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SMT Solvers for Software Verification/Security 
char buff[15], pass; 

cout << "Enter the password :"; 

gets(buff);  

if (regex_match(buff, std::regex("([A-Z]+)") )) { 

    if(strcmp(buff, “PASSWORD")) { 

        cout << "Wrong Password"; 

    } else {  
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        pass = 'Y';  

    }  

    if(pass == 'Y')  

        /* Grant the root permission*/  
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Overview 

• Satisfiability Modulo Theories (SMT) Solvers 

•  Propositional reasoning, via off-the-shelf SAT solver 

•  Decision Procedures for theories: 

•  UF, Arithmetic, BitVectors, AƌƌaǇs, … 

•  (Co)inductive Datatypes 

•  …also suppoƌt Undecidable Theories: 

•  Unbounded Strings + Length Constraints 

•  …aŶd eǀeŶ aƌďitƌaƌǇ Quantified Formulas: 

•  Finite Model Finding 
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Focus of this talk, 

my work in CVC4 



What is a Theory? 

• A theory T is a pair 
• A signature ST containing sorts and function symbols 

• A class of models IT describing the intended interpretations of symbols in ST 

• For example, linear integer arithmetic (LIA): 
• SLIA contains functions { +, -, <, ч, >, ш, Ϭ, ϭ, Ϯ, ϯ, … }  
• Each I  ILIA interpret functions in SLIA in standard way: 

• 1+1 = 2, 1+2 = 3, …, ϭ > 0 = true, 0 > 1 = false, … 

• Number of widely-supported theories in SMT: 
• Bitvectors : bvsgt(a,#bin0001) 

• Arrays : select(store(a,5,b),c)=5 

• Datatypes : tail(cons(a,b))=b 

• … 

 



What is a Decision Procedure for T? 

• Input: a set of T-constraints M, under some syntactic restriction 

• A decision procedure is a method that terminates with output: 

• ͞M is T-satisfiable ,͟ i.e. theƌe is a solutioŶ 
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What is a Decision Procedure for T? 

• Input: a set of T-constraints M, under some syntactic restriction 

• A decision procedure is a method that terminates with output: 

• ͞M is T-satisfiable ,͟ i.e. there is a solution 

• Must be solution-sound, ƌetuƌŶs ͞M is T-satisfiable͟ oŶlǇ ǁheŶ M is T-satisfiable 

• ͞M is T-unsatisfiable͟ 

• Must be refutation-sound, returns ͞M is T-unsatisfiable͟ oŶlǇ ǁheŶ M is T-unsatisfiable 



SMT Solver 

How are Decision Procedures Implemented in SMT? 

• Decision Procedures are implemented as theory solvers 
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x>0  x≤4 

• Decision Procedures are implemented as theory solvers 

• If M is T-unsat, find an inconsistent subset C  M, add conflict clause C 
• If M is T-sat, return an interpretation for variables in model of M 

SAT, 

x1 



How are Decision Procedures Implemented in SMT? 

Theory 

Solver 

for T 

SAT 

Solver 

(partial) models 

Input 

SAT, 

model 

 DPLL(T) procedure [Nieuwenhuis/Oliveras/Tinelli 2007] 

UNSAT 

T-conflicts 



Design of Theory Solvers in SMT 

• A DPLL(T) theory solver: 

• Should be solution-sound, refutation-sound, terminating for input M 

• Should produce models and T-conflicts  

• Should be designed to work incrementally 

•  M is constantly being appended to/backtracked upon 

• Should compute useful T-propagations 

• Should cooperate with other theory solvers for combined theories 

• [Nelson/Oppen 1979] 



Examples of Decision Procedures in SMT 

• Efficient theory solvers have been developed for: 

• Theory of Equality and Uninterpreted Functions (EUF) 

• Congruence closure algorithm [Nieuwenhius/Oliveras 2007] 

• Theory of Linear Integer/Real Arithmetic 

• Simplex algorithm [Detertre/deMoura 2006] 

• Theory of Arrays [deMoura/Bjorner 2009] 

• Theory of Bit Vectors [Brummayer/Biere 2009] 

• Theory of Inductive Datatypes [Barrett et al 2007] 

 Theory of (Co)Inductive Datatypes [Reynolds/Blanchette 2015] 

 



Theory of (Co)Inductive 
Datatypes 



Theory of Inductive Datatypes : Applications 

• Leon verification tool developed at EPFL 

• Reasons about the correctness of simple functional programs written in Scala 

 

 

 

 

 

 

 

 

 

 

 

• Makes heavy use of SMT solver backend with support for inductive datatypes 



Theory of Inductive Datatypes 

• Family of theories specified by a set of types with constructors, e.g: 

 

 

• Theory of Inductive Datatypes (DT) for Lists of Int 
• SDT : { cons, head, tail, nil } 
• Interpretations IDT are such that: 

• CoŶstƌuĐtoƌs aƌe distiŶĐt… ĐoŶs;x,y)  nil 
• CoŶstƌuĐtoƌs aƌe iŶjeĐtiǀe… if ĐoŶs; ǆ1, y1 ) = cons( x2, y2 ), then x1 = x2, y1 = y2 

• CoŶstƌuĐtoƌs aƌe eǆhaustiǀe… top sǇŵďol of all lists is eitheƌ ĐoŶs oƌ Ŷil 
• “eleĐtoƌs aĐĐess suďfields… head; ĐoŶs; ǆ, Ǉ Ϳ Ϳ = ǆ 
• Terms do not contain themselves as subterms… Ǉ  cons( x, y ) 

 

• My work: decision procedure for DT in CVC4, based on [Barrett et al 2007] 

 Used as a backend to Leon verification system 

 

List := cons( head : Int, tail : List ) | nil 



What about infinite data structures? 

• Consider the definition: 

 

 

• Stream is not well-founded 
 Decision procedure for inductive datatypes does not apply 

• Instead, need decision procedure for coinductive datatypes 

• Applications : 
• Modeling infinite processes  

• Programming languages: CoCaml [Jeannin et al 2013], Dafny [Leino 2014]  

• Proof assistants : Agda, CoƋ, Isaďelle, … 

 These applications can benefit from native support for them in SMT solvers 

Stream := cons( head : Int, tail : Stream ) 



Theory of (Co)Inductive Datatypes 
• Devised a unified decision procedure for inductive/coinductive datatypes 

• Implemented in CVC4 

 

 

[Reynolds/Blanchette CADE15] 

• For codatatypes: 
• Terms can contain themselves as subterms : x=cons(z,x) is satisfiable 

• Terms are unique up to a-equivalence:  

• If x=cons(z,x) and y=cons(z,y), then x=y 



Theory of (Co)Inductive Datatypes 

 

 

 

 

 

 

• Experimental results: Implementation in CVC4 improves state of the art 

• Evaluated on proof obligations from Isabelle theorem prover 

[Reynolds/Blanchette CADE15] 



Theory Solvers for Harder Theories? 

• So far: theory solvers for decision procedures 

• However, in practice a theory solver need not be complete 

• E.g. what if background theory is undecidable? 

• Examples of problems that use incomplete theory solvers: 

• Theory of Non-Linear (Integer) Arithmetic 

 Theory of Strings + Length constraints [Liang/Reynolds/Tinelli/Barrett/Deters CAV14] 



Theory of Strings + Length 



char buff[15]; 
char pass; 
cout << "Enter the password :"; 
gets(buff);  
if (regex_match(buff, std::regex("([A-Z]+)") )) { 
    if(strcmp(buff, “PASSWORD")) { 
        cout << "Wrong Password"; 

    } else {  
        cout << "Correct Password"; 
        pass = 'Y';  
    }  
    if(pass == 'Y') {  
        /* Grant the root permission*/  
    } 
}  

(set-logic QF_S)  

(declare-const input String)  

(declare-const buff String)  

(declare-const pass0 String)  

(declare-const rest String)  

(declare-const pass1 String)  

(assert (= (str.len buff) 15))  

(assert (= (str.len pass1) 1))  

(assert (or (< (str.len input) 15)  

     (= input (str.++ buff pass0 rest)))  

(assert (str.in.re buff  

                (re.+ (re.range "A" "Z"))))  

(assert (ite (= buff "PASSWORD")  

                  (= pass1 "Y")  

                  (= pass1 pass0))) 

(assert (not (= buff "PASSWORD")))  

(assert (= pass1 "Y"))  

Encode 

Theory of Strings : Applications 

• Security applications frequently rely on reasoning about string constraints  



• Signature SS : 

• Constants from a fixed finite alphabet A*  =(a, ab, cbc...) 

• String concatenation _·_ : String  String  String 

• Length terms len(_) : String  Int 

• Example input: 

 len(x)>len(y)  x·b=y·ab 

Theory of Strings + Length 



Theory of Strings + Length 

• Theoretical complexity of:  

• Word equation problem is in PSPACE  

• …ǁith leŶgth ĐoŶstƌaiŶts is OPEN 

• …ǁith eǆteŶded fuŶĐtioŶs, e.g. replace, is UNDECIDABLE 

• Instead, focus on: 

• Solver that is efficient in practice 

• Tightly integrated into SMT solver architecture 

• Conflict-Driven Clause Learning, Propagation, Composable with other theories 



• Existing approaches rely on reduction to bitvectors, e.g. HAMPI [Kiezun 2009] 

• Instead, we use an algebraic rule-based procedure for strings, which: 

• Infers equalities over strings based on length constraints 

• Models interaction of string + arithmetic solvers 

• Recognizes conflicts due to cardinality of alphabet 

… 

… 

Theory of Strings : Rule-Based Procedure 

[Liang/Reynolds/Tinelli/Barrett/Deters CAV14] 



Theory of Strings : Theoretical Results  

• For strings + length: 

• Procedure is: 

•  Refutation sound, even for strings of unbounded length 

•  Solution sound 

• (A version of) procedure is: 

•  Solution complete 

• WheŶ pƌoďleŵ is ͞“AT ,͟ it ǁill eǀeŶtuallǇ fiŶd a model (finite model finding) 

• When input is in acyclic form (variables only on 1 side of equalities), 

•  Refutation complete 

• WheŶ pƌoďleŵ is ͞UN“AT ,͟ it will derive a refutation 

[Liang/Reynolds/Tinelli/Barrett/Deters CAV14] 



• Tested 50,000 VCs in web security applications (Kudzu) 

• Implementation in CVC4 significantly improved state-of-the-art 

• In terms of precision, performance, and accuracy  

Theory of Strings : Experimental Results 

[Liang/Reynolds/Tinelli/Barrett/Deters CAV14] 



Extending the Theory of Strings 

• Theory of strings can be extended with support for: 

• Regular expressions 

• E.g. x(a(bb)*)* 
• Decision procedure for regular memberships + length [submitted, FroCos15] 

• Regular languages  

• E.g. x(y·b)* 
• Extended functions 

• E.g. substr, contains, replace, prefixOf, suffixOf, 
str.indexOf, str.to.int, int.to.str, strcmp 

• Occur frequently in practice 

• When signature includes these, problem is generally undecidable 



What about arbitrary quantified formulas? 

• What if constraints do not fit an existing theory/decision procedure? 

• Frame axioms in software verification 

• Universal safety properties 

• Axiomatization of unsupported theories 

• … 

• Want SMT solver to handle arbitrary first-order quantified formulas 

• E.g. x.f(x)>0, x.select(A,x)=2*x 



Approaches for Quantified Formulas in SMT 

•  Heuristic approaches 
• Incomplete, focus on finding unsatisfiable 

• Example: 
• E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007] 

•  Complete approaches 
• Target particular fragments of FOL 

• Examples: 
• Local theory extensions [Sofronie-Stokkermans 2005] 

• Array fragments [Bradley et al 2006, Alberti et al 2014] 

• Complete instantiation [Ge/de Moura 2009] 

• Finite model finding [Reynolds et al 2013] Focus of next part of the talk 



Finite Model Finding for 
Quantified Formulas in SMT 



SMT solver 

Ground solver 

SMT Solver + Quantified Formulas 

• SMT solvers support for (first-order) quantified formulas  

SAT 

Solver 

Theory 

Solver 

 for T 

DPLL(T) 
Quantifiers 

Module 



SMT Solver + Quantified Formulas 

• For input f(a)>0   x.f(x)<0 

•  Ground solver maintains a set of ground (variable-free) constraints : f(a)>0 

•  Quantifiers Module maintains a set of axioms :  x.f(x)<0  
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SMT Solver + Quantified Formulas 

• Ground solver checks T-satisfiability of current set of constraints 

SAT 

Solver 

Ground solver 

DPLL(T) 

f(a)>0 

Quantifiers 

Module 

 x.f(x)<0 

UNSAT 
SAT 

Theory 

Solver 

 for T 



SMT Solver + Quantified Formulas 

• Quantifiers Module adds instances of axioms 

• Goal : add iŶstaŶĐes uŶtil gƌouŶd solǀeƌ ĐaŶ aŶsǁeƌ ͞unsat͟ 

SAT 

Solver 

Ground solver 

DPLL(T) 

f(a)>0,f(a)<0,f(b)<0,… 

Quantifiers 
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SMT Solver + Quantified Formulas 

SAT 

Solver 

Ground solver 

DPLL(T) 

f(a)>0,f(a)<0,f(b)<0,… 

Quantifiers 

Module 

 x.f(x)<0 

UNSAT • Since f(a)>0 and f(a)<0 

Theory 

Solver 

 for T 



How SMT Solvers Handle Quantified Formulas 

• Generally, a sound but incomplete procedure 

• Difficult to answer SAT (when have we added enough instances of Q[x]?) 

SAT 

Solver 

Ground solver 

DPLL(T) 

G,Q[t1],Q[t2],… 

Quantifiers 

Module 

 x.Q[x] 

sat 

instances  

of Q 
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How SMT Solvers Handle Quantified Formulas 

SAT 

Solver 

Ground solver 

DPLL(T) 

G,Q[t1],Q[t2],… 

Quantifiers 

Module 

 x.Q[x] 

sat 

instances  

of Q 

SAT? 

 sat 

Theory 

Solver 

 for T 

UNSAT 

 Lack of ability to answer SAT is major weakness  



Finite Model Finding : Application 

• Deductive Verification Framework [Goel et al 2012] used at Intel Corporation for: 

• Architecture/Security Validation for Hardware Systems 

type resource  

const resource nullvar array(resource, bool) valid = mk_array[resource](false) 

var array(resource, int) count  

var array(process, resource) ref = mk_array[process](null) 

… 

module S = Set<type process> 

transition create (resource r) 

require (r != null, !valid[r]){ count[r] := 0; } 

… 

def bool prop = forall (process p) (ref[p] != null => valid[ref[p]]) 

def bool refs_non_zero = forall (process p) (ref[p] != null => count[ref[p]] > 0) 

… 

goal main = invariant prop assuming refs_non_zero 

goal rnz  = foƌŵula ;… && pƌop && … => refs_non_zero) 

Definitions 

Transition 

System 

Properties 

Verification Conditions 



Finite Model Finding : Application 
type resource  

const resource null 

type process 

var array(resource, bool) valid = mk_array[resource](false) 

var array(resource, int) count  

var array(process, resource) ref = mk_array[process](null) 

… 

module S = Set<type process> 

 

transition create (resource r) 

require (r != null, !valid[r]){ 

  valid[r] := true; 

  count[r] := 0; 

} 

… 

 

def bool prop = forall (process p) (ref[p] != null => valid[ref[p]]) 

def bool refs_non_zero = forall (process p) (ref[p] != null => 
count[ref[p]] > 0) 

… 
 

goal main = invariant prop assuming refs_non_zero 

... 

goal rnz  = foƌŵula ;… && pƌop && … => refs_non_zero) 

Verification  

Conditions 
…

.. 
VC1 

VCn 

goal main = invariant prop assuming refs_non_zero 

to “MT solǀeƌ… 

• Verification conditions translated into (multiple) SMT queries, requiring: 

•  Theoƌies ;aƌithŵetiĐ, ďit ǀeĐtoƌs, datatǇpes, …Ϳ 
•  Quantified formulas for stating universal properties over: 

• MeŵoƌǇ addƌesses, ƌesouƌĐes, pƌoĐesses, … 



Why are Models Important? 
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G xy:S.Q(x,y) 



Finite Model Finding in SMT 

    
Ground 

Solver 

Quantifiers 

Module 

G xy:S.Q(x,y) 

If S has finite interpretation,  

• use finite model finding  
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Finite Model Finding in SMT 

    
Ground 

Solver 

Quantifiers 

Module 

G xy:S.Q(x,y) 

S={a,b,c,d,e} 

Q(a,a) … Q(e,a) 
Q(a,b) . 

Q(a,c)  . 

Q(a,d)  . 

Q(a,e) … Q(e,e) 

 

• Reduction of quantified formulas to ground formulas 



Finite Model Finding in SMT 

    
Ground 

Solver 

Quantifiers 

Module 

G xy:S.Q(x,y) 

S={a,b,c,d,e} 

Q(a,a) … Q(e,a) 
Q(a,b) . 

Q(a,c)  . 

Q(a,d)  . 

Q(a,e) … Q(e,e) 

 

UNSAT SAT 

 Ability to answer SAT, assuming decision procedure for GQ(a,a)… 



Finite Model Finding in SMT 

    
Ground 

Solver 

Quantifiers 

Module 

G xy:S.Q(x,y) 

S={a,b,c,d,e} 

Q(a,a) … Q(e,a) 
Q(a,b) . 

Q(a,c)  . 

Q(a,d)  . 

Q(a,e) … Q(e,e) 

 

UNSAT SAT 

• Can be very large 



Finite Model Finding in SMT 

•Address large # instantiations by: 

1. Minimizing model sizes [Reynolds et al CAV13] 

• Find interpretation that minimizes the #elements in S 

2. Only add instantiations that refine model [Reynolds et al CADE13] 

• Model-based quantifier instantiation [Ge/deMoura CAV 2009] 

 



Finite Model Finding : Minimizing Model Sizes 

• Minimize model sizes using a theory solver for cardinality constraints 

|S| ≤ 1 |S| ≤ 1 

Search for  

models  

where |S|=1 

If none exist, 

search for  

models  

where |S|=2 

etc. 

|S| ≤ 2 |S| ≤ 2 

|S| ≤ 3 |S| ≤ 3 

[Reynolds/Tinelli/Goel/Krstic CAV13] 



Finite Model Finding : Minimizing Model Sizes 

• Minimize model sizes using a theory solver for cardinality constraints 

|S| ≤ 1 |S| ≤ 1 

Search for  

models  

where |S|=1 

If none exist, 

search for  

models  

where |S|=2 

etc. 

|S| ≤ 2 |S| ≤ 2 

|S| ≤ 3 |S| ≤ 3 

[Reynolds/Tinelli/Goel/Krstic CAV13] 

 If model exists where |S| ≤ 3, 

only need 3*3=9 instances  

instead of 5*5=25 instances 



Finite Model Finding : Model-Based Instantiation 

    
Ground 

Solver 

Quantifiers 

Module 

G xy:S.Q(x,y) 

S={a,b,c,d,e} 

{QQM,…} 

M 

• Construct candidate model M 
[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13] 



Finite Model Finding : Model-Based Instantiation 

    
Ground 

Solver 

Quantifiers 

Module 

G xy:S.Q(x,y) 

• Evaluate quantified formulas based on QM 

         y        

  QM a b c d e  

  a 

  b 

x c 

  d 

  e 

T 

F 

F 

S={a,b,c,d,e} 

{QQM,…} 

M 

[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13] 



Q(e,e) 

Q(b,a) 

Finite Model Finding : Model-Based Instantiation 

    
Ground 

Solver 

Quantifiers 

Module 

G xy:S.Q(x,y) 

• Only add instances that evaluate to F in QM 

 Significantly increased scalability 

         y        

  QM a b c d e  

  a 

  b 

x c 

  d 

  e 

T 

F 

F 

S={a,b,c,d,e} 

{QQM,…} 

M 

[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13] 

 



Results : Hardware Verification at Intel   

• Benchmarks taken from DVF tool at Intel 

• Improved state of the art for SAT for SMT problems with  
• Can be competitive for UNSAT as well 

[Reynolds/Tinelli/Goel/Krstic/Barrett/Deters CADE13] 

cvc4 : 

• f : finite model finding 



Results : CASC Competition 

• Competitive with existing approaches for model finding in ATP community  

• CVC4 placed 3rd in non-theorems division of CASC 24 
• Is competitive with state-of-the-art ATP systems 



Ongoing work/applications 

• SMT solvers with support for  are doing increasingly complex tasks: 

• As an efficient first order theorem prover  
• [Reynolds/Tinelli/de Moura FMCAD 2014] 

• As an inductive reasoner for program verification 
• [Reynolds/Kuncak VMCAI 2015] 

• As a tool for syntax-guided software synthesis  
• [Reynolds/Deters/Kuncak/Tinelli/Barrett CAV 2015] 

• In development: As a program analyzer 
• Idea: built-in support for (recursive) function definitions in SMT 

(define-fun-rec len (x List) Int (ite (is-cons x) (1 + (len (tail x))) 0)) 

len x. len(x)= (ite (is-cons x) (1 + (len (tail x))) 0) 



Conclusions 

•  Satisfiability Modulo Theories (SMT) is 

•  Mature technology, both in theory and practice 

•  …but is still evolving: 

• Improved approaches for (combinations) of theories 

• Solvers for new theories: 

• Floating Points, Sets, (Co)datatypes, Extended Strings + Length, Regular Languages 

• … 

• Specialized approaches for first-order quantified formulas 



Conclusions 
char buff[15], pass; 

cout << "Enter the password :"; 

gets(buff);  

if (regex_match(buff, std::regex("([A-Z]+)") )) { 

    if(strcmp(buff, “PASSWORD")) { 

        cout << "Wrong Password"; 

    } else {  

        cout << "Correct Password"; 

        pass = 'Y';  

    }  

    if(pass == 'Y')  

        /* Grant the root permission*/  

}  

+ 

SMT 

solver 

Does 

Property P 

hold for my 

program? 

YES NO 

Property P Program 

Increased complexity 
• Expressive theories 

• Quantified Formulas 

 Increased support for applications 

Increased ability 
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•Questions? 


