Finite Model Finding for SMT

Andrew Reynolds University of Iowa April 26, 2012

Acknowledgments

- Intel Corporation
- University of Iowa
- New York University

CVC4: SMT Solver

- SMT Solver
- Support for many theories
 - Equality + Uninterpreted Functions
 - Integer/Real arithmetic
 - Bit Vectors, Arrays, Datatypes
- Other features: Proofs
- Work in progress: Quantifiers
 - Pattern-based instantiation
 - Model-based instantiation
 - Rewrite Rules
 - Finite Model Finding

Quantifiers in SMT

- SMT solvers
 - Powerful tools for determining satisfiability of ground formulas
 - DPLL(T) for finding SAT assignments to ground formulas
 - Answer UNSAT if no model can be found
 - However, difficult to answer SAT in the presence of universal quantifiers

Quantifiers in SMT

- Given set of literals (G, F):
 - Set of ground constraints G
 - Set of quantified assertions F
- Questions:
 - -(1) How to chose instantiations for F
 - -(2) When can we answer SAT?

Other approaches

- Pattern-Based Instantiation
 - Determine instantiations heuristically
 - Based on finding ground terms in G with same shape as terms in F
 - Usually these methods cannot answer SAT
- Complete Instantiation
 - Determine sufficient set F^{*} of instantiations
 - If F^{*} is satisfiable, we know F is satisfiable
 - Only applicable to some fragments of first-order logic
- Model-Based Instantiation
 - Determine instantiations based on possible counterexamples (from F) to current model for G
 - Can answer SAT if counterexamples are proven impossible

Finite Model Finding

- Finite Model Finding (for EUF)
 - Find smallest model for ground constraints
 - Instantiate exhaustively with terms in this model
 - Answer SAT if exhaustive instantiation is consistent with model
 - Practical if small models exist
 - Can extend to quantifiers over finite sorts
 - » Finite Datatypes, BitVectors, ...

Finite Model Finding: Overview

- Wish to find reasonably small models
 - Impose *cardinality constraints* on (uninterpreted) sorts
 - Try models of size 1, 2, 3, ... etc.
- What this requires:
 - Control to DPLL(T) search for postulating cardinalities
 - Solver for UF+cardinality constraints
 - Strategy for instantiating quantifiers exhaustively
 - May reduce # instantiations
 - Only try instantiations that are relevant to the model

• Extend UF to handle literals of the form:

• Meaning "the cardinality of sort S is less than or equal to (integer) k"

C_{S.k}

- i.e., at most k equivalence classes of sort S exist

DPLL(T) for UF+Cardinality

- Idea: try to find models of size 1, 2, 3...etc.
 - Choose $C_{S, 1}^{d}$ as first decision literal
 - If fail, then try $C_{S, 2}^{d}$, etc.

- For each sort S, maintain disequality graph D_s = (V, E)
 - V are equivalence classes of sort S
 - E are disequalities between terms of sort S
- D_s induced by asserted set of literals
 - So, f(a) \neq a, f(a) \neq c, f(c) = c becomes:

- Must extend theory solver for UF
 - Determine when no models of size k exist
 - If benchmark contains no function symbols
 - Can use k-colorability algorithm
 - More difficult with function symbols
 - In either case, problem is NP-hard

- Assume a single sort S with cardinality constraint k
 - We are interested in whether D_s is k-colorable
 - If no, then we have a conflict ($\psi \Rightarrow \neg \mathsf{C}_{\mathsf{S},\mathsf{k}}$)
 - where ψ is explanation of sub-graph of D_{S} that is not k-colorable
 - If yes, then we cannot be sure a model of size k exists
 - Identifying elements may have consequences for theories
 - Example: congruence axioms in UF

- Solution: must explicitly shrink model
- Use splitting on demand
 - Add lemma (a = f(c) \lor a \neq f(c))
 - Explore the branch a = f(c) first
 - If successful,
 - We shrink # of equivalence classes by one
 - If unsuccessful,
 - A theory conflict/backtrack will occur
 - » May or may not involve cardinality constraints

k = 2

- Strategy for UF+Cardinality must be:
 - Able to recognize when D_s is not k-colorable
 - Helpful for suggesting relevant splits
- Solution: use a *region-based approach*
 - Partition nodes in *regions* with high edge density
 - Likely to find cliques
 - Can suggest relevant splits

• Partition nodes V of D_s into *regions*

- For cardinality k, we maintain the invariant:
 - No clique of size k+1 exists containing nodes from multiple regions
- Thus, we only need to search for cliques local to regions
 - Region can be ignored if it has \leq k terms

- Within each region with size > k:
 - Maintain a watched set N of k+1 nodes
 - Record pairs of nodes in N that are not linked
 - If this set is empty, N is a clique \Rightarrow report a conflict clause
 - Otherwise, guess equalities over unlinked nodes in N

- Merging nodes 1 and 2 may:
 - Lead to a theory conflict
 - Lead to a cardinality conflict (force a clique), or
 - Succeed

- When merge is successful,
 - Continue guessing equalities until all regions have ≤ k nodes

k = 2

- All regions have \leq k nodes
 - At this point, we are ensured k-colorability
 - However, still unsure a model of size k exists
 - Again, due to possible theory conflicts
 - Must shrink model explicitly

Combine regions based on heuristics

For example, # edges between regions

- Continue combining regions, guessing equalities until we have until ≤ k nodes overall
 - When this is the case, we have model of size k for S

UF+Cardinality Constraints Summary

- For cardinality k, maintain a partition into regions
 - At weak effort check,
 - If any cliques of size k+1 exist:
 - report them as conflicts clauses
 - At strong effort check,
 - If # representatives for sort $S \le k$:
 - return SAT
 - Otherwise, if there is any region R, |R| > k:
 - add splitting lemma between terms within R
 - Otherwise:
 - combine regions, repeat strong effort check
- Both checks can be performed quickly

Finite Model Finding

- Use DPLL(T) to guide search for small models
 Use solver for UF+cardinality constraints
- Why small models?
 - Easier to test against quantifiers
 - Assuming model is small,
 - Instantiate quantifiers w all combinations of representatives
 - If we have same model after instantiation,
 - » Model satisfies quantifiers, able to answer SAT

• Assertions:

 $a \neq c$, f(c) $\neq b$, $\forall xy$. f(x) $\neq g(y)$

• Assertions:

 $a \neq c$, f(c) $\neq b$, $\forall xy$. f(x) $\neq g(y)$

• Find minimal model M, cardinality 2:

• Assertions:

 $a \neq c$, f(c) \neq b, \forall xy. f(x) \neq g(y)

• Instantiate quantified formula with reps a, c:

• Assertions:

 $a \neq c$, f(c) $\neq b$, $\forall xy$. f(x) $\neq g(y)$

• Reapply UF+cardinality solver:

• Success:

M satisfies $\forall xy. f(x) \neq g(y)$

Answer SAT

Possible Improvements

- Exhaustive instantiation
 - Instantiate quantifiers F with *all* combinations of representatives
- Advantages:
 - If successful, we are ensured that F is satisfied by M
- Disadvantages:
 - Produces many instantiations
 - Even small models may cause many instantiations
 - Quantifiers over n variables, # instantiations is O(kⁿ)
- Improvement: Determine tight over-approximation of relevant instantiations to test

Instantiation: Improvements

• Example 1 revised:

a ≠ c, f(c) ≠ b, ¬P(a),
$$\forall$$
xy. (P(x) \Rightarrow f(x) ≠ g(y))

Instantiation: Improvements

- Possible approaches:
 - Compute over-approximation of relevant instantiations
 - Complete the candidate model M
 - Give interpretation to predicates and functions
 - Define default values heuristically
 - Do not consider instantiations that are already true in the model
 - − P(x) in the formula $\forall xy$. (P(x) \Rightarrow f(x) \neq g(y))
 - » Do not consider { $x \rightarrow a$ } if $\neg P(a)$
 - Advantage: may be fast to compute, reduces # inst
 - Compute exact set of relevant instantiations
 - Complete the candidate model M
 - Use model-based quantifier instantiation
 - Try values for which the negation of the body of quantifier is satisfied
 - Advantage: only try instantiations that affect model

Results

- Experiments in Progress
- Tested 6762 TPTP benchmarks in 39 categories
 - smt2 format, quantifiers over non-arithmetic sorts
 - z3 vs cvc4+fmf
 - SAT answers:
 - 418 SAT by z3
 - » 161 where cvc4+fmf cannot
 - 351 SAT by cvc4+fmf
 - » 93 where z3 cannot
 - cvc4+fmf wins more categories (11 to 6)
 - Current implementation uses naïve instantiation
 - Exhaustive instantiation using all combinations of terms
 - Interestingly, cvc4+fmf answers unsat where z3/cvc3 cannot
 - 75 benchmarks

Conclusion

- Finite model finding in CVC4
 - Uses solver for UF + cardinality constraints
 - Finds minimal models for ground constraints
 - Uses exhaustive instantiation
- Practical approach for SMT problems
 - Can answer SAT quickly in cases
 - Orthogonal to other approaches to quantifiers

Questions?