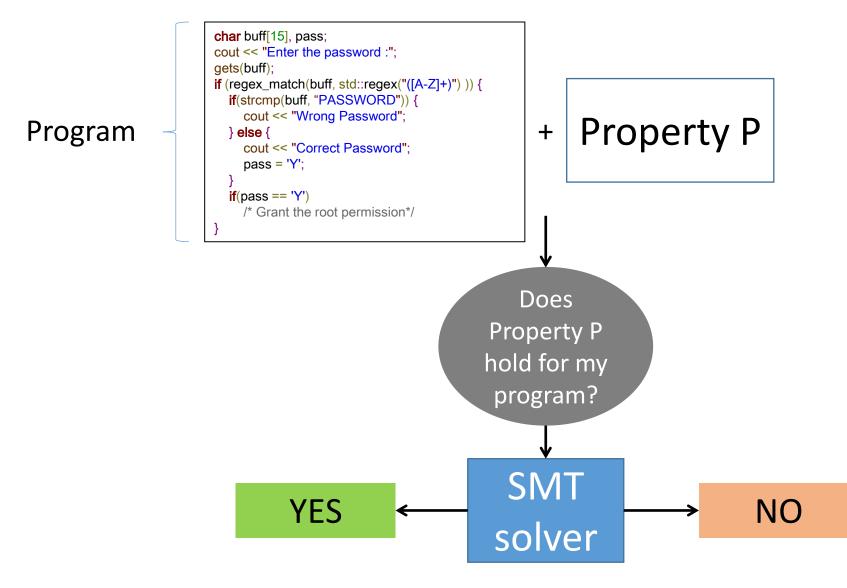
Satisfiability Modulo Theories : Beyond Decision Procedures

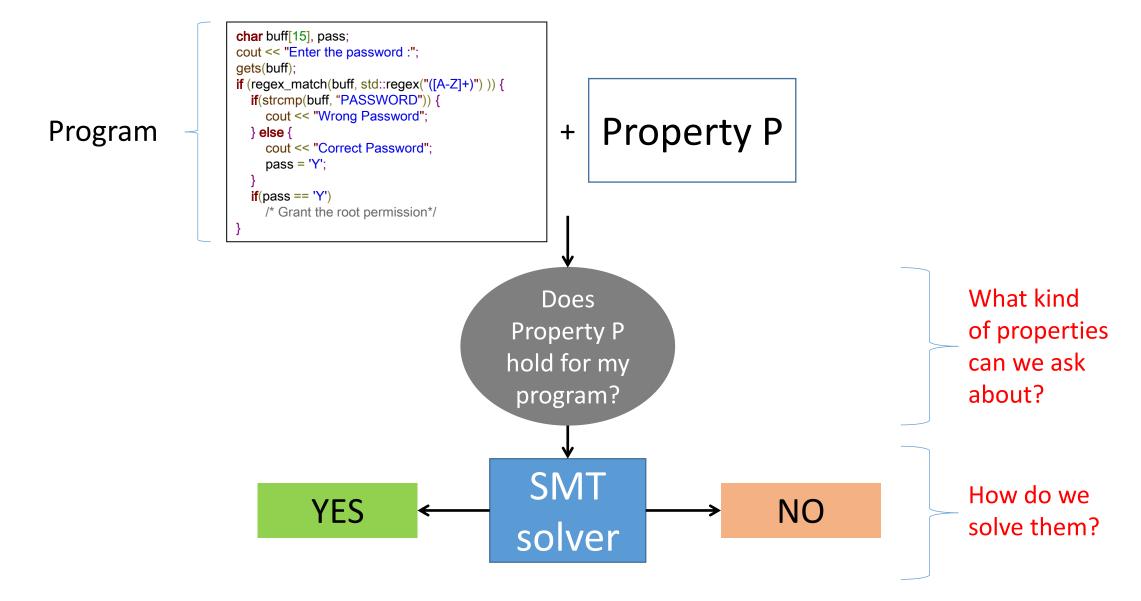
Andrew Reynolds

May 20, 2015

SMT Solvers for Software Verification/Security



SMT Solvers for Software Verification/Security



Overview

- Satisfiability Modulo Theories (SMT) Solvers
 - Propositional reasoning, via off-the-shelf SAT solver
 - **Decision Procedures** for *theories*:
 - UF, Arithmetic, BitVectors, Arrays, ...
 - (Co)inductive Datatypes
 - ...also support Undecidable Theories:
 - Unbounded Strings + Length Constraints
 - ...and even arbitrary Quantified Formulas:
 - Finite Model Finding

Overview

- Satisfiability Modulo Theories (SMT) Solvers
 - Propositional reasoning, via off-the-shelf SAT solver
 - Decision Procedures for *theories*:
 - UF, Arithmetic, BitVectors, Arrays, ...
 - (Co)inductive Datatypes
 - ...also support Undecidable Theories:
 - Unbounded Strings + Length Constraints
 - ...and even arbitrary Quantified Formulas:
 - Finite Model Finding

Focus of this talk, my work in CVC4

What is a Theory?

- A *theory* T is a pair
 - A signature $\Sigma_{\rm T}$ containing sorts and function symbols
 - A class of models I_{T} describing the intended interpretations of symbols in Σ_{T}
- For example, linear integer arithmetic (LIA):
 - Σ_{LIA} contains functions { +, -, <, ≤, >, ≥, 0, 1, 2, 3, ... }
 - Each I \in I_{LIA} interpret functions in Σ_{LIA} in standard way:
 - 1+1 = 2, 1+2 = 3, ..., 1 > 0 = true, 0 > 1 = false, ...
- Number of widely-supported theories in SMT:
 - Bitvectors: bvsgt(a, #bin0001)
 - Arrays:select(store(a,5,b),c)=5
 - Datatypes:tail(cons(a,b))=b

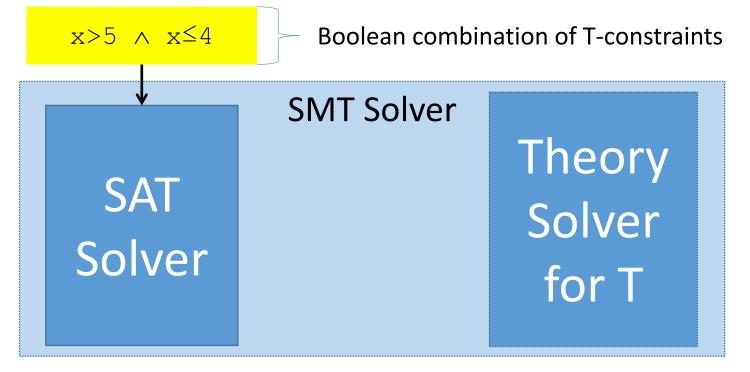
```
• ...
```

- Input: a set of T-constraints M, under some syntactic restriction
- A decision procedure is a method that terminates with output:
 - "M is T-satisfiable", i.e. there is a solution
 - "M is T-unsatisfiable"

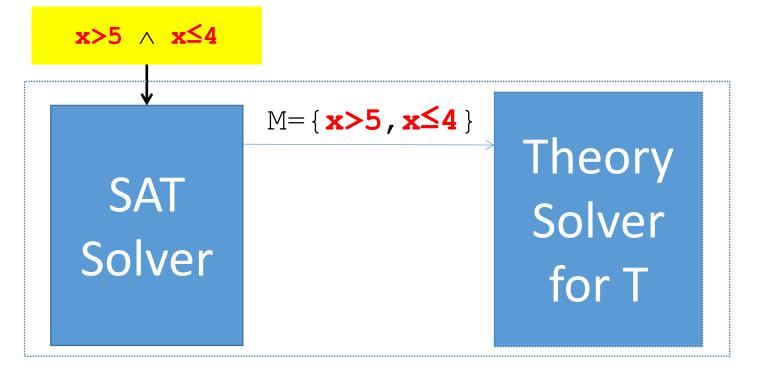
- Input: a set of T-constraints M, under some syntactic restriction
- A decision procedure is a method that terminates with output:
 - "M is T-satisfiable", i.e. there is a solution
 - "M is T-unsatisfiable"

- Input: a set of T-constraints M, under some syntactic restriction
- A decision procedure is a method that terminates with output:
 - "M is T-satisfiable", i.e. there is a solution
 - Must be solution-sound, returns "M is T-satisfiable" only when M is T-satisfiable
 - "M is T-unsatisfiable"

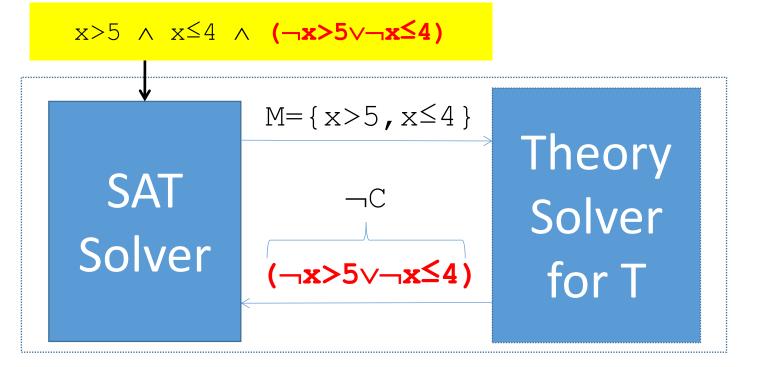
- Input: a set of T-constraints M, under some syntactic restriction
- A decision procedure is a method that terminates with output:
 - "M is T-satisfiable", i.e. there is a solution
 - Must be solution-sound, returns "M is T-satisfiable" only when M is T-satisfiable
 - "M is T-unsatisfiable"
 - Must be refutation-sound, returns "M is T-unsatisfiable" only when M is T-unsatisfiable



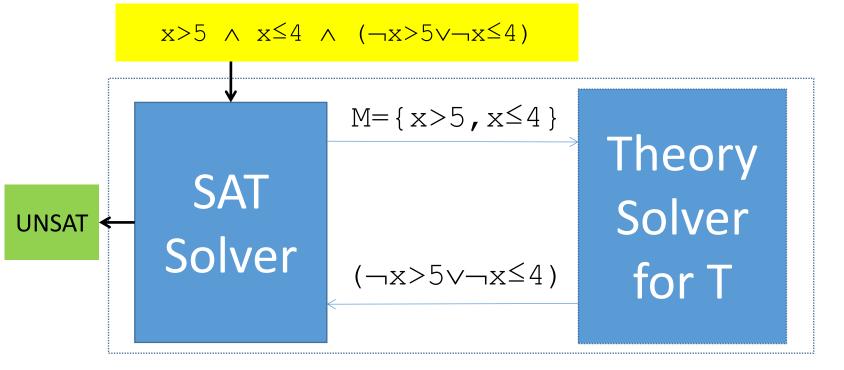
• Decision Procedures are implemented as *theory solvers*



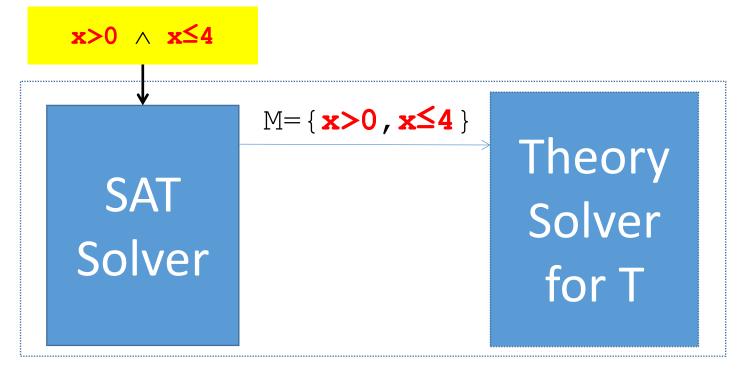
• Decision Procedures are implemented as *theory solvers*



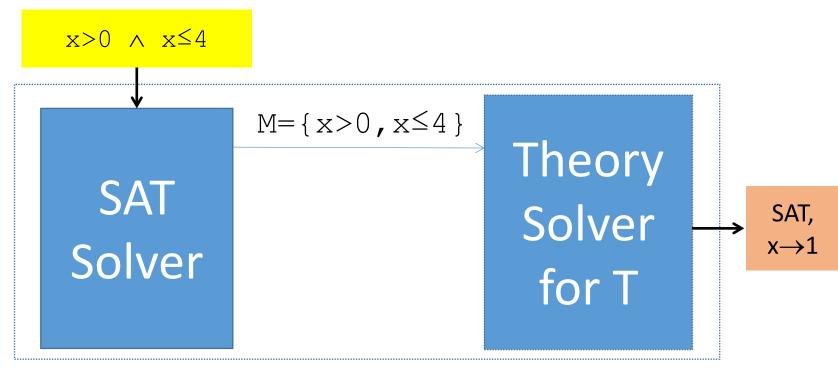
- Decision Procedures are implemented as *theory solvers*
- If M is T-unsat, find an inconsistent subset $C \subseteq M$, add conflict clause $\neg C$



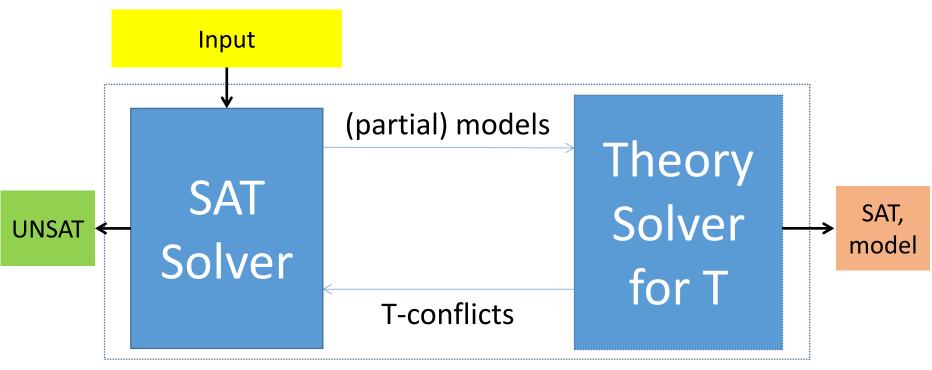
- Decision Procedures are implemented as *theory solvers*
- If M is T-unsat, find an inconsistent subset $C \subseteq M$, add conflict clause $\neg C$



- Decision Procedures are implemented as *theory solvers*
- If M is T-unsat, find an inconsistent subset $C \subseteq M$, add conflict clause $\neg C$



- Decision Procedures are implemented as *theory solvers*
- If M is T-unsat, find an inconsistent subset $C \subseteq M$, add conflict clause $\neg C$
- If $\mathbb M$ is T-sat, return an interpretation for variables in model of $\mathbb M$



 \Rightarrow DPLL(T) procedure [Nieuwenhuis/Oliveras/Tinelli 2007]

Design of Theory Solvers in SMT

- A DPLL(T) theory solver:
 - Should be solution-sound, refutation-sound, terminating for input M
 - Should produce models and T-conflicts
 - Should be designed to work *incrementally*
 - M is constantly being appended to/backtracked upon
 - Should compute useful T-propagations
 - Should cooperate with other theory solvers for combined theories
 - [Nelson/Oppen 1979]

Examples of Decision Procedures in SMT

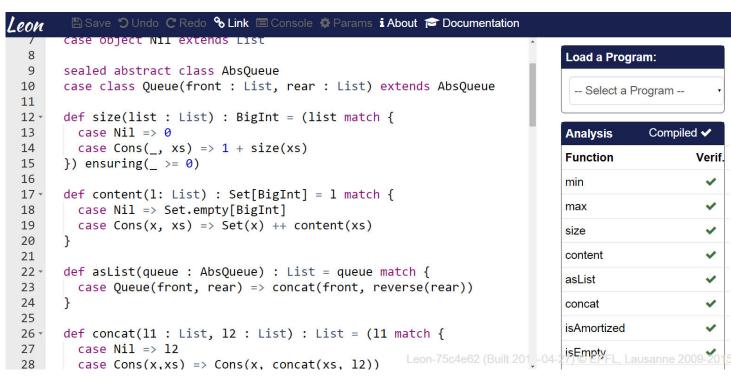
- Efficient theory solvers have been developed for:
 - Theory of Equality and Uninterpreted Functions (EUF)
 - Congruence closure algorithm [Nieuwenhius/Oliveras 2007]
 - Theory of Linear Integer/Real Arithmetic
 - Simplex algorithm [Detertre/deMoura 2006]
 - Theory of Arrays [deMoura/Bjorner 2009]
 - Theory of Bit Vectors [Brummayer/Biere 2009]
 - Theory of Inductive Datatypes [Barrett et al 2007]

 \Rightarrow Theory of (Co)Inductive Datatypes [Reynolds/Blanchette 2015]

Theory of (Co)Inductive Datatypes

Theory of Inductive Datatypes : Applications

- Leon verification tool developed at EPFL
 - Reasons about the correctness of simple functional programs written in Scala



• Makes heavy use of SMT solver backend with support for inductive datatypes

Theory of Inductive Datatypes

• Family of theories specified by a set of *types* with *constructors*, e.g:

List := cons(head : Int, tail : List) | nil

- Theory of Inductive Datatypes (DT) for Lists of Int
 - Σ_{DT} : { cons, head, tail, nil }
 - Interpretations I_{DT} are such that:
 - Constructors are distinct... $cons(x,y) \neq nil$
 - Constructors are injective... if cons(x_1, y_1) = cons(x_2, y_2), then $x_1 = x_2, y_1 = y_2$
 - Constructors are exhaustive... top symbol of all lists is either cons or nil
 - Selectors access subfields... head(cons(x, y)) = x
 - Terms do not contain themselves as subterms... $y \neq cons(x, y)$
- My work: decision procedure for DT in CVC4, based on [Barrett et al 2007]
 ⇒ Used as a backend to Leon verification system

What about infinite data structures?

• Consider the definition:

Stream := cons(head : Int, tail : Stream)

• Stream is not well-founded

 \Rightarrow Decision procedure for inductive datatypes does not apply

- Instead, need decision procedure for coinductive datatypes
- Applications :
 - Modeling infinite processes
 - Programming languages: CoCaml [Jeannin et al 2013], Dafny [Leino 2014]
 - Proof assistants : Agda, Coq, Isabelle, ...
 - \Rightarrow These applications can benefit from native support for them in SMT solvers

Theory of (Co)Inductive Datatypes

- Devised a unified decision procedure for inductive/coinductive datatypes
 - Implemented in CVC4

 $\begin{array}{c} \frac{t \in \mathcal{T}(E)}{E := E, \, t \approx t} \, \operatorname{Refl} & \frac{t \approx u \in E}{E := E, \, u \approx t} \, \operatorname{Sym} & \frac{s \approx t, \, t \approx u \in E}{E := E, \, s \approx u} \, \operatorname{Trans} \\ \\ \frac{\overline{t} \approx \overline{u} \in E \quad f(\overline{t}), \, f(\overline{u}) \in \mathcal{T}(E)}{E := E, \, f(\overline{t}) \approx f(\overline{u})} \, \operatorname{Cong} & \frac{t \approx u, \, t \not\approx u \in E}{\bot} \, \operatorname{Conflict} \\ \\ \\ \frac{C(\overline{t}) \approx C(\overline{u}) \in E}{E := E, \, \overline{t} \approx \overline{u}} \, \operatorname{Inject} & \frac{C(\overline{t}) \approx D(\overline{u}) \in E \quad C \neq D}{\bot} \, \operatorname{Clash} \\ \\ \\ \frac{\delta \in \mathcal{Y}_{dt} \quad \mathcal{A}[t^{\delta}] = \mu x. \, u \quad x \in \operatorname{FV}(u)}{\bot} \, \operatorname{Acyclic} & \frac{\delta \in \mathcal{Y}_{codt} \quad \mathcal{A}[t^{\delta}] =_{\alpha} \, \mathcal{A}[u^{\delta}]}{E := E, \, t \approx u} \, \operatorname{Unique} \end{array}$

- For codatatypes:
 - Terms *can* contain themselves as subterms : x=cons(z,x) is satisfiable
 - Terms are unique up to α -equivalence:
 - If x=cons(z,x) and y=cons(z,y), then x=y

[Reynolds/Blanchette CADE15]

Theory of (Co)Inductive Datatypes

	Distro		AFP		G&L		Overall
	CVC4	Z3	CVC4	Z3	CVC4	Z3	CVC4 Z3
No (co)datatypes	221	209	775	777	52	51	1048 1037
Datatypes without Acyclic	227	_	780	_	52	_	1059 –
Full datatypes	227	213	786	791	52	51	1065 1055
Codatatypes without Unique	222	_	804	_	56	_	1082 –
Full codatatypes	223	_	804	_	59	_	1086 –
Full (co)datatypes	229	_	815	_	59	_	1103 –

- Experimental results: Implementation in CVC4 improves state of the art
 - Evaluated on proof obligations from Isabelle theorem prover

Theory Solvers for Harder Theories?

- So far: theory solvers for decision procedures
- However, in practice a theory solver need not be complete
 - E.g. what if background theory is undecidable?
- Examples of problems that use incomplete theory solvers:
 - Theory of Non-Linear (Integer) Arithmetic
 - ⇒ Theory of Strings + Length constraints [Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

Theory of Strings + Length

Theory of Strings : Applications

Security applications frequently rely on reasoning about string constraints

Theory of Strings + Length

- Signature $\Sigma_{\rm S}$:
 - Constants from a fixed finite alphabet A^{*} =(a, ab, cbc...)
 - String concatenation $_\cdot_$: String \times String \rightarrow String
 - Length terms len(_) : String → Int
- Example input:

$$len(x) > len(y) \land x \cdot b = y \cdot ab$$

Theory of Strings + Length

- Theoretical complexity of:
 - Word equation problem is in **PSPACE**
 - ...with length constraints is OPEN
 - ...with extended functions, e.g. replace, is UNDECIDABLE
- Instead, focus on:
 - Solver that is efficient in practice
 - Tightly integrated into SMT solver architecture
 - Conflict-Driven Clause Learning, Propagation, Composable with other theories

Theory of Strings : Rule-Based Procedure

$$\begin{array}{l} \mathsf{F}\text{-Unify} \ \displaystyle\frac{\mathsf{F}\,s = (w, u, u_1) \quad \mathsf{F}\,t = (w, v, v_1) \quad s \approx t \in \mathcal{C}(\mathsf{S}) \quad \mathsf{S} \models \operatorname{len} u \approx \operatorname{len} v}{\mathsf{S} := \mathsf{S}, u \approx v} \\ \\ \mathsf{F}\,s = (w, u, u_1) \quad \mathsf{F}\,t = (w, v, v_1) \quad s \approx t \in \mathcal{C}(\mathsf{S}) \quad \mathsf{S} \models \operatorname{len} u \not\approx \operatorname{len} v \\ \\ \frac{u \notin \mathcal{V}(v_1) \quad v \notin \mathcal{V}(u_1)}{\mathsf{S} := \mathsf{S}, u \approx \operatorname{con}(v, z)} \quad \| \quad \mathsf{S} := \mathsf{S}, v \approx \operatorname{con}(u, z) \\ \end{array}$$

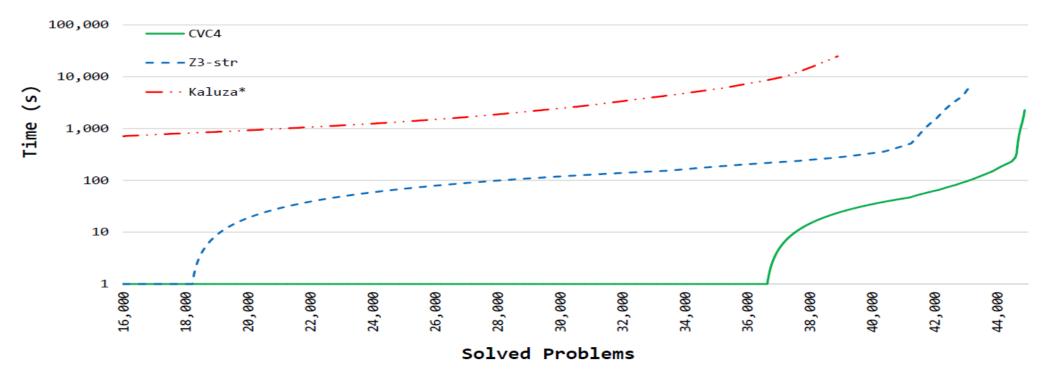
$$\begin{array}{l} \mathsf{F}\text{-Loop} \ \displaystyle\frac{\mathsf{F}\,s = (w, x, u_1) \quad \mathsf{F}\,t = (w, v, v_1, x, v_2) \quad s \approx t \in \mathcal{C}(\mathsf{S}) \quad x \notin \mathcal{V}((v, v_1))}{\mathsf{S} := \mathsf{S}, x \approx \operatorname{con}(z_2, z), \operatorname{con}(v, v_1) \approx \operatorname{con}(z_2, z_1), \operatorname{con}(u_1) \approx \operatorname{con}(z_1, z_2, v_2) \\ \\ \\ \mathsf{R}\, := \mathsf{R}, z \text{ in star}(\operatorname{set}\operatorname{con}(z_1, z_2)) \quad \mathsf{C} := \mathsf{C}, t \end{array}$$

- Existing approaches rely on reduction to bitvectors, e.g. HAMPI [Kiezun 2009]
- Instead, we use an algebraic rule-based procedure for strings, which:
 - Infers equalities over strings based on length constraints
 - Models interaction of string + arithmetic solvers
 - Recognizes conflicts due to cardinality of alphabet

Theory of Strings : Theoretical Results

- For strings + length:
 - Procedure is:
 - Refutation sound, even for strings of unbounded length
 - Solution sound
 - (A version of) procedure is:
 - Solution complete
 - When problem is "SAT", it will eventually find a model (finite model finding)
 - When input is in acyclic form (variables only on 1 side of equalities),
 - Refutation complete
 - When problem is "UNSAT", it will derive a refutation

Theory of Strings : Experimental Results



- Tested 50,000 VCs in web security applications (Kudzu)
- Implementation in CVC4 significantly improved state-of-the-art
 - In terms of precision, performance, and accuracy

[Liang/Reynolds/Tinelli/Barrett/Deters CAV14]

Extending the Theory of Strings

- Theory of strings can be **extended** with support for:
 - Regular expressions
 - **E.g.** x∈ (a∪(bb) *) *
 - Decision procedure for regular memberships + length [submitted, FroCos15]
 - Regular languages
 - **E.g.** x∈ (y ⋅b) *
 - Extended functions
 - E.g. substr, contains, replace, prefixOf, suffixOf, str.indexOf, str.to.int, int.to.str, strcmp
 - Occur frequently in practice
 - When signature includes these, problem is generally undecidable

What about arbitrary quantified formulas?

- What if constraints do not fit an existing theory/decision procedure?
 - Frame axioms in software verification
 - Universal safety properties
 - Axiomatization of unsupported theories
 - ...
- Want SMT solver to handle arbitrary first-order quantified formulas
 - E.g. $\forall x.f(x) > 0, \forall x.select(A, x) = 2 * x$

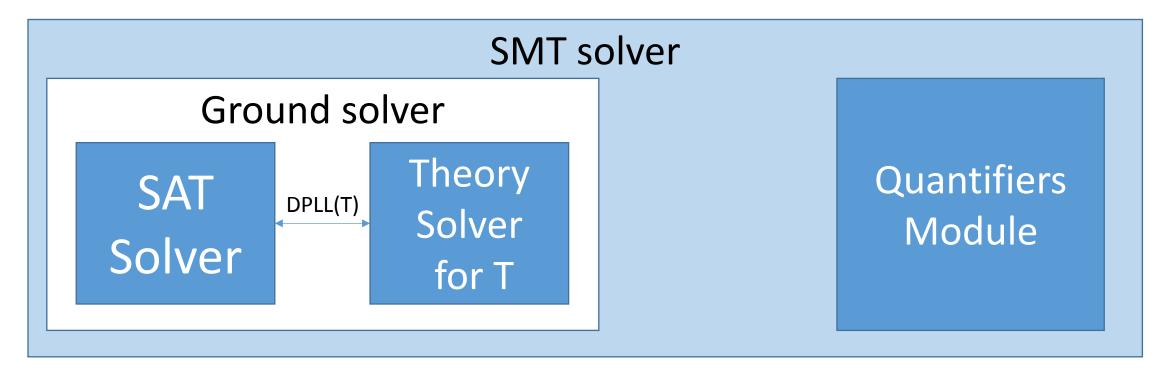
Approaches for Quantified Formulas in SMT

- Heuristic approaches
 - Incomplete, focus on finding unsatisfiable
 - Example:
 - E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]
- Complete approaches
 - Target particular fragments of FOL
 - Examples:
 - Local theory extensions [Sofronie-Stokkermans 2005]
 - Array fragments [Bradley et al 2006, Alberti et al 2014]
 - Complete instantiation [Ge/de Moura 2009]
 - Finite model finding [Reynolds et al 2013]

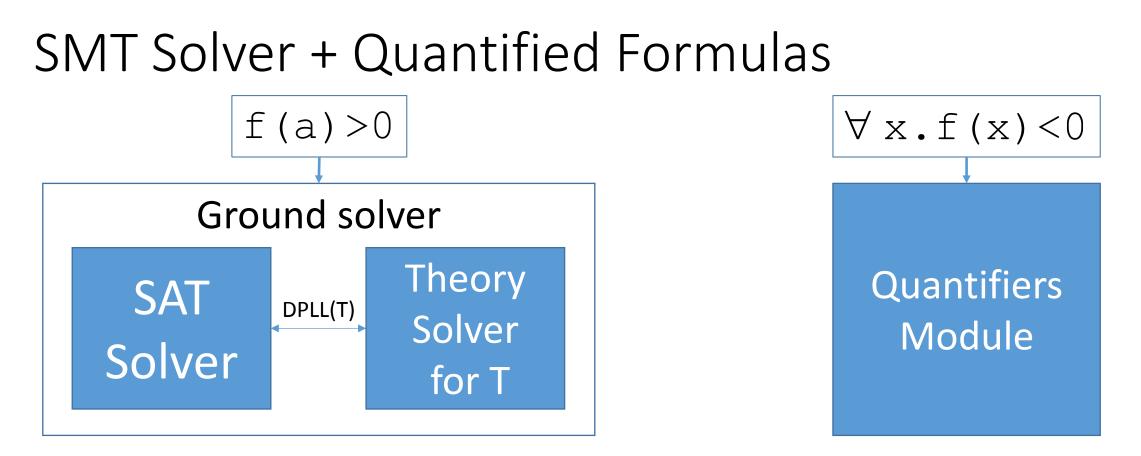
Focus of next part of the talk

Finite Model Finding for Quantified Formulas in SMT

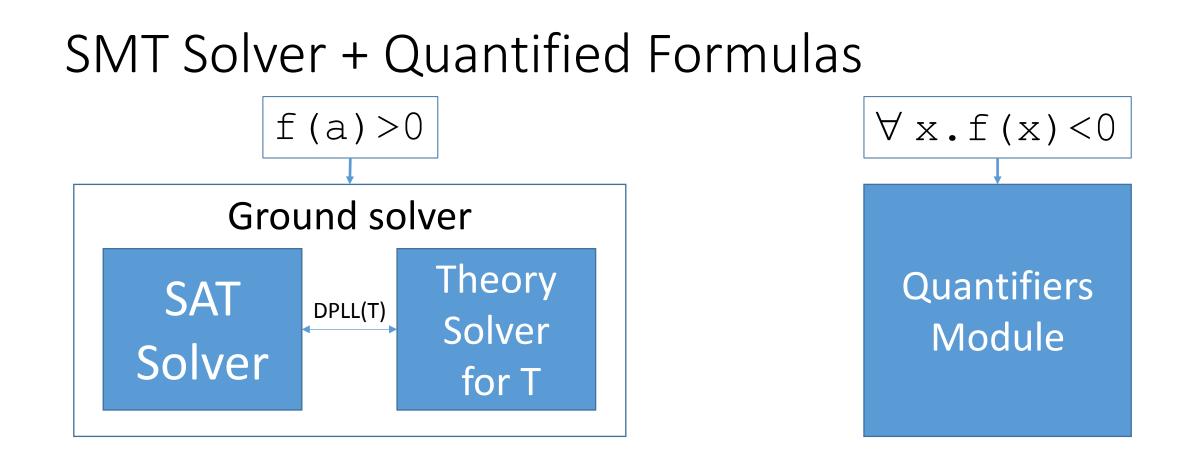
SMT Solver + Quantified Formulas



• SMT solvers support for (first-order) quantified formulas \forall

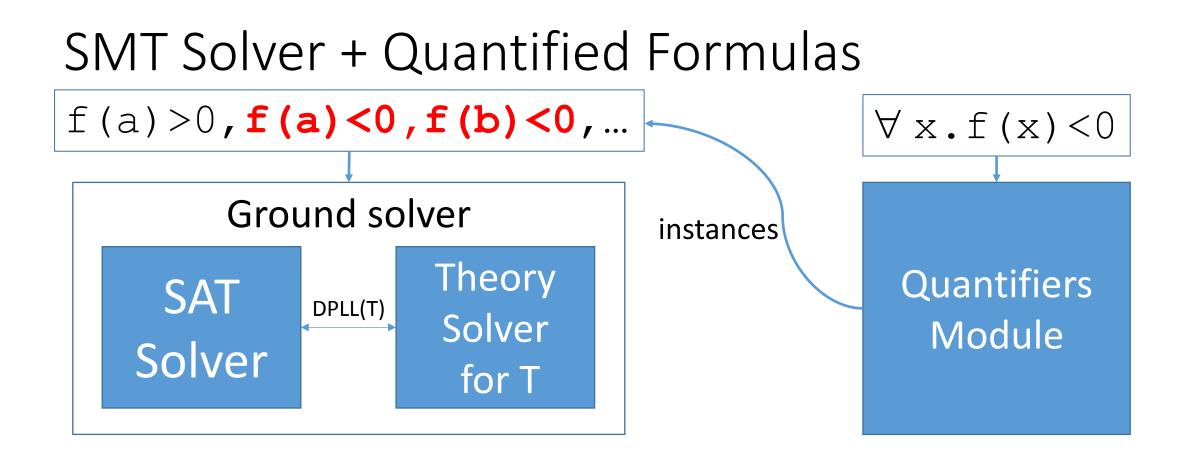


- For input f (a) >0 $\land \forall x.f(x) < 0$
 - Ground solver maintains a set of ground (variable-free) constraints : f (a) >0
 - Quantifiers Module maintains a set of axioms : $\forall x . f(x) < 0$

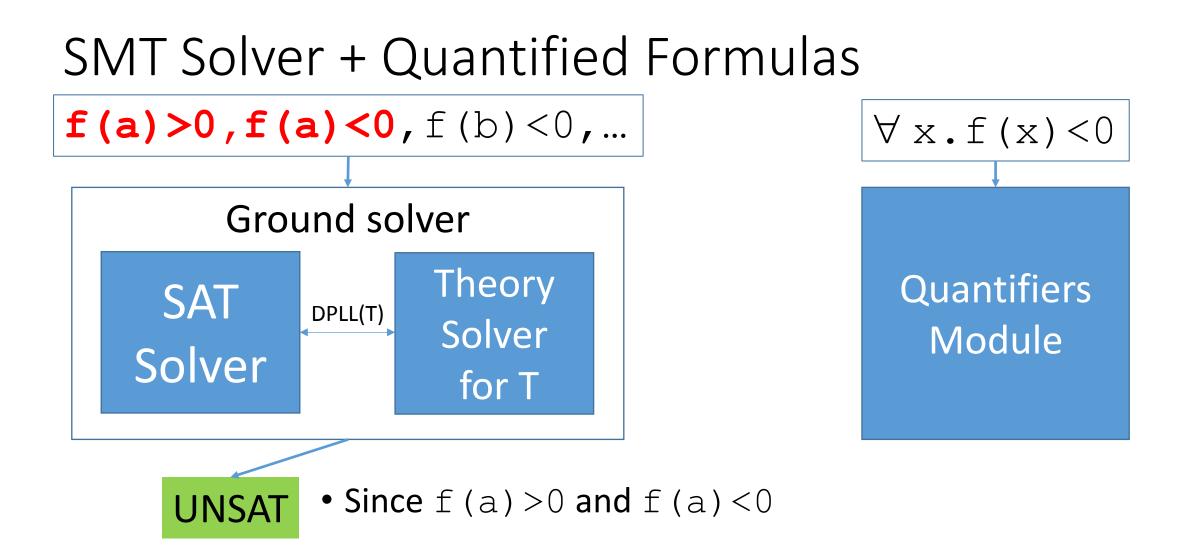


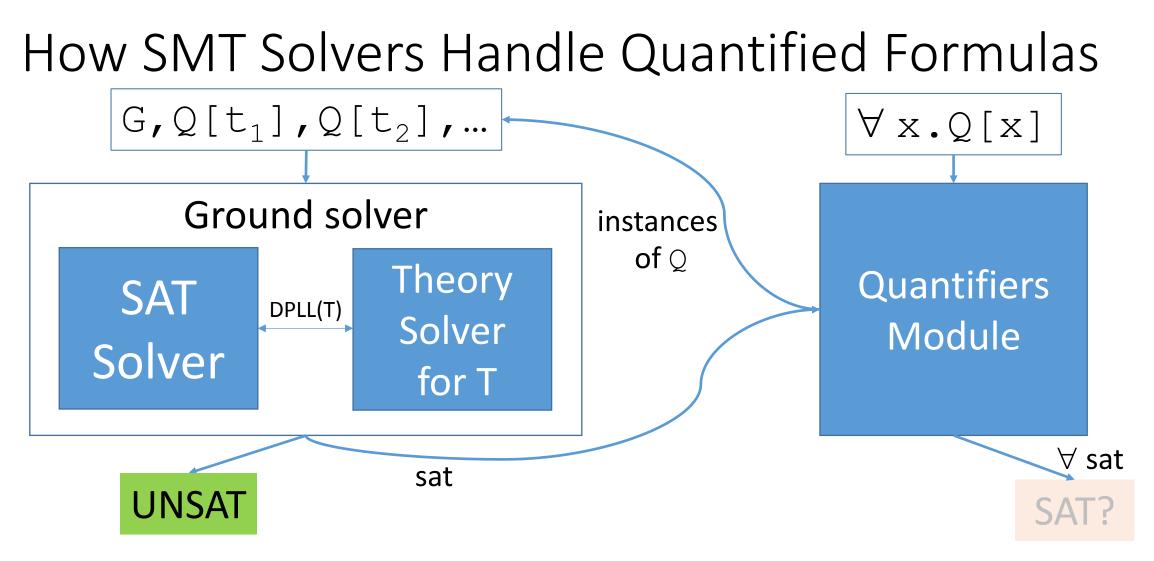


• Ground solver checks T-satisfiability of current set of constraints

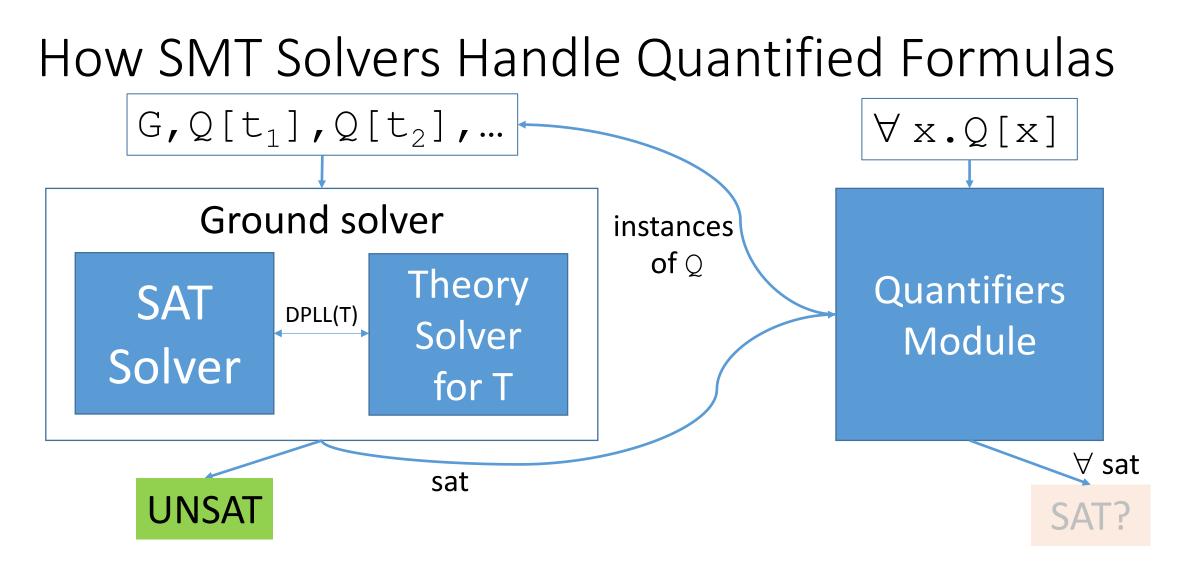


- Quantifiers Module adds instances of axioms
 - Goal : add instances until ground solver can answer "unsat"





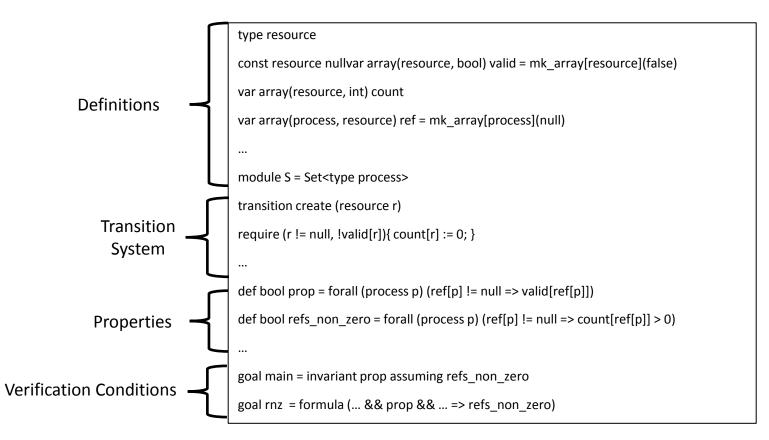
- Generally, a sound but incomplete procedure
 - Difficult to answer SAT (when have we added enough instances of Q[x]?)



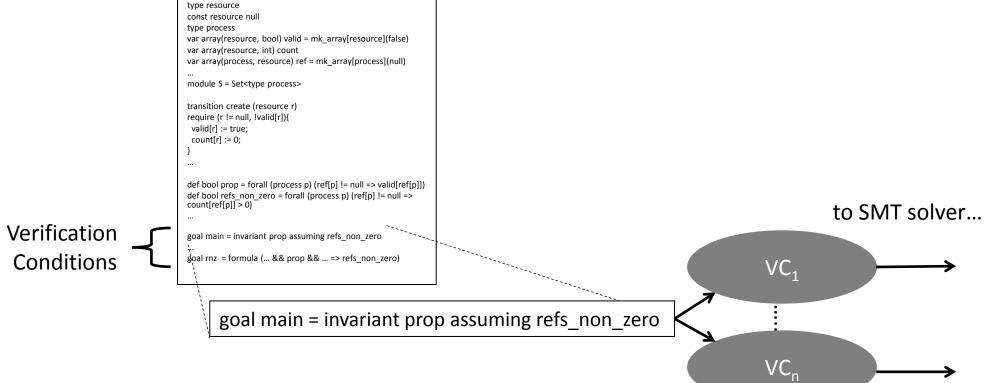
 \Rightarrow Lack of ability to answer SAT is major weakness

Finite Model Finding : Application

- Deductive Verification Framework [Goel et al 2012] used at Intel Corporation for:
 - Architecture/Security Validation for Hardware Systems

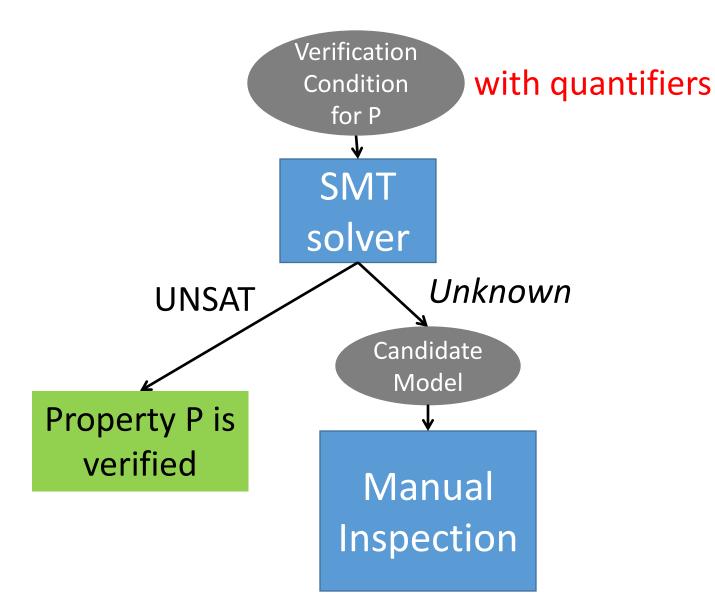


Finite Model Finding : Application

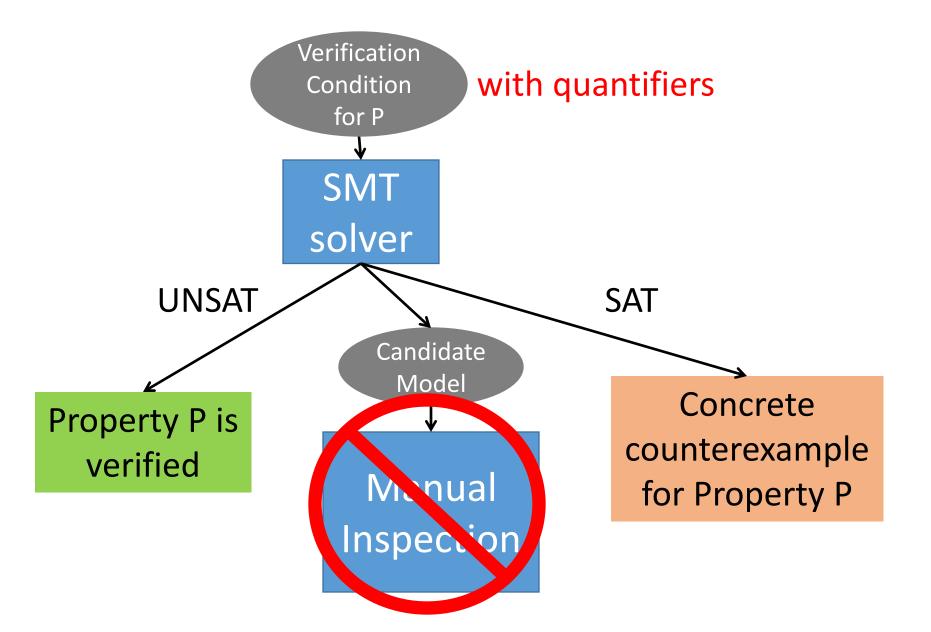


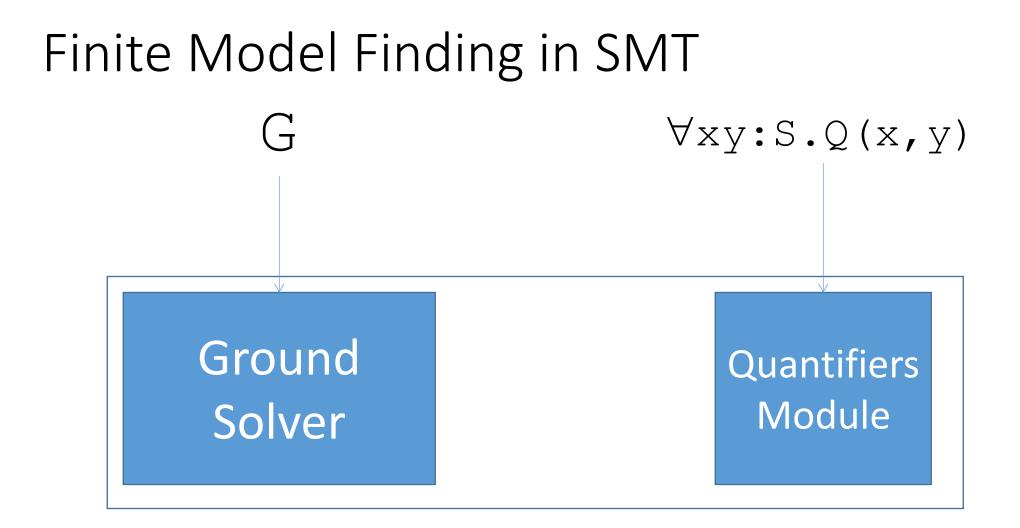
- Verification conditions translated into (multiple) SMT queries, requiring:
 - Theories (arithmetic, bit vectors, datatypes, ...)
 - Quantified formulas for stating universal properties over:
 - Memory addresses, resources, processes, ...

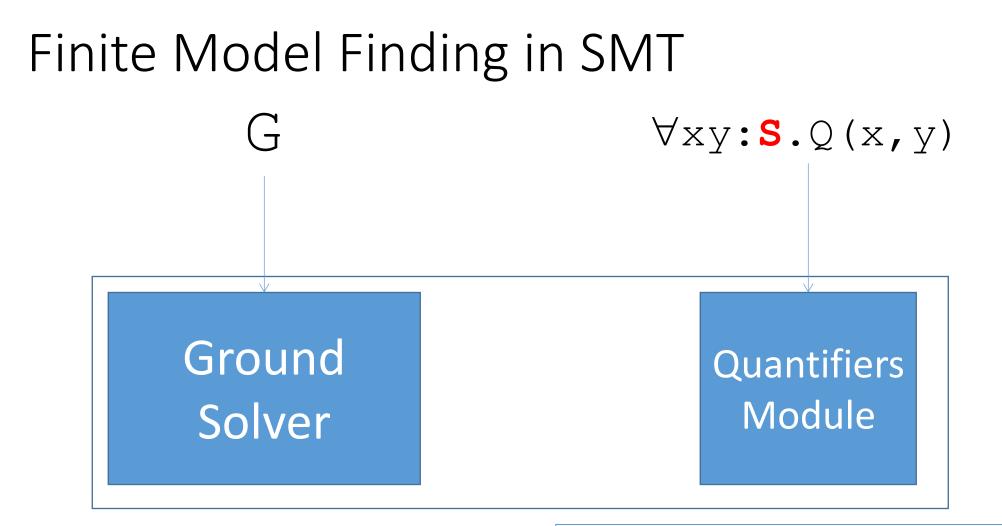
Why are Models Important?



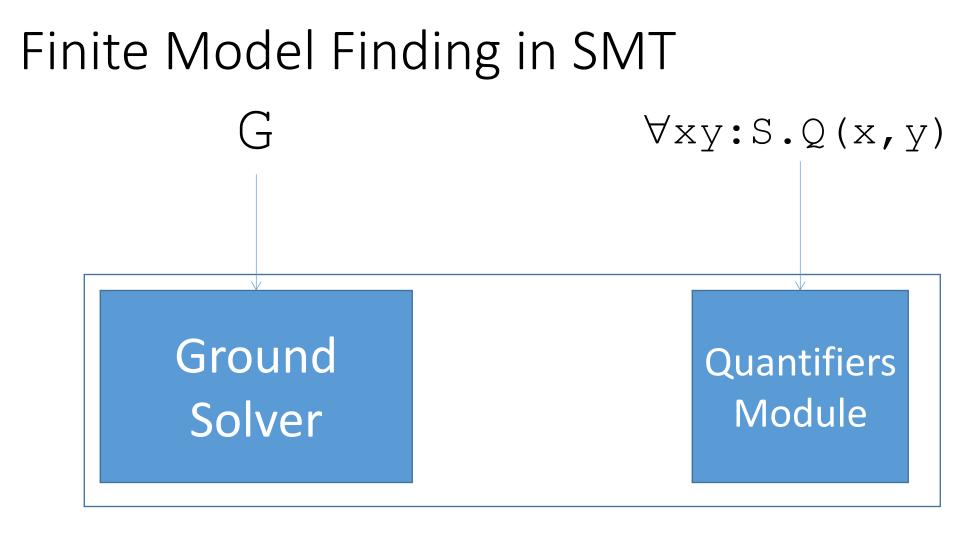
Why are Models Important?





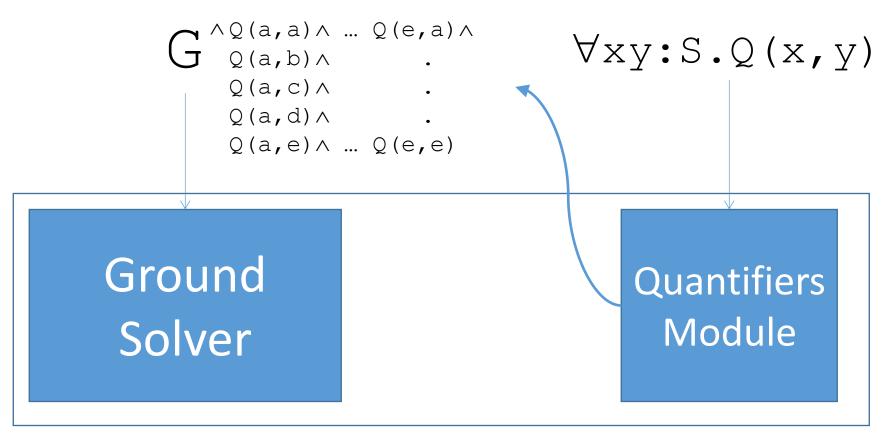


⇒If *S* has finite interpretation, • use finite model finding



$S=\{a,b,c,d,e\}$

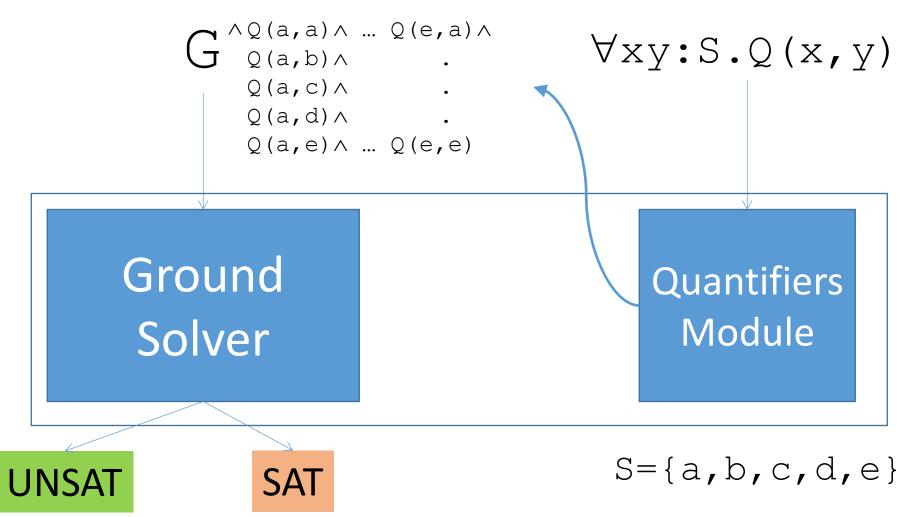
Finite Model Finding in SMT



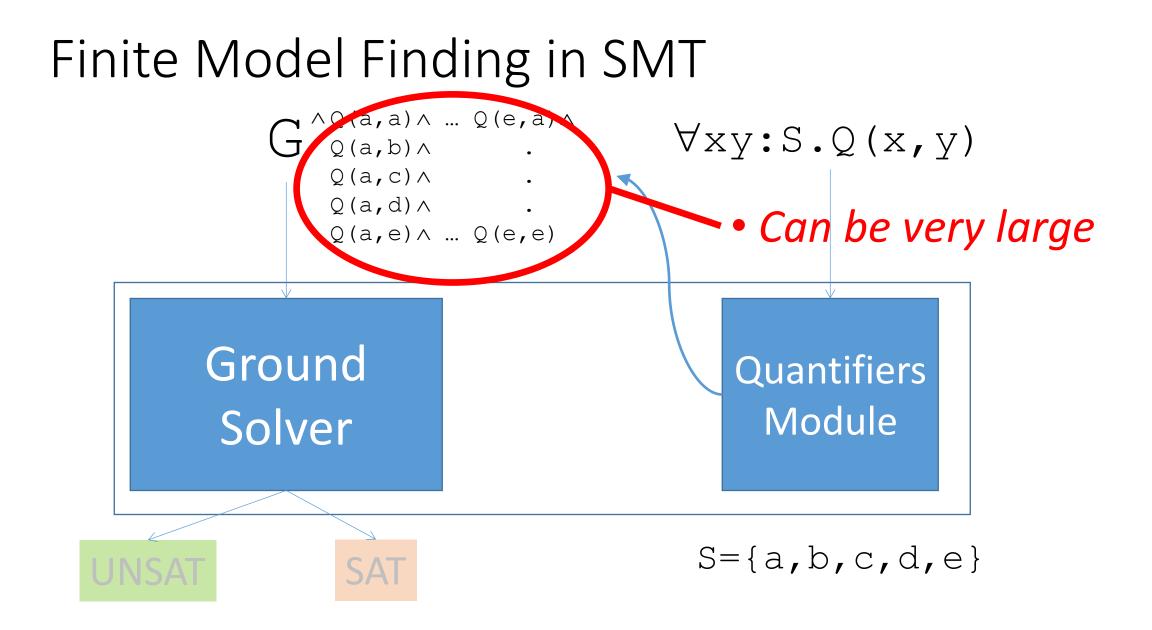
 $S = \{a, b, c, d, e\}$

Reduction of quantified formulas to ground formulas

Finite Model Finding in SMT



 \Rightarrow Ability to answer SAT, assuming decision procedure for GAQ (a, a) A...

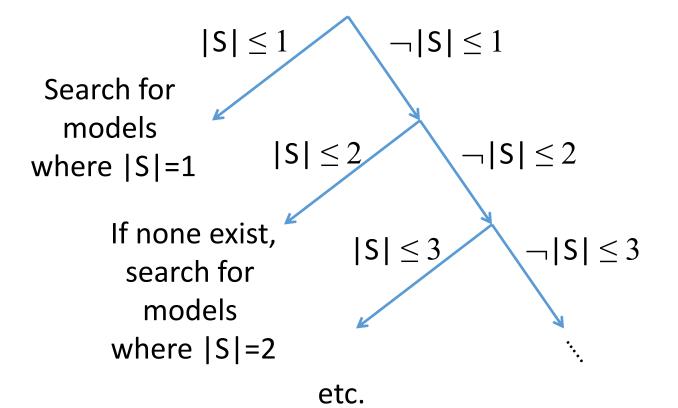


Finite Model Finding in SMT

- Address large # instantiations by:
 - 1. Minimizing model sizes [Reynolds et al CAV13]
 - Find interpretation that minimizes the #elements in S
 - 2. Only add instantiations that refine model [Reynolds et al CADE13]
 - Model-based quantifier instantiation [Ge/deMoura CAV 2009]

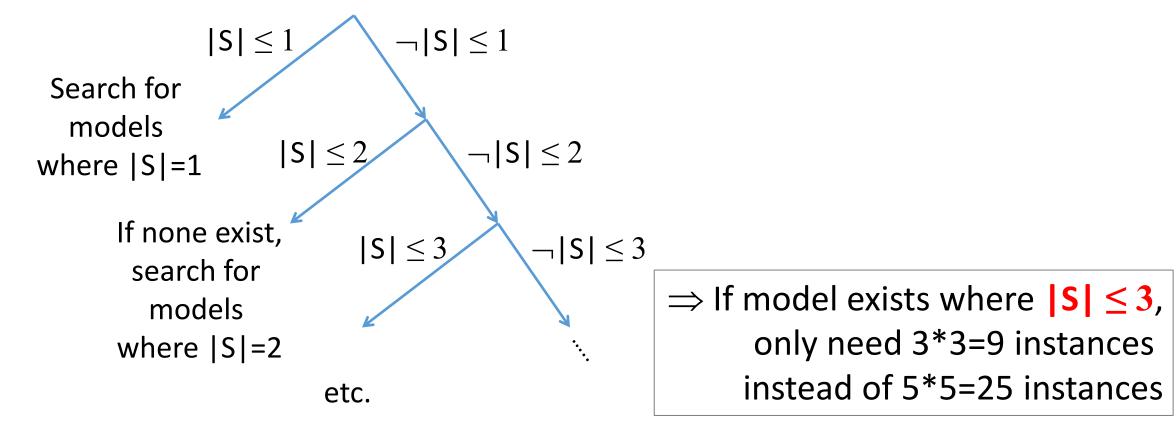
Finite Model Finding : Minimizing Model Sizes

• Minimize model sizes using a theory solver for cardinality constraints

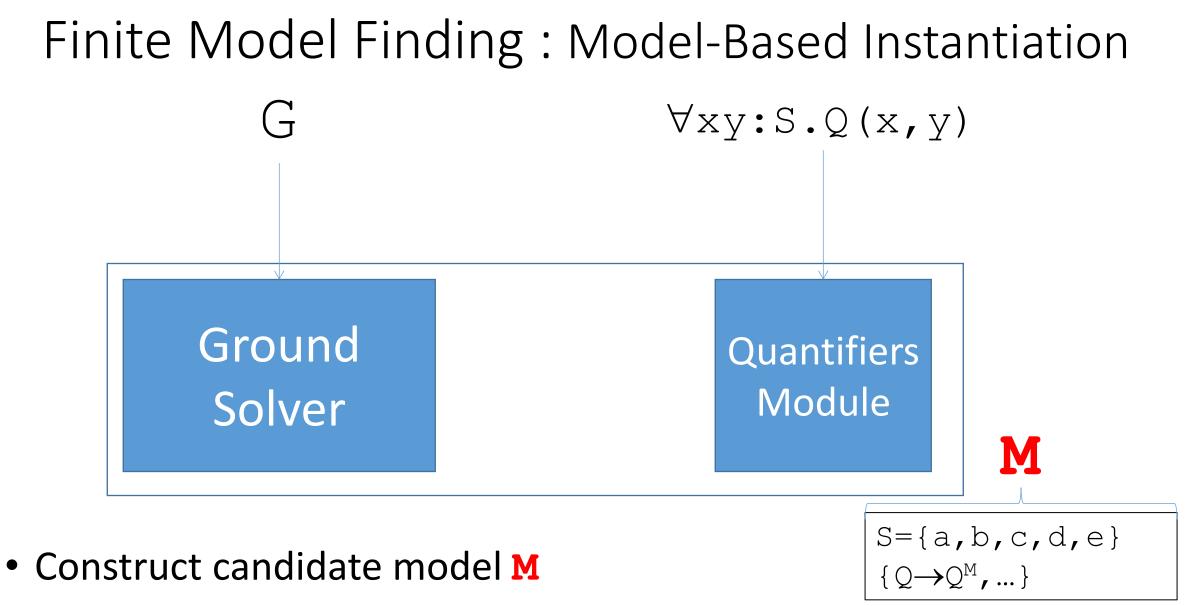


Finite Model Finding : Minimizing Model Sizes

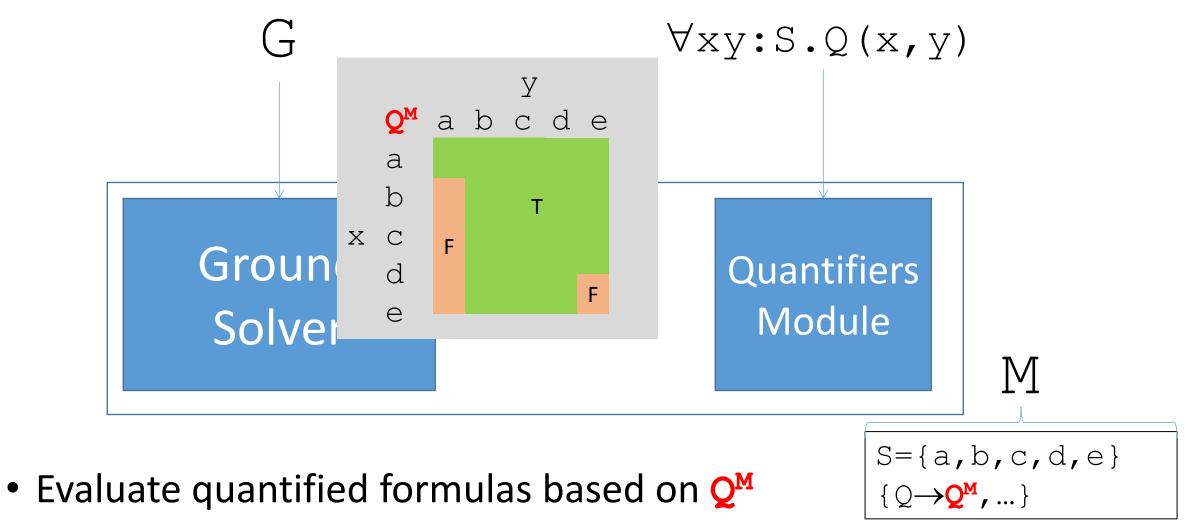
• Minimize model sizes using a theory solver for cardinality constraints



[Reynolds/Tinelli/Goel/Krstic CAV13]



Finite Model Finding : Model-Based Instantiation



Finite Model Finding : Model-Based Instantiation



 \Rightarrow Significantly increased scalability

Results : Hardware Verification at Intel

SAT	german	refcount	agree	apg	bmk	Total	Time
#	45	6	42	19	37	149	
z3	45	1	0	0	0	46	8.1
cvc4	2	0	0	0	0	2	0.0
cvc4+f	45	6	42	19	37	149	409.8

UNSAT	german	refcount	agree	apg	bmk	Total	Time
#	145	40	488	304	244	1221	
z3	145	40	488	304	244	1221	31.0
cvc4	145	40	484	304	244	1217	21.3
cvc4+f	145	40	488	302	244	1219	1185.0

cvc4 :

• f : finite model finding

- Benchmarks taken from DVF tool at Intel
- Improved state of the art for SAT for SMT problems with \forall
- Can be competitive for **UNSAT** as well

Results : CASC Competition

			\frown					
First-order Non-	<u>iProver</u>	Paradox	<u>CVC4</u>	E	<u>Nitrox</u>	Vampire	E-KRHyp	iProver-E
theorems	1.0-SAT	3.0	1.2-SAT	1.8	2013	3.0-SAT	1.4	0.85
Solved/150	122/150	99 /1 0	96/150	79/150	79/150	78/150	67/150	37/150
Av. CPU Time	52.47	2.28	25.94	20.94	29.70	15.89	7.57	30.77
Solutions	122/150	99 /150	96/150	79/150	79/150	78/150	67/150	0/150
μEfficiency	165	549	204	396	36	395	292	92
SOTAC	0.28	0.2.	0.19	0.22	0.24	0.20	0.19	0.15
New Solved	1/4	1/4	1/4	1/4	1/4	1/4	0/4	0/4

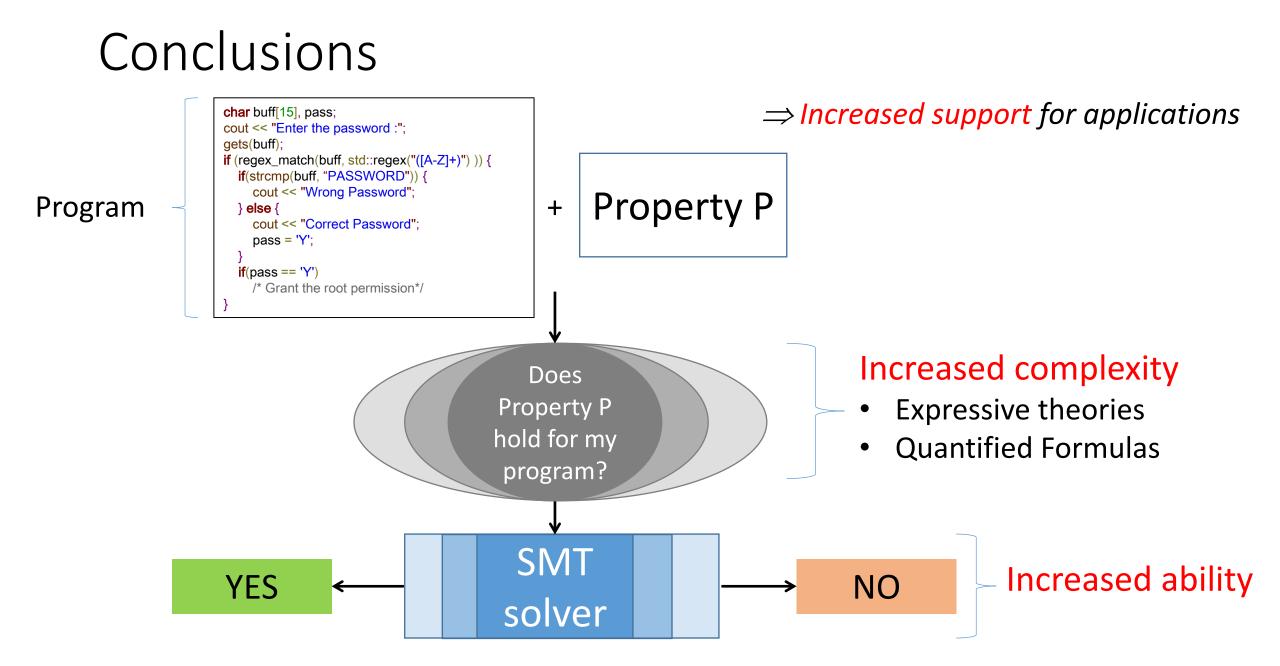
- Competitive with existing approaches for model finding in ATP community
- CVC4 placed 3rd in non-theorems division of CASC 24
 - Is competitive with state-of-the-art ATP systems

Ongoing work/applications

- SMT solvers with support for \forall are doing increasingly complex tasks:
 - As an efficient *first order theorem prover*
 - [Reynolds/Tinelli/de Moura FMCAD 2014]
 - As an inductive reasoner for program verification
 - [Reynolds/Kuncak VMCAI 2015]
 - As a tool for syntax-guided software synthesis
 - [Reynolds/Deters/Kuncak/Tinelli/Barrett CAV 2015]
 - In development: As a program analyzer
 - Idea: built-in support for (recursive) function definitions in SMT

Conclusions

- Satisfiability Modulo Theories (SMT) is
 - Mature technology, both in theory and practice
 - ...but is still evolving:
 - Improved approaches for (combinations) of theories
 - Solvers for new theories:
 - Floating Points, Sets, (Co)datatypes, Extended Strings + Length, Regular Languages
 - ...
 - Specialized approaches for first-order quantified formulas



Thanks for your Attention!

• Collaborators:

 Cesare Tinelli, Clark Barrett, Morgan Deters, Tim King, Liana Hadarean, Dejan Jovanovic, Kshitij Bansal, Tianyi Liang, Nestan Tsiskaridze, Amit Goel, Sava Krstic, Leonardo de Moura, Viktor Kuncak, Jasmin Blanchette

• Questions?