Satisfiability Modulo Theories :
Beyond Decision Procedures

Andrew Reynolds
May 20, 2015

SMT Solvers for Software Verification/Security

—

char buff[15], pass;
cout << "Enter the password :";
gets(buff);
if (regex_match(buff, std::regex("([A-Z]+)"))) {
if(strcmp(buff, “PASSWORD")) {
P cout << "Wrong Password";
rogram - }else { +| P P Y P
g cout << "Correct Password"; ro e rt
pass ='Y";
}
if(pass =="'Y")
[* Grant the root permission®/

}

Does
Property P
hold for my

program?

NO

SMT Solvers for Software Verification/Security

Program

—

—

char buff[15], pass;

cout << "Enter the password :";

gets(buff);

if (regex_match(buff, std::regex("([A-Z]+)"))) {

}

if(strcmp(buff, “PASSWORD")) {
cout << "Wrong Password";

else + | Property P

cout << "Correct Password";
pass ='Y";

}

if(pass =="'Y")
[* Grant the root permission®/

Does
Property P
hold for my

program?

NO

What kind

- of properties

can we ask
about?

How do we
solve them?

Overview

e Satisfiability Modulo Theories (SMT) Solvers

* Propositional reasoning, via off-the-shelf SAT solver

e Decision Procedures for theories:
* UF, Arithmetic, BitVectors, Arrays, ...
e (Co)inductive Datatypes
 ..also support Undecidable Theories:
* Unbounded Strings + Length Constraints
e ...and even arbitrary Quantified Formulas:
* Finite Model Finding

Overview

e Satisfiability Modulo Theories (SMT) Solvers

* Propositional reasoning, via off-the-shelf SAT solver

e Decision Procedures for theories:
* UF, Arithmetic, BitVectors, Arrays, ...
e (Co)inductive Datatypes
 ...also support Undecidable Theories:
e Unbounded Strings + Length Constraints Focus of this talk,
» ..and even arbitrary Quantified Formulas: my workin CVC4
* Finite Model Finding

What is a Theory?

* Atheory Tis a pair
* A signature X; containing sorts and function symbols
* A class of models I; describing the intended interpretations of symbols in 2,

* For example, linear integer arithmetic (LIA):
* ¥ acontains functions{+, -, <, <,>,2,0,1,2,3, ... }
* Each | € I, interpret functions in X ,, in standard way:
e 1+1=2,1+2=3,..,1>0=true, 0> 1 =false, ...
* Number of widely-supported theories in SMT:
* Bitvectors:bvsgt (a, #0in0001)
* Arrays: select (store(a,5,b),c)=5
* Datatypes: tail (cons(a,b))=b

What is a Decision Procedure for T?

* Input: a set of T-constraints M, under some syntactic restriction

* A decision procedure is a method that terminates with output:
e “Mis T-satisfiable”, i.e. there is a solution

e “Mis T-unsatisfiable”

What is a Decision Procedure for T?

* Input: a set of T-constraints M, under some syntactic restriction

* A decision procedure is a method that terminates with output:
e “Mis T-satisfiable”, i.e. there is a solution

e “Mis T-unsatisfiable”

What is a Decision Procedure for T?

* Input: a set of T-constraints M, under some syntactic restriction

* A decision procedure is a method that terminates with output:

e “Mis T-satisfiable”, i.e. there is a solution
* Must be solution-sound, returns “M is T-satisfiable” only when M is T-satisfiable

e “Mis T-unsatisfiable”

What is a Decision Procedure for T?

* Input: a set of T-constraints M, under some syntactic restriction

* A decision procedure is a method that terminates with output:
e “Mis T-satisfiable”, i.e. there is a solution
* Must be solution-sound, returns “M is T-satisfiable” only when M is T-satisfiable

e “Mis T-unsatisfiable”
* Must be refutation-sound, returns “M is T-unsatisfiable” only when M is T-unsatisfiable

How are Decision Procedures Implemented in SMT?

x>5 A x<4 } Boolean combination of T-constraints
|

SMT Solver

Theory

Solver
forT

* Decision Procedures are implemented as theory solvers

How are Decision Procedures Implemented in SMT?

x>5 A x4
|

M={x>5,x<4)

Theory

Solver
forT

* Decision Procedures are implemented as theory solvers

How are Decision Procedures Implemented in SMT?

x>5 A x4 A (—x>5v—x<4)
|

M={x>5,x<4}

SAT _C

)
SOlver ((—|X>5V—|XS4\)

Theory

Solver
forT

* Decision Procedures are implemented as theory solvers
e |f Mis T-unsat, find an inconsistent subset C < M, add conflict clause —C

How are Decision Procedures Implemented in SMT?

x>5 A x4 A (—=x>Bv—xs<4)
|

M={x>5,x<4}

Theory

Solver

* Decision Procedures are implemented as theory solvers
e |f Mis T-unsat, find an inconsistent subset C < M, add conflict clause —C

How are Decision Procedures Implemented in SMT?

x>0 A x4
|

M={x>0,x<4)

Theory

SAT Solver

forT

Solver

* Decision Procedures are implemented as theory solvers
e |f Mis T-unsat, find an inconsistent subset C < M, add conflict clause —C

How are Decision Procedures Implemented in SMT?

x>0 A xZ4
|

M={x>0,x<4}

Theory

SAT Solver =N

Xx—1
forT

Solver

* Decision Procedures are implemented as theory solvers
e |f Mis T-unsat, find an inconsistent subset C < M, add conflict clause —C
 If Mis T-sat, return an interpretation for variables in model of M

How are Decision Procedures Implemented in SMT?

Input
I

(partial) models

Theory

SAT,
model

Solver
forT

T-conflicts

—> DPLL(T) procedure [Nieuwenhuis/Oliveras/Tinelli 2007]

Design of Theory Solvers in SMT

* A DPLL(T) theory solver:

e Should be solution-sound, refutation-sound, terminating for input M
e Should produce models and T-conflicts
* Should be designed to work incrementally
* M is constantly being appended to/backtracked upon
e Should compute useful T-propagations

* Should cooperate with other theory solvers for combined theories
* [Nelson/Oppen 1979]

Examples of Decision Procedures in SMT

* Efficient theory solvers have been developed for:
* Theory of Equality and Uninterpreted Functions (EUF)

* Congruence closure algorithm [Nieuwenhius/Oliveras 2007]

* Theory of Linear Integer/Real Arithmetic

T
T
T

* Simplex algorithm [Detertre/deMoura 2006]
neory of Arrays [deMoura/Bjorner 2009]
Neory of Bit Vectors [Brummayer/Biere 2009]

neory of Inductive Datatypes [Barrett et al 2007
= Theory of (Co)Inductive Datatypes [Reynolds/Blanchette 2015]

Theory of (Co)Inductive
Datatypes

Theory of Inductive Datatypes : Applications

* Leon verification tool developed at EPFL
* Reasons about the correctness of simple functional programs written in Scala

i About 7 Documentation

sealed abstract class AbsQueue
case class Queue(front : List, rear : List) extends AbsQueue
def size(list : List) :
case Nil => @
case Cons(_, xs) => 1 + size(xs)
}) ensuring(_ >= @)

BigInt = (list match {

def content(l: List) : Set[BigInt] = 1 match {
case Nil => Set.empty[BiglInt]
case Cons(x, xs) => Set(x) ++ content(xs)

}

def asList(queue : AbsQueue) : List = queue match {
case Queue(front, rear) => concat(front, reverse(rear))

}

def concat(1ll :
case Nil => 12
case Cons(x,xs) => Cons(x, concat(xs, 12))

List, 12 : List) : List = (11 match {

Load a Program:

-- Select a Program --
Function Verif)
min v
max v
size v
content v
asList v
concat v
isAmortized v
isEmpty (¥4

|

* Makes heavy use of SMT solver backend with support for inductive datatypes

Theory of Inductive Datatypes

* Family of theories specified by a set of types with constructors, e.g:

List := cons(head : Int, tail : List) | nil

* Theory of Inductive Datatypes (DT) for Lists of Int
* 257 :1cons, head, tail, nil }
* Interpretations Iy, are such that:
e Constructors are distinct... cons(x,y) # nil
Constructors are injective... if cons(x,, y;) =cons(x,, y,), thenx; =x,, y; =Y,
Constructors are exhaustive... top symbol of all lists is either cons or nil

» Selectors access subfields... head(cons(x,y)) =x
 Terms do not contain themselves as subterms... y # cons(x, y)

* My work: decision procedure for DT in CVC4, based on [Barrett et al 2007]
—> Used as a backend to Leon verification system

What about infinite data structures?

e Consider the definition:

Stream := cons(head : Int, tail : Stream)

e Stream is not well-founded
= Decision procedure for inductive datatypes does not apply

* Instead, need decision procedure for coinductive datatypes

* Applications :
* Modeling infinite processes
* Programming languages: CoCaml [Jeannin et al 2013], Dafny [Leino 2014]
* Proof assistants : Agda, Coq, Isabelle, ...
—> These applications can benefit from native support for them in SMT solvers

Theory of (Co)Inductive Datatypes

* Devised a unified decision procedure for inductive/coinductive datatypes
* Implemented in CVC4

teT(E) t~uck sctt=~uckE
Refl Sym Trans
E=FE t=xt EFE=FE u~xt EFE=FE s=~u
t~ucE f(t),f(n) € T(E) t~u,tuckE .
- - Cong Conflict
E:=E, {(t) ~f(i) 1
C(f)~C(n) € E C(f)=~D(u) e E C#D
—— Inject Clash
E=E.t=u 1
§€% A[t’]=px.u x€FV(u) . §E€ Yott Alt°] =a Au°]
Acyclic Unique
1 E=FE tx=u

* For codatatypes:
* Terms can contain themselves as subterms : x=cons(z,x) is satisfiable
 Terms are unique up to a-equivalence:

* If x=cons(z,x) and y=cons(z,y), then x=y [Reynolds/Blanchette CADE15]

Theory of (Co)Inductive Datatypes

Distro AFP G&L Overall
CVvC4 Z3 CVC4 Z3 CVC4 73 CV(C4 73
No (co)datatypes 221 209 775 777 52 51 1048 1037
Datatypes without Acyclic 227 - 780 - 52 - 1059 -
Full datatypes 227 213 786 791 52 51 1065 1055
Codatatypes without Unique 222 - 804 - 56 - 1082 -
Full codatatypes 223 - 804 - 59 - 1086 -
Full (co)datatypes 229 - 815 - 59 - 1103 -

* Experimental results: Implementation in CVC4 improves state of the art
* Evaluated on proof obligations from Isabelle theorem prover

[Reynolds/Blanchette CADE15]

Theory Solvers for Harder Theories?

 So far: theory solvers for decision procedures

* However, in practice a theory solver need not be complete
* E.g. what if background theory is undecidable?

* Examples of problems that use incomplete theory solvers:
* Theory of Non-Linear (Integer) Arithmetic

=> Theory of Strings + Length constraints [Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

Theory of Strings + Length

Theory of Strings : Applications

(set-logic QF_S)

char buff[15]; declare-const input String)
char pass; declare-const buff String)
cout << "Enter the password :"; CnrAde declare-const pass0 String)
gets(buff); = JC’OCJ‘S) declare-const rest String)

declare-const pass1 String)
assert (= (str.len buff) 15))
assert (= (str.len pass1) 1))
assert (or (< (str.len input) 15)

if (regex_match(buff, std::regex("([A-Z]+)"))) {
if(strcmp(buff, “PASSWORD")) {
cout << "Wrong Password";

AN AN N N N N NN

} else { (= input (str.++ buff pass0 rest)))

cout << "Correct Password"; (assert (str.in.re buff

pass ='Y'"; N Q) (re.+ (re.range "A" "Z"))))
) ’U@\ \\\O (assert (ite (= buff "PASSWORD")
if(pass =="'Y") { £ (2, (= pass1"Y")

. T O/ (= pass1 pass0)))

/* Grant the root permission*/ (assert (not (= buff "PASSWORD"))

} (assert (= pass1"Y"))

* Security applications frequently rely on reasoning about string constraints

Theory of Strings + Length

* Signature 2 :
 Constants from a fixed finite alphabet A™ =(a, ab, cbc...)
* String concatenation - : String x String — String

* Length terms 1en() : String — Int
* Example input:

len(x)>1len(y) A xX-b=y-ab

Theory of Strings + Length

* Theoretical complexity of:
* Word equation problem is in PSPACE
e ...with length constraints is OPEN
* ...with extended functions, e.g. replace, is UNDECIDABLE

* Instead, focus on:
 Solver that is efficient in practice

* Tightly integrated into SMT solver architecture
e Conflict-Driven Clause Learning, Propagation, Composable with other theories

Theory of Strings : Rule-Based Procedure

Fs=(w,u,u1) Ft=(w,v,v1) s=teC(S) SElenu=lenv

F-Unify g
=S, u=v
Fs=(w,u,u1) Ft={(w,v,v1) s=teC(S) SElenuzlenv
ug Vivy) véViu)

S:=S,u=con(v,z) | S:=85,v=con(u,z)

F-Split

Fs=(w,z,u1) Ft=(w,v,v1,z,v2) s=teC(S) z&V((v,v1))

F-Loop

S:=S5, r = con(za,z), con(v,v1) = con(za, z1), con(u1) = con(zy, 22, v'2)
R:= R,z instar(set con(z1,z2)) C:=C,t

* Existing approaches rely on reduction to bitvectors, e.g. HAMPI [Kiezun 2009]

* Instead, we use an algebraic rule-based procedure for strings, which:
* Infers equalities over strings based on length constraints
* Models interaction of string + arithmetic solvers

* Recognizes conflicts due to cardinality of alphabet
[Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

Theory of Strings : Theoretical Results

* For strings + length:

* Procedure is:
e Refutation sound, even for strings of unbounded length
e Solution sound

(A version of) procedure is:

* Solution complete
 When problem is “SAT”, it will eventually find a model (finite model finding)

 When input is in acyclic form (variables only on 1 side of equalities),

* Refutation complete
* When problem is “UNSAT”, it will derive a refutation

[Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

Theory of Strings : Experimental Results

100, 000

cvCca
- = =73-str

10,000
— -+ Kaluza*

1,000 — B

Time (s)
\

10

1@

1

16,000
18,000
20,000
22,000
24,000
26,000

000
0,000

32,000
34,000
36,000
38,000
49,000
42,000
44,000

(v o]
(o] m

Solved Problems

* Tested 50,000 VCs in web security applications (Kudzu)

* Implementation in CVC4 significantly improved state-of-the-art

* In terms of precision, performance, and accuracy
[Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

Extending the Theory of Strings

* Theory of strings can be extended with support for:

e Regular expressions

¢ E.g. xe (aU (bb) *) *

e Decision procedure for regular memberships + length [submitted, FroCos15]
* Regular languages

e E.g. xe (y ‘b) *
* Extended functions

* E.g. substr, contains, replace, prefixOf, suffixOf,
str.indexOf, str.to.int, 1nt.to.str, strcmp

e Occur frequently in practice
 When signature includes these, problem is generally undecidable

What about arbitrary guantified formulas?

* What if constraints do not fit an existing theory/decision procedure?
* Frame axioms in software verification
* Universal safety properties
* Axiomatization of unsupported theories

 Want SMT solver to handle arbitrary first-order quantified formulas
* E.g. Vx.f (x)>0,Vx.select (A, X)=2%Xx

Approaches for Quantified Formulas in SMT

* Heuristic approaches
* Incomplete, focus on finding unsatisfiable

* Example:
° E—matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

* Complete approaches
* Target particular fragments of FOL

e Examples:
* Local theory extensions [Sofronie-Stokkermans 2005]
* Array fragments [Bradley et al 2006, Alberti et al 2014]
* Complete instantiation [Ge/de Moura 2009]
* Finite model finding [Reynolds et al 2013] Focus of next part of the talk

Finite Model Finding for
Quantified Formulas in SMT

SMT Solver + Quantified Formulas

SMT solver

Ground solver

Theory

DPLL(T)

Solver
for T

Quantifiers

Module

* SMT solvers support for (first-order) quantified formulas V¥

SMT Solver + Quantified Formulas

f (a)>0 V x.f(x)<0
]
Ground solver

Theory

Quantifiers

DPLL(T)

Solver
for T

Module

* Forinput £ (a)>0 A V x.f (x)<0
e Ground solver maintains a set of ground (variable-free) constraints : £ (a) >0
 Quantifiers Module maintains a set of axioms : V x. £ (x) <0

SMT Solver + Quantified Formulas

f(a)>0
]
Ground solver

Theory

DPLL(T)

Solver
for T

V x.f(x)<0

Quantifiers

Module

SMT Solver + Quantified Formulas

f(a)>0
]
Ground solver

Theory

DPLL(T)

Solver
for T

V x.f(x)<0

Quantifiers

Module

* Ground solver checks T-satisfiability of current set of constraints

SMT Solver + Quantified Formulas

f(a)>0,£f(a)<0,£f(b)<O0,..

Ground solver instances

Theory

DPLL(T)

Solver
for T

e Quantifiers Module adds instances of axioms

V x.f(x)<0

Quantifiers

Module

* Goal : add instances until ground solver can answer “unsat”

SMT Solver + Quantified Formulas

f(a)>0,£f(a)<0, £ (b) <0, ..

Ground solver

DPLL(T)

‘Since f(a)>0and £ (a) <0

V x.f(x)<0

Quantifiers

Module

How SMT Solvers Handle Quantified Formulas

G,Q

£,1,00t,],.

Ground solver

DPLL(T)

e Generally, a sound but incomplete procedure
* Difficult to answer SAT (when have we added enough instances of 9 [x]?)

instances
of O

V x.0[x]

Quantifiers

Module

Y sat

How SMT Solvers Handle Quantified Formulas
G,Qtl] IQ[t2] y oo \V/X.Q[X]

Ground solver instances
of O

P Quantifiers

Module

i T cat Y sat

= Lack of ability to answer SAT is major weakness

Finite Model Finding : Application

* Deductive Verification Framework [Goel et al 2012] used at Intel Corporation for:
 Architecture/Security Validation for Hardware Systems

type resource
const resource nullvar array(resource, bool) valid = mk_array[resource](false)
var array(resource, int) count

Definitions ==
var array(process, resource) ref = mk_array[process](null)

module S = Set<type process>

1

transition create (resourcer)
Transition
System

require (r != null, 'valid[r]){ count[r] :=0; }

—
~ def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])

Properties — def bool refs_non_zero = forall (process p) (ref[p] != null => count[ref[p]] > 0)

— “ee

. . . goal main = invariant prop assuming refs_non_zero
Verification Conditions

goal rnz =formula (... && prop && ... => refs_non_zero)

Finite Model Finding : Application

type resource

const resource null

type process
r array(resource, bool) valid = mk_array[resource](false)
r array(resource, int) count
r array(process, resource) ref = mk_array[process](null)

module S = Set<type process>

transition create (resource r)
require (r != null, lvalid[r]){
valid[r] := true;
count(r] :=0;

}

def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])

def bool refs_non_zero = forall (process p) (ref[p] != null =>
count[ref[p]] > 0)

Ve rlfl Catlo n goal main = invariant prop assuming refs_non_zero \\\\\
CO n d itio n S éfl)al rnz =formula (... && prop && ... => refs_non_zero)

i| goal main = invariant prop assuming refs_non_zero

to SMT solver...

» Verification conditions translated into (multiple) SMT queries, requiring:
 Theories (arithmetic, bit vectors, datatypes, ...)
* Quantified formulas for stating universal properties over:
 Memory addresses, resources, processes, ...

Why are Models Important?

Verification

Condition with quantifiers
for P

SMT
solver
Unknown

Candidate
Model

\ENIE]
Inspection

Why are Models Important?

Verification

Condition with quantifiers
for P

SMT
solver

Candidate
Model

P Concrete

counterexample
- Mconual for Property P

Inspec.'on

Finite Model Finding in SMT
(5 Vxy:S.0(x,V)

Ground

ONETES

Module

Solver

Finite Model Finding in SMT

G

VXy:S.0 (X, V)

Ground

Solver

ONETES

Module

= If S has finite interpretation,
* use finite model finding

Finite Model Finding in SMT
(5 Vxy:S.0(x,V)

Ground

ONETES

Module

Solver

S={a,b,c,d, e}

Finite Model Finding in SMT

AQ(a,a)A .. Q(e,a)A
0(a,b)A . Vxy:S5.0(x,V)
Q(a,c)A .
Q(a,d)A .
Q(a,e)An .. Q(e,e)

ONETES

Module

Solver

S={a,b,c,d, e}

* Reduction of quantified formulas to ground formulas

Finite Model Finding in SMT
G/\Q .. Q(e,a)n VXy:S.Q(X,y)

.. O(e,e) \

)
0O 00w
> > > > >

O Ol O @)

Ground

ONETES

Module

Solver

~
i SAT s={a,b,c,d, e}

= Ability to answer SAT, assuming decision procedure for GAQ (a, a) A...

Finite Model Flndmg in SMT
oA Vxv:S.0(x,V)

* Can be very large

Quantifiers
Module

S={a,b,c,d, e}

Finite Model Finding in SMT

* Address large # instantiations by:
1. Minimizing model sizes [Reynolds et al CAV13]
* Find interpretation that minimizes the #elementsin S

2. Only add instantiations that refine model [Reynolds et al CADE13]
* Model-based quantifier instantiation [Ge/deMoura CAV 2009]

Finite Model Finding : Minimizing Model Sizes

* Minimize model sizes using a theory solver for cardinality constraints

S| <1

Search for
models
where |S|=1

If none exist,
search for
models
where |S|=2

etc.

[Reynolds/Tinelli/Goel/Krstic CAV13]

Finite Model Finding : Minimizing Model Sizes

* Minimize model sizes using a theory solver for cardinality constraints

S| <1 —|s| <1

Search for
models

where |S|=1 SI=2 —[S[=2

If none exist, S| <3 S| <3
search for

models = If model exists where |S| <3,
where |S|=2 only need 3*3=9 instances
etc. instead of 5*5=25 instances

[Reynolds/Tinelli/Goel/Krstic CAV13]

Finite Model Finding : Model-Based Instantiation
(5 Vxy:S.0(x,V)

Ground

ONETES

Module

Solver

M

\

. S={a,b,c,d,e}
 Construct candidate model M [0—0M, .}

[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13]

Finite Model Finding : Model-Based Instantiation
(5 Vxy:S.0(x,V)

Quantifiers
Module

M

|

o S={a,b,c,d, e}

e Evaluate quantified formulas based on Q" {0—0M, ..}
[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13]

Finite Model Finding : Model-Based Instantiation

A Q(e,e)
(5 owm,a VXy:S5.0 (X, V)

QM b ¢ e

ONETES

Module

M

|
S={a,b,c,d, e}

{Q—>0M, ...}
[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13]

* Only add instances that evaluate to F in Q"
= Significantly increased scalability

Results : Hardware Verification at Intel

SAT german refcount agree apg bmk | Total Time
H 45 6 42 19 37 | 149
z3 45 1 0 0 0 46 8.1
cvcd 2 0 0 0] 0 2 0.0
cvca+f 45 6 42 19 37 | 149 409.8 cvcd ¢
UNSAT | german refcount agree apg bmk|Total Time | |- [:finite modelfinding
H 145 40 488 304 244 | 1221
z3 145 40 488 304 244 | 1221 31.0
cvcd 145 40 484 304 244 | 1217 21.3
cvcl+f 145 40 488 302 244 | 1219 1185.0

e Benchmarks taken from DVF tool at Intel
* Improved state of the art for SAT for SMT problems with V

* Can be competitive for UNSAT as well

[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13]

Results : CASC Competition

- iProver Vampire E-KRHyyiProver-E
1.0-SAT 3.0-SAT 14 0.85
Solvediso 122150 78150 67150 37150
Av. CPU Time 52.47 15.89 7.57 30.77
Solutions 122150 78150 67150 0150
pEfficiency 165 395 292 92
SOTAC 0.28 0.20 0.19 0.15
New Solved | A | 04 04

* Competitive with existing approaches for model finding in ATP community
* CVC4 placed 3" in non-theorems division of CASC 24

* |s competitive with state-of-the-art ATP systems

Ongoing work/applications

* SMT solvers with support for ¥V are doing increasingly complex tasks:
* As an efficient first order theorem prover
* [Reynolds/Tinelli/de Moura FMCAD 2014]

* As an inductive reasoner for program verification
* [Reynolds/Kuncak VMCAI 2015]

* As a tool for syntax-quided software synthesis
* [Reynolds/Deters/Kuncak/Tinelli/Barrett CAV 2015]

* In development: As a program analyzer
* |dea: built-in support for (recursive) function definitions in SMT

(define-fun-rec len (x List) Int (ite (is-cons x) (1 + (len (tail x))) 0))
}

\v/ X. len(x)= (ite (is-cons x) (1 + (len (tail x))) O0)

len

Conclusions

 Satisfiability Modulo Theories (SMT) is

* Mature technology, both in theory and practice

e ...butis still evolving:

* Improved approaches for (combinations) of theories

* Solvers for new theories:
* Floating Points, Sets, (Co)datatypes, Extended Strings + Length, Regular Languages

» Specialized approaches for first-order quantified formulas

Conclusions

Program

—

char buff[15], pass;
cout << "Enter the password :";
gets(buff);
if (regex_match(buff, std::regex("([A-Z]+)"))) {
if(strcmp(buff, “PASSWORD")) {
cout << "Wrong Password";
}else {
cout << "Correct Password";
pass ='Y";
}
if(pass =="'Y")
/* Grant the root permission®/

}

= Increased support for applications

+ | Property P

Does
Property P
hold for my

program?

N\
solver

Increased complexity
— ¢ Expressive theories
e Quantified Formulas

NO — Increased ability

Thanks for your Attention!

e Collaborators:

* Cesare Tinelli, Clark Barrett, Morgan Deters, Tim King, Liana Hadarean, Dejan
Jovanovic, Kshitij Bansal, Tianyi Liang, Nestan Tsiskaridze, Amit Goel, Sava
Krstic, Leonardo de Moura, Viktor Kuncak, Jasmin Blanchette

e Questions?

