance is true in model, answer SAT



Why Small Models?

• Easier to test against quantifiers
–Given quantified formula ∀x1…xn. F( x1 … xn ) 
• Naively, we require kn instantiations

–Where k is the cardinality of sort( x … x )–Where k is the cardinality of sort( x1 … xn )

– Feasible if either:
• Both n and k are small
• We can recognize redundant instantiations

– Use Model-Based Quantifier Instantiation



SMT vs ATP
• SMT Solvers
– Strengths:  

• Efficient decision procedures for theories
• Theories increase expressivity

– Weaknesses:
• Ability to handle quantifiers is limited

• Automated Theorem Provers (ATP)
– Strengths:

• Advanced methods for quantified clauses

– Weaknesses:
• Nearly no support for theories

– Omission is intentional, as this leads to undecidability



Resolution-Based Theorem Proving

• Sound and complete• Sound and complete
– If input is unsat, we will eventually derive ⊥
– When clause set is saturated wrt rules, input is sat

• Additional rules for equational reasoning
– Paramodulation, superposition

• Optimizations
– Term Indexing
– Redundancy Elimination (i.e. clause subsumption)



ATP Approaches

• Deciding fragments of first-order logic (EPR):
– Model evolution calculus [Baumgartner, Tinelli 03]

• Darwin [Fuchs et al 04]

– Inst-Gen [Korovin, Ganzinger 03]

• iProver [Korovin 06]

• Finite model finding:
– SEM-style model finding [Zhang, Zhang 96]

– MACE-style model finding [McCune 94]

• Paradox [Clausen, Sorenson 03]



MACE-Style Model Finding

• Idea:  Check for models of fixed size by 
generating a corresponding ground queries

• Given ( G, Q ): 
– First, create ground problem G, F– First, create ground problem G, FG,Q,1

• If sat, then model of size 1 exists

– If unsat, create ground problem G, FG,Q,2

• If sat, then model of size 2 exists
• …

• Will eventually find finite model, if one exists



MACE-Style Model Finding : Example
a ≠ b, b = c,  ∀x. f( x ) = x

• No model of size 1 can be found…
• Generate ground problem G, F :

QG

• Generate ground problem G, FG,Q,2 :
– Use domain constants d1, d2

a ≠ b, b = c, ( a = d1 ∨ a = d2 ), …
( f(d1) = d1 ∨ f(d1) = d2 ),
( f(d2) = d1 ∨ f(d2) = d2 ), 
f(d1) = d1, f(d2) = d2

each term 
must  be
equal to 
some di

Q is true for all di

⇒ SAT



MACE-Style Model Finding

• Challenges:
– Introducing constants leads to value symmetries

• Find identical models modulo renaming of constants

⇒ Can use static symmetry breaking techniques⇒ Can use static symmetry breaking techniques

– May produce large # of clauses
• Must test all instances of quantified clauses
⇒ Use sort inference to determine a subset of instances 

that are relevant
⇒ Use clause splitting to reduce # variables per clause



My Current Research

• New approaches to quantifiers in SMT
• In this talk: Finite Model Finding in CVC4
• Approach for ( G, Q ) consists of:
– Finding minimal models for G– Finding minimal models for G
– Model checking Q by exhaustive instantiation



Finite Model Finding for SMT

• Similar to MACE-style approaches for ( G, Q ),
– Search for models of size 1, 2, 3, etc.
– Naively, test all instances of Q for fixed model size

• In contrast to MACE-style approaches,• In contrast to MACE-style approaches,
– Search for models is integrated into DPLL(T)
– Do not introduce domain constants explicitly

• Use internal union-find data structure in SMT solver



Finite Model Finding in SMT : Example

a ≠ b, b = c,  ∀x. f( x ) = x

• Using DPLL(T), we find smallest model for G, 

QG
• Using DPLL(T), we find smallest model for G, 

equivalence classes: { a }, { b, c }
• Instantiate Q with all representative terms:
– f( a ) = a, f( b ) = b added to G

• Afterwards : { a, f( a ) }, { b, c, f( b ) }
– All instances are true in model   ⇒ answer SAT



Finite Model Finding

• To find small models:
– Where “smallest” model for sort S means:
• Fewest # equivalence classes of sort S

– Try to find models of size 1, 2, 3, … etc.– Try to find models of size 1, 2, 3, … etc.
• Impose cardinality constraints

– Requires:
• Control the DPLL(T) search for postulating cardinalities
• Theory solver for equality + cardinality constraints



Solver for Eq + Cardinality Constraints
• Maintain disequality graph

– Nodes are equivalence classes
– Edges are disequalities

• For cardinality k, interested whether graph is k-colorable

• Partition disequality graph of the solver into regions where 
the edge density is high
– Discover cliques local to regions
– Suggest relevant terms to identify



Finite Model Finding for SMT

SAT Solver
Theory 
Solvers

Satisfying assignment M

UNSAT

Formula 
F

(with quantifiers)

Eq + Cardinality 

M is T-Consistent
T-conflicts

relevant 
instantiations

Eq + Cardinality 
Solver

M is minimal

SAT

Exhaustive Quant. 
Instantiation

No new instantiationsFilter Based on 
Model

cardinality 
conflicts

T-conflicts



CVC4 + Finite Model Finding

• Implemented in SMT solver CVC4 [Barrett et al 10]

– State of the art solver developed by NYU/Iowa

• Preliminary Results
– Successful as backend to Intel’s DVF Tool – Successful as backend to Intel’s DVF Tool [Goel et al 12]

• Effective at finding small countermodels (SAT cases)
• Added ability to discharge VC’s (UNSAT cases)

– Orthogonal to other approaches
• Answers SAT in cases where no other solver can



Ongoing Work

• For Equality + Cardinality Constraint Solver:
– Improved clique finding and reporting

• For Quantifier Instantiation:
– Incorporate heuristic instantiation– Incorporate heuristic instantiation
– Use of iProver’s Inst-Gen calculus

• Require weaker condition for answering SAT
• Eliminate the need for exhaustive instantiation



• Questions?


