
Satisfiability Modulo Theories :
Beyond Decision Procedures

Andrew Reynolds

May 20, 2015

SMT Solvers for Software Verification/Security
char buff[15], pass;

cout << "Enter the password :";

gets(buff);

if (regex_match(buff, std::regex("([A-Z]+)"))) {

 if(strcmp(buff, “PASSWORD")) {

 cout << "Wrong Password";

 } else {

 cout << "Correct Password";

 pass = 'Y';

 }

 if(pass == 'Y')

 /* Grant the root permission*/

}

+

SMT

solver

Does

Property P

hold for my

program?

YES NO

Property P Program

SMT Solvers for Software Verification/Security
char buff[15], pass;

cout << "Enter the password :";

gets(buff);

if (regex_match(buff, std::regex("([A-Z]+)"))) {

 if(strcmp(buff, “PASSWORD")) {

 cout << "Wrong Password";

 } else {

 cout << "Correct Password";

 pass = 'Y';

 }

 if(pass == 'Y')

 /* Grant the root permission*/

}

+

SMT

solver

Does

Property P

hold for my

program?

YES NO

Property P Program

What kind

of properties

can we ask

about?

How do we

solve them?

Overview

• Satisfiability Modulo Theories (SMT) Solvers

• Propositional reasoning, via off-the-shelf SAT solver

• Decision Procedures for theories:

• UF, Arithmetic, BitVectors, AƌƌaǇs, …

• (Co)inductive Datatypes

• …also suppoƌt Undecidable Theories:

• Unbounded Strings + Length Constraints

• …aŶd eǀeŶ aƌďitƌaƌǇ Quantified Formulas:

• Finite Model Finding

Overview

• Satisfiability Modulo Theories (SMT) Solvers

• Propositional reasoning, via off-the-shelf SAT solver

• Decision Procedures for theories:

• UF, Arithmetic, BitVectors, AƌƌaǇs, …

• (Co)inductive Datatypes

• …also suppoƌt Undecidable Theories:

• Unbounded Strings + Length Constraints

• …aŶd eǀeŶ aƌďitƌaƌǇ QuaŶtified Formulas:

• Finite Model Finding

Focus of this talk,

my work in CVC4

What is a Theory?

• A theory T is a pair
• A signature ST containing sorts and function symbols

• A class of models IT describing the intended interpretations of symbols in ST

• For example, linear integer arithmetic (LIA):
• SLIA contains functions { +, -, <, ч, >, ш, Ϭ, ϭ, Ϯ, ϯ, … }
• Each I  ILIA interpret functions in SLIA in standard way:

• 1+1 = 2, 1+2 = 3, …, ϭ > 0 = true, 0 > 1 = false, …

• Number of widely-supported theories in SMT:
• Bitvectors : bvsgt(a,#bin0001)

• Arrays : select(store(a,5,b),c)=5

• Datatypes : tail(cons(a,b))=b

• …

What is a Decision Procedure for T?

• Input: a set of T-constraints M, under some syntactic restriction

• A decision procedure is a method that terminates with output:

• ͞M is T-satisfiable ,͟ i.e. theƌe is a solutioŶ

• ͞M is T-unsatisfiable͟

What is a Decision Procedure for T?

• Input: a set of T-constraints M, under some syntactic restriction

• A decision procedure is a method that terminates with output:

• ͞M is T-satisfiable ,͟ i.e. theƌe is a solutioŶ

• ͞M is T-unsatisfiable͟

What is a Decision Procedure for T?

• Input: a set of T-constraints M, under some syntactic restriction

• A decision procedure is a method that terminates with output:

• ͞M is T-satisfiable ,͟ i.e. there is a solution

• Must be solution-sound, ƌetuƌŶs ͞M is T-satisfiable͟ oŶlǇ ǁheŶ M is T-satisfiable

• ͞M is T-unsatisfiable͟

What is a Decision Procedure for T?

• Input: a set of T-constraints M, under some syntactic restriction

• A decision procedure is a method that terminates with output:

• ͞M is T-satisfiable ,͟ i.e. there is a solution

• Must be solution-sound, ƌetuƌŶs ͞M is T-satisfiable͟ oŶlǇ ǁheŶ M is T-satisfiable

• ͞M is T-unsatisfiable͟

• Must be refutation-sound, returns ͞M is T-unsatisfiable͟ oŶlǇ ǁheŶ M is T-unsatisfiable

SMT Solver

How are Decision Procedures Implemented in SMT?

• Decision Procedures are implemented as theory solvers

Theory

Solver

for T

SAT

Solver

x>5  x≤4 Boolean combination of T-constraints

How are Decision Procedures Implemented in SMT?

• Decision Procedures are implemented as theory solvers

Theory

Solver

for T

SAT

Solver

M={x>5,x≤4}

x>5  x≤4

How are Decision Procedures Implemented in SMT?

• Decision Procedures are implemented as theory solvers

• If M is T-unsat, find an inconsistent subset C  M, add conflict clause C

Theory

Solver

for T

SAT

Solver

M={x>5,x≤4}

x>5  x≤4  (x>5x≤4)

(x>5x≤4)
C

How are Decision Procedures Implemented in SMT?

Theory

Solver

for T

SAT

Solver

M={x>5,x≤4}

x>5  x≤4  (x>5x≤4)

(x>5x≤4)
UNSAT

• Decision Procedures are implemented as theory solvers

• If M is T-unsat, find an inconsistent subset C  M, add conflict clause C

Theory

Solver

for T

SAT

Solver

M={x>0,x≤4}

x>0  x≤4
How are Decision Procedures Implemented in SMT?

• Decision Procedures are implemented as theory solvers

• If M is T-unsat, find an inconsistent subset C  M, add conflict clause C

How are Decision Procedures Implemented in SMT?

Theory

Solver

for T

SAT

Solver

M={x>0,x≤4}

x>0  x≤4

• Decision Procedures are implemented as theory solvers

• If M is T-unsat, find an inconsistent subset C  M, add conflict clause C
• If M is T-sat, return an interpretation for variables in model of M

SAT,

x1

How are Decision Procedures Implemented in SMT?

Theory

Solver

for T

SAT

Solver

(partial) models

Input

SAT,

model

 DPLL(T) procedure [Nieuwenhuis/Oliveras/Tinelli 2007]

UNSAT

T-conflicts

Design of Theory Solvers in SMT

• A DPLL(T) theory solver:

• Should be solution-sound, refutation-sound, terminating for input M

• Should produce models and T-conflicts

• Should be designed to work incrementally

• M is constantly being appended to/backtracked upon

• Should compute useful T-propagations

• Should cooperate with other theory solvers for combined theories

• [Nelson/Oppen 1979]

Examples of Decision Procedures in SMT

• Efficient theory solvers have been developed for:

• Theory of Equality and Uninterpreted Functions (EUF)

• Congruence closure algorithm [Nieuwenhius/Oliveras 2007]

• Theory of Linear Integer/Real Arithmetic

• Simplex algorithm [Detertre/deMoura 2006]

• Theory of Arrays [deMoura/Bjorner 2009]

• Theory of Bit Vectors [Brummayer/Biere 2009]

• Theory of Inductive Datatypes [Barrett et al 2007]

 Theory of (Co)Inductive Datatypes [Reynolds/Blanchette 2015]

Theory of (Co)Inductive
Datatypes

Theory of Inductive Datatypes : Applications

• Leon verification tool developed at EPFL

• Reasons about the correctness of simple functional programs written in Scala

• Makes heavy use of SMT solver backend with support for inductive datatypes

Theory of Inductive Datatypes

• Family of theories specified by a set of types with constructors, e.g:

• Theory of Inductive Datatypes (DT) for Lists of Int
• SDT : { cons, head, tail, nil }
• Interpretations IDT are such that:

• CoŶstƌuĐtoƌs aƌe distiŶĐt… ĐoŶs;x,y)  nil
• CoŶstƌuĐtoƌs aƌe iŶjeĐtiǀe… if ĐoŶs; ǆ1, y1) = cons(x2, y2), then x1 = x2, y1 = y2

• CoŶstƌuĐtoƌs aƌe eǆhaustiǀe… top sǇŵďol of all lists is eitheƌ ĐoŶs oƌ Ŷil
• “eleĐtoƌs aĐĐess suďfields… head; ĐoŶs; ǆ, Ǉ Ϳ Ϳ = ǆ
• Terms do not contain themselves as subterms… Ǉ  cons(x, y)

• My work: decision procedure for DT in CVC4, based on [Barrett et al 2007]

 Used as a backend to Leon verification system

List := cons(head : Int, tail : List) | nil

What about infinite data structures?

• Consider the definition:

• Stream is not well-founded
 Decision procedure for inductive datatypes does not apply

• Instead, need decision procedure for coinductive datatypes

• Applications :
• Modeling infinite processes

• Programming languages: CoCaml [Jeannin et al 2013], Dafny [Leino 2014]

• Proof assistants : Agda, CoƋ, Isaďelle, …

 These applications can benefit from native support for them in SMT solvers

Stream := cons(head : Int, tail : Stream)

Theory of (Co)Inductive Datatypes
• Devised a unified decision procedure for inductive/coinductive datatypes

• Implemented in CVC4

[Reynolds/Blanchette CADE15]

• For codatatypes:
• Terms can contain themselves as subterms : x=cons(z,x) is satisfiable

• Terms are unique up to a-equivalence:

• If x=cons(z,x) and y=cons(z,y), then x=y

Theory of (Co)Inductive Datatypes

• Experimental results: Implementation in CVC4 improves state of the art

• Evaluated on proof obligations from Isabelle theorem prover

[Reynolds/Blanchette CADE15]

Theory Solvers for Harder Theories?

• So far: theory solvers for decision procedures

• However, in practice a theory solver need not be complete

• E.g. what if background theory is undecidable?

• Examples of problems that use incomplete theory solvers:

• Theory of Non-Linear (Integer) Arithmetic

 Theory of Strings + Length constraints [Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

Theory of Strings + Length

char buff[15];
char pass;
cout << "Enter the password :";
gets(buff);
if (regex_match(buff, std::regex("([A-Z]+)"))) {
 if(strcmp(buff, “PASSWORD")) {
 cout << "Wrong Password";

 } else {
 cout << "Correct Password";
 pass = 'Y';
 }
 if(pass == 'Y') {
 /* Grant the root permission*/
 }
}

(set-logic QF_S)

(declare-const input String)

(declare-const buff String)

(declare-const pass0 String)

(declare-const rest String)

(declare-const pass1 String)

(assert (= (str.len buff) 15))

(assert (= (str.len pass1) 1))

(assert (or (< (str.len input) 15)

 (= input (str.++ buff pass0 rest)))

(assert (str.in.re buff

 (re.+ (re.range "A" "Z"))))

(assert (ite (= buff "PASSWORD")

 (= pass1 "Y")

 (= pass1 pass0)))

(assert (not (= buff "PASSWORD")))

(assert (= pass1 "Y"))

Encode

Theory of Strings : Applications

• Security applications frequently rely on reasoning about string constraints

• Signature SS :

• Constants from a fixed finite alphabet A* =(a, ab, cbc...)

• String concatenation _·_ : String  String  String

• Length terms len(_) : String  Int

• Example input:

 len(x)>len(y)  x·b=y·ab

Theory of Strings + Length

Theory of Strings + Length

• Theoretical complexity of:

• Word equation problem is in PSPACE

• …ǁith leŶgth ĐoŶstƌaiŶts is OPEN

• …ǁith eǆteŶded fuŶĐtioŶs, e.g. replace, is UNDECIDABLE

• Instead, focus on:

• Solver that is efficient in practice

• Tightly integrated into SMT solver architecture

• Conflict-Driven Clause Learning, Propagation, Composable with other theories

• Existing approaches rely on reduction to bitvectors, e.g. HAMPI [Kiezun 2009]

• Instead, we use an algebraic rule-based procedure for strings, which:

• Infers equalities over strings based on length constraints

• Models interaction of string + arithmetic solvers

• Recognizes conflicts due to cardinality of alphabet

…

…

Theory of Strings : Rule-Based Procedure

[Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

Theory of Strings : Theoretical Results

• For strings + length:

• Procedure is:

• Refutation sound, even for strings of unbounded length

• Solution sound

• (A version of) procedure is:

• Solution complete

• WheŶ pƌoďleŵ is ͞“AT ,͟ it ǁill eǀeŶtuallǇ fiŶd a model (finite model finding)

• When input is in acyclic form (variables only on 1 side of equalities),

• Refutation complete

• WheŶ pƌoďleŵ is ͞UN“AT ,͟ it will derive a refutation

[Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

• Tested 50,000 VCs in web security applications (Kudzu)

• Implementation in CVC4 significantly improved state-of-the-art

• In terms of precision, performance, and accuracy

Theory of Strings : Experimental Results

[Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

Extending the Theory of Strings

• Theory of strings can be extended with support for:

• Regular expressions

• E.g. x(a(bb)*)*
• Decision procedure for regular memberships + length [submitted, FroCos15]

• Regular languages

• E.g. x(y·b)*
• Extended functions

• E.g. substr, contains, replace, prefixOf, suffixOf,
str.indexOf, str.to.int, int.to.str, strcmp

• Occur frequently in practice

• When signature includes these, problem is generally undecidable

What about arbitrary quantified formulas?

• What if constraints do not fit an existing theory/decision procedure?

• Frame axioms in software verification

• Universal safety properties

• Axiomatization of unsupported theories

• …

• Want SMT solver to handle arbitrary first-order quantified formulas

• E.g. x.f(x)>0, x.select(A,x)=2*x

Approaches for Quantified Formulas in SMT

• Heuristic approaches
• Incomplete, focus on finding unsatisfiable

• Example:
• E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

• Complete approaches
• Target particular fragments of FOL

• Examples:
• Local theory extensions [Sofronie-Stokkermans 2005]

• Array fragments [Bradley et al 2006, Alberti et al 2014]

• Complete instantiation [Ge/de Moura 2009]

• Finite model finding [Reynolds et al 2013] Focus of next part of the talk

Finite Model Finding for
Quantified Formulas in SMT

SMT solver

Ground solver

SMT Solver + Quantified Formulas

• SMT solvers support for (first-order) quantified formulas 

SAT

Solver

Theory

Solver

 for T

DPLL(T)
Quantifiers

Module

SMT Solver + Quantified Formulas

• For input f(a)>0   x.f(x)<0

• Ground solver maintains a set of ground (variable-free) constraints : f(a)>0

• Quantifiers Module maintains a set of axioms :  x.f(x)<0

SAT

Solver

Ground solver

DPLL(T)

f(a)>0

Quantifiers

Module

 x.f(x)<0

Theory

Solver

 for T

SMT Solver + Quantified Formulas

SAT

Solver

Ground solver

DPLL(T)

f(a)>0

Quantifiers

Module

 x.f(x)<0

Theory

Solver

 for T

SMT Solver + Quantified Formulas

• Ground solver checks T-satisfiability of current set of constraints

SAT

Solver

Ground solver

DPLL(T)

f(a)>0

Quantifiers

Module

 x.f(x)<0

UNSAT
SAT

Theory

Solver

 for T

SMT Solver + Quantified Formulas

• Quantifiers Module adds instances of axioms

• Goal : add iŶstaŶĐes uŶtil gƌouŶd solǀeƌ ĐaŶ aŶsǁeƌ ͞unsat͟

SAT

Solver

Ground solver

DPLL(T)

f(a)>0,f(a)<0,f(b)<0,…

Quantifiers

Module

 x.f(x)<0

instances

Theory

Solver

 for T

SMT Solver + Quantified Formulas

SAT

Solver

Ground solver

DPLL(T)

f(a)>0,f(a)<0,f(b)<0,…

Quantifiers

Module

 x.f(x)<0

UNSAT • Since f(a)>0 and f(a)<0

Theory

Solver

 for T

How SMT Solvers Handle Quantified Formulas

• Generally, a sound but incomplete procedure

• Difficult to answer SAT (when have we added enough instances of Q[x]?)

SAT

Solver

Ground solver

DPLL(T)

G,Q[t1],Q[t2],…

Quantifiers

Module

 x.Q[x]

sat

instances

of Q

SAT?

 sat

Theory

Solver

 for T

UNSAT

How SMT Solvers Handle Quantified Formulas

SAT

Solver

Ground solver

DPLL(T)

G,Q[t1],Q[t2],…

Quantifiers

Module

 x.Q[x]

sat

instances

of Q

SAT?

 sat

Theory

Solver

 for T

UNSAT

 Lack of ability to answer SAT is major weakness

Finite Model Finding : Application

• Deductive Verification Framework [Goel et al 2012] used at Intel Corporation for:

• Architecture/Security Validation for Hardware Systems

type resource

const resource nullvar array(resource, bool) valid = mk_array[resource](false)

var array(resource, int) count

var array(process, resource) ref = mk_array[process](null)

…

module S = Set<type process>

transition create (resource r)

require (r != null, !valid[r]){ count[r] := 0; }

…

def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])

def bool refs_non_zero = forall (process p) (ref[p] != null => count[ref[p]] > 0)

…

goal main = invariant prop assuming refs_non_zero

goal rnz = foƌŵula ;… && pƌop && … => refs_non_zero)

Definitions

Transition

System

Properties

Verification Conditions

Finite Model Finding : Application
type resource

const resource null

type process

var array(resource, bool) valid = mk_array[resource](false)

var array(resource, int) count

var array(process, resource) ref = mk_array[process](null)

…

module S = Set<type process>

transition create (resource r)

require (r != null, !valid[r]){

 valid[r] := true;

 count[r] := 0;

}

…

def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])

def bool refs_non_zero = forall (process p) (ref[p] != null =>
count[ref[p]] > 0)

…

goal main = invariant prop assuming refs_non_zero

...

goal rnz = foƌŵula ;… && pƌop && … => refs_non_zero)

Verification

Conditions
…

..
VC1

VCn

goal main = invariant prop assuming refs_non_zero

to “MT solǀeƌ…

• Verification conditions translated into (multiple) SMT queries, requiring:

• Theoƌies ;aƌithŵetiĐ, ďit ǀeĐtoƌs, datatǇpes, …Ϳ
• Quantified formulas for stating universal properties over:

• MeŵoƌǇ addƌesses, ƌesouƌĐes, pƌoĐesses, …

Why are Models Important?

SMT

solver

UNSAT

Verification

Condition

for P

Unknown

Manual

Inspection

Candidate

Model

Property P is

verified

with quantifiers

Why are Models Important?

SMT

solver

UNSAT

Verification

Condition

for P

Manual

Inspection

Candidate

Model

Property P is

verified

with quantifiers

Concrete

counterexample

for Property P

SAT

Finite Model Finding in SMT

Ground

Solver

Quantifiers

Module

G xy:S.Q(x,y)

Finite Model Finding in SMT

Ground

Solver

Quantifiers

Module

G xy:S.Q(x,y)

If S has finite interpretation,

• use finite model finding

Finite Model Finding in SMT

Ground

Solver

Quantifiers

Module

G xy:S.Q(x,y)

S={a,b,c,d,e}

Finite Model Finding in SMT

Ground

Solver

Quantifiers

Module

G xy:S.Q(x,y)

S={a,b,c,d,e}

Q(a,a) … Q(e,a)
Q(a,b) .

Q(a,c) .

Q(a,d) .

Q(a,e) … Q(e,e)



• Reduction of quantified formulas to ground formulas

Finite Model Finding in SMT

Ground

Solver

Quantifiers

Module

G xy:S.Q(x,y)

S={a,b,c,d,e}

Q(a,a) … Q(e,a)
Q(a,b) .

Q(a,c) .

Q(a,d) .

Q(a,e) … Q(e,e)



UNSAT SAT

 Ability to answer SAT, assuming decision procedure for GQ(a,a)…

Finite Model Finding in SMT

Ground

Solver

Quantifiers

Module

G xy:S.Q(x,y)

S={a,b,c,d,e}

Q(a,a) … Q(e,a)
Q(a,b) .

Q(a,c) .

Q(a,d) .

Q(a,e) … Q(e,e)



UNSAT SAT

• Can be very large

Finite Model Finding in SMT

•Address large # instantiations by:

1. Minimizing model sizes [Reynolds et al CAV13]

• Find interpretation that minimizes the #elements in S

2. Only add instantiations that refine model [Reynolds et al CADE13]

• Model-based quantifier instantiation [Ge/deMoura CAV 2009]

Finite Model Finding : Minimizing Model Sizes

• Minimize model sizes using a theory solver for cardinality constraints

|S| ≤ 1 |S| ≤ 1

Search for

models

where |S|=1

If none exist,

search for

models

where |S|=2

etc.

|S| ≤ 2 |S| ≤ 2

|S| ≤ 3 |S| ≤ 3

[Reynolds/Tinelli/Goel/Krstic CAV13]

Finite Model Finding : Minimizing Model Sizes

• Minimize model sizes using a theory solver for cardinality constraints

|S| ≤ 1 |S| ≤ 1

Search for

models

where |S|=1

If none exist,

search for

models

where |S|=2

etc.

|S| ≤ 2 |S| ≤ 2

|S| ≤ 3 |S| ≤ 3

[Reynolds/Tinelli/Goel/Krstic CAV13]

 If model exists where |S| ≤ 3,

only need 3*3=9 instances

instead of 5*5=25 instances

Finite Model Finding : Model-Based Instantiation

Ground

Solver

Quantifiers

Module

G xy:S.Q(x,y)

S={a,b,c,d,e}

{QQM,…}

M

• Construct candidate model M
[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13]

Finite Model Finding : Model-Based Instantiation

Ground

Solver

Quantifiers

Module

G xy:S.Q(x,y)

• Evaluate quantified formulas based on QM

 y

 QM a b c d e

 a

 b

x c

 d

 e

T

F

F

S={a,b,c,d,e}

{QQM,…}

M

[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13]

Q(e,e)

Q(b,a)

Finite Model Finding : Model-Based Instantiation

Ground

Solver

Quantifiers

Module

G xy:S.Q(x,y)

• Only add instances that evaluate to F in QM

 Significantly increased scalability

 y

 QM a b c d e

 a

 b

x c

 d

 e

T

F

F

S={a,b,c,d,e}

{QQM,…}

M

[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13]



Results : Hardware Verification at Intel

• Benchmarks taken from DVF tool at Intel

• Improved state of the art for SAT for SMT problems with 
• Can be competitive for UNSAT as well

[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13]

cvc4 :

• f : finite model finding

Results : CASC Competition

• Competitive with existing approaches for model finding in ATP community

• CVC4 placed 3rd in non-theorems division of CASC 24
• Is competitive with state-of-the-art ATP systems

Ongoing work/applications

• SMT solvers with support for  are doing increasingly complex tasks:

• As an efficient first order theorem prover
• [Reynolds/Tinelli/de Moura FMCAD 2014]

• As an inductive reasoner for program verification
• [Reynolds/Kuncak VMCAI 2015]

• As a tool for syntax-guided software synthesis
• [Reynolds/Deters/Kuncak/Tinelli/Barrett CAV 2015]

• In development: As a program analyzer
• Idea: built-in support for (recursive) function definitions in SMT

(define-fun-rec len (x List) Int (ite (is-cons x) (1 + (len (tail x))) 0))

len x. len(x)= (ite (is-cons x) (1 + (len (tail x))) 0)

Conclusions

• Satisfiability Modulo Theories (SMT) is

• Mature technology, both in theory and practice

• …but is still evolving:

• Improved approaches for (combinations) of theories

• Solvers for new theories:

• Floating Points, Sets, (Co)datatypes, Extended Strings + Length, Regular Languages

• …

• Specialized approaches for first-order quantified formulas

Conclusions
char buff[15], pass;

cout << "Enter the password :";

gets(buff);

if (regex_match(buff, std::regex("([A-Z]+)"))) {

 if(strcmp(buff, “PASSWORD")) {

 cout << "Wrong Password";

 } else {

 cout << "Correct Password";

 pass = 'Y';

 }

 if(pass == 'Y')

 /* Grant the root permission*/

}

+

SMT

solver

Does

Property P

hold for my

program?

YES NO

Property P Program

Increased complexity
• Expressive theories

• Quantified Formulas

 Increased support for applications

Increased ability

Thanks for your Attention!

•Collaborators:
• Cesare Tinelli, Clark Barrett, Morgan Deters, Tim King, Liana Hadarean, Dejan

Jovanovic, Kshitij Bansal, Tianyi Liang, Nestan Tsiskaridze, Amit Goel, Sava
Krstic, Leonardo de Moura, Viktor Kuncak, Jasmin Blanchette

•Questions?

