
Model Finding for Recursive

Functions in SMT
Andrew Reynolds

Jasmin Christian Blanchette

Simon Cruanes

Cesare Tinelli

IJCAR June 30, 2016

Recursive Functions

• Recursive function definitions:

 f(x:Int) := if x≤0 then 0 else f(x-1)+x
• Are useful in applications:

• Software verification

• Theorem Proving

• Often, interested in finding models for

• Conjectures (k.)P[f,k] in the presence of recursive functions f

• This poses a challenge to current Satisfiability Modulo Theories (SMT) solvers

Recursive Functions

• Recursive function definitions:

 f(x:Int) := if x≤0 then 0 else f(x-1)+x

• Can be expressed in SMT as quantified formulas (with theories):

 x:Int. f(x)=ite(x≤0,0,f(x-1)+x)

• SMT solver must handle inputs of the form:

 (k.)P[f1…fn,k]

x.f1(x)=t1
…

x.fn(x)=tn

Set of function definitions Conjecture

Outline

• In this talk:

• Existing techniques for quantified formulas in SMT

• Limited in their ability to find models when recursive functions are present

• A satisfiability-preserving translation A for function definitions

• Allows us to use existing techniques for model finding

• Implementation of translation A

• As a preprocessor in SMT solver CVC4

• In model finder for HOL Nunchaku

• Evaluation on benchmarks from theorem proving/verification

Existing Techniques for Quantified Formulas in SMT

• HeuƌistiĐ TeĐhŶiƋues foƌ ͞unsat͟:
• E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

• Liŵited TeĐhŶiƋues foƌ ͞sat͟:
• Local theory extensions [Sofronie-Stokkermans 2005]

• Array fragments [Bradley et al 2006, Alberti et al 2014]

• Complete Instantiation [Ge/de Moura 2009]

• Implemented in Z3

• Finite Model Finding [Reynolds et al 2013]

• Implemented in CVC4

Existing Techniques for Quantified Formulas in SMT

• HeuƌistiĐ TeĐhŶiƋues foƌ ͞unsat͟:
• E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

• Liŵited TeĐhŶiƋues foƌ ͞sat͟:
• Local theory extensions [Sofronie-Stokkermans 2005]

• Array fragments [Bradley et al 2006, Alberti et al 2014]

• Complete Instantiation [Ge/de Moura 2009]

• Implemented in Z3

• Finite Model Finding [Reynolds et al 2013]

• Implemented in CVC4

Focus of next slides

Complete Instantiation in Z3

• Complete method for  in essentially uninterpreted fragment

x:Int.(f(x)=g(x)+5)  f(a)=g(b)

All occurrences of x are children of UF

Complete Instantiation in Z3

x:Int.(f(x)=g(x)+5)  f(a)=g(b)

R(f1)=R(g1)=R(x),aR(f1),bR(g1)
 R(x)={a,b}

Relevant domain R(x) of variable x is {a,b}

Complete Instantiation in Z3

x:Int.(f(x)=g(x)+5)  f(a)=g(b)

f(a)=g(a)+5  f(b)=g(b)+5  f(a)=g(b)

equisatisfiable to

SAT

R(f1)=R(g1)=R(x),aR(f1),bR(g1)
 R(x)={a,b}

Finite Model Finding in CVC4

• Finite Model-complete method for finite/uninterpreted 

xy:U.(x≠yf(x)≠f(y))  a≠b
All variables have finite/uninterpreted sort U

Finite Model Finding in CVC4

xy:U.(x≠yf(x)≠f(y))  a≠b

M(U) := {a,b}

Model interprets U as the set M(U)={a,b}

Finite Model Finding in CVC4

xy:U.(x≠yf(x)≠f(y))  a≠b

M(U) := {a,b} equisatisfiable to

SAT

 a≠b
a≠af(a)≠f(a)
a≠bf(a)≠f(b)
b≠af(b)≠f(a)
b≠bf(b)≠f(b)

…Both fail oŶ ŵost Recursive FuŶctioŶ DefiŶitioŶs!

• Example:

x:Int.(f(x)=ite(x≤0,0,f(x-1)+x))  f(k)>100

…Both fail oŶ ŵost Recursive FuŶctioŶ DefiŶitioŶs!

• Example:

• Complete instantiation:

• Fails, since body has subterm f(x-1)+x with unshielded variable x

• R(x)={k,k-1,k-2,k-3,…}

x:Int.(f(x)=ite(x≤0,0,f(x-1)+x))  f(k)>100

…Both fail oŶ ŵost Recursive FuŶctioŶ DefiŶitioŶs!

• Example:

• Complete instantiation:

• Fails, since body has subterm f(x-1)+x with unshielded variable x

• R(x)={k,k-1,k-2,k-3,…}
• Finite Model Finding:

• Fails, since quantification is over infinite type Int

• M(Int)={…, -3, -2, -1, 0, 1, 2, 3, …}

x:Int.(f(x)=ite(x≤0,0,f(x-1)+x))  f(k)>100

Running example

• Example:

• f returns the sum of all positive integers up to x, when x is non-negative

• f(k) is greater than 100 for some k

• Formula is satisfiable: interpret k14

x:Int.(f(x)=ite(x≤0,0,f(x-1)+x)) 
f(k)>100

Neither Z3 or CVC4 ĐaŶ estaďlish ͞sat͟ foƌ this ďeŶĐhŵaƌk

Can we make the problem easier?

• What if we assume function definitions in F are well-behaved?

• E.g. we know that f is terminating

 Then, we may restrict  to subset of the domain of function definitions

 AND

 use existing techniques for model finding in Z3, CVC4 on A(F)

x:Int.(f(x)=ite(x≤0,0,f(x-1)+x)) 
f(k)>100 F

Can we make the problem easier?

• What if we assume function definitions in F are well-behaved?

• E.g. we know that f is terminating

 Then, we may restrict  to subset of the domain of function definitions

 AND

 Use existing techniques for model finding in Z3, CVC4 on A(F)

x:Int.(f(x)=ite(x≤0,0,f(x-1)+x)) 
f(k)>100 F

Can we make the problem easier?

• What if we assume function definitions in F are well-behaved?

• E.g. we know that f is terminating

 Then, we may restrict  to subset of the domain of function definitions

 aŶd….
 Use existing techniques for model finding in Z3, CVC4 on A(F)

x:Int.(f(x)=ite(x≤0,0,f(x-1)+x)) 
f(k)>100 F

Translation

“A”

Translation A

x:Int.ite(x≤0,
 f(x)=0,

 f(x)=f(x-1)+x))
f(k)>100

Translation A: Part 1

x:a.ite(g(x)≤0,
 f(g(x))=0,
 f(g(x))=f(g(x)-1)+g(x))
f(k)>100

• Introduce uninterpreted sort a
• Conceptually, a represents the set of relevant arguments of f

• Restrict the domain of function definition quantification to a

• Introduce uninterpreted function g : a Int
• Maps between abstract and concrete domains

Translation A: Part 2

• Add appropriate constraints regarding a, g
• Each relevant concrete value must be mapped to by some abstract value

x:a.ite(g(x)≤0,
 f(g(x))=0,
 f(g(x))=f(g(x)-1)+g(x)(z:a.g(z)=g(x)-1))
f(k)>100  (z:a.g(z)=k)

Translation A

•  is essentially uninterpreted

x:a.ite(g(x)≤0,
 f(g(x))=0,
 f(g(x))=f(g(x)-1)+g(x)(z:a.g(z)=g(x)-1))
f(k)>100  (z:a.g(z)=k)

Translation A

•  is essentially uninterpreted, and over finite/uninterpreted sorts

x:a.ite(g(x)≤0,
 f(g(x))=0,
 f(g(x))=f(g(x)-1)+g(x)(z:a.g(z)=g(x)-1))
f(k)>100  (z:a.g(z)=k)

Translation A

•  is essentially uninterpreted, and over finite/uninterpreted sorts

Both Z3 (complete instantiation) and CVC4 (finite model finding)

 find model for this benchmark in <.1 second

x:a.ite(g(x)≤0,
 f(g(x))=0,
 f(g(x))=f(g(x)-1)+g(x)(z:a.g(z)=g(x)-1))
f(k)>100  (z:a.g(z)=k)

Translation A

• Formula is satisfied by a model M where:

• M (k) := 14

• M (f) := l x.ite(x=14,105,ite(x=13,91,… ite(x=1,1,0)…))

x:a.ite(g(x)≤0,
 f(g(x))=0,
 f(g(x))=f(g(x)-1)+g(x)(z:a.g(z)=g(x)-1))
f(k)>100  (z:a.g(z)=k)

Translation A

• Formula is satisfied by a model M where:

• M (k) := 14

• M (f) := l x.ite(x=14,105,ite(x=13,91,… ite(x=1,1,0)…))

x:a.ite(g(x)≤0,
 f(g(x))=0,
 f(g(x))=f(g(x)-1)+g(x)(z:a.g(z)=g(x)-1))
f(k)>100  (z:a.g(z)=k)

M is correct only for relevant inputs of original formula, and not e.g. f(15)=0

Translation A : Properties

• Translation A is:

• Refutation sound

• When A(F) is unsatisfiable, F is unsatisfiable

• Model sound, when function definitions are admissible

• When A(F) is satisfiable, F is satisfiable

Translation A : Properties

• Translation A is:

• Refutation sound

• When A(F) is unsatisfiable, F is unsatisfiable

• Model sound, when function definitions are admissible

• When A(F) is satisfiable, F is satisfiable

Focus of next slides

Admissible Function Definitions

• Intuition:

• If we evaluate f-applications in conjecture until a fixed point is reached:

f(k)100
x.f(x)=t[x]

Y

Admissible Function Definitions

• Intuition:

• If we evaluate f-applications in conjecture until a fixed point is reached:

f(k)100
x.f(x)=t[x]

f(k)100

x.f(x)=t[x]

Admissible Function Definitions

• Intuition:

• If we evaluate f-applications in conjecture until a fixed point is reached:

f(k)100
x.f(x)=t[x]

f(k)100
f(k)=ite(k<0,0,f(k-1)+k)

x.f(x)=t[x]

Admissible Function Definitions

• Intuition:

• If we evaluate f-applications in conjecture until a fixed point is reached:

f(k)100
x.f(x)=t[x]

f(k)100
f(k)=ite(k<0,0,f(k-1)+k)

f(k-1)=ite(k<0,0,f(k-2)+k)

x.f(x)=t[x]

Admissible Function Definitions

• Intuition:

• If we evaluate f-applications in conjecture until a fixed point is reached:

f(k)100
x.f(x)=t[x]

f(k)100
f(k)=ite(k<0,0,f(k-1)+k)

f(k-1)=ite(k<0,0,f(k-2)+k)

…
f(k-14)=ite(k<0,0,f(k-15)+k)

x.f(x)=t[x]

Admissible Function Definitions

• Intuition:

• If we evaluate f-applications in conjecture until a fixed point is reached:

• Definition of f is admissible if:

• Y* has a model  Y* x.f(x)=t[x] has a model

f(k)100 f(k)100
f(k)=ite(k<0,0,f(k-1)+k)

f(k-1)=ite(k<0,0,f(k-2)+k)

…
f(k-14)=ite(k<0,0,f(k-15)+k)

Y*

x.f(x)=t[x] x.f(x)=t[x]

Admissible Function Definitions

• Intuition:

• If we evaluate f-applications in conjecture until a fixed point is reached:

• Definition of f is admissible if:

• Y* has a model  Y* x.f(x)=t[x] has a model

f(k)100 f(k)100
f(k)=ite(k<0,0,f(k-1)+k)

f(k-1)=ite(k<0,0,f(k-2)+k)

…
f(k-14)=ite(k<0,0,f(k-15)+k)

Y*

x.f(x)=t[x] x.f(x)=t[x]

Admissible Function Definitions

• Given a function definition Dx.f(x)=t[x]
• A (ground) formula Y* is closed under function expansion w.r.t D if:

Y* ╞ f(k)=t[k]
for all f-terms f(k) occurring in Y*

• D is admissible if:

Y* has a model  Y*  D has a model

for every Y* that is closed under function expansion

• Thus, to find a model M for D  f, suffices to:
Find Y s.t:
1. Y╞ f

2. Y is closed under function expansion

3. Y has a model M

Admissible Function Definitions

• Given a function definition Dx.f(x)=t[x]
• A (ground) formula Y* is closed under function expansion w.r.t D if:

Y* ╞ f(k)=t[k]
for all f-terms f(k) occurring in Y*

• D is admissible if:

Y* has a model  Y*  D has a model

for every Y* that is closed under function expansion

• Thus, to establish D  Y has a model, suffices to:
Find Y* s.t:
1. Y* ╞ Y

2. Y* is closed under function expansion

3. Y* has a model

Admissible Function Definitions

• Given a function definition Dx.f(x)=t[x]
• A (ground) formula Y* is closed under function expansion w.r.t D if:

Y* ╞ f(k)=t[k]
for all f-terms f(k) occurring in Y*

• D is admissible if:

Y* has a model  Y*  D has a model

for every Y* that is closed under function expansion

• Thus, to establish D  Y has a model, suffices to:
Find Y* s.t:
1. Y* ╞ Y

2. Y* is closed under function expansion

3. Y* has a modelon expansion

The SMT solver can do this

Admissible Function Definitions

• Examples of admissible definitions:

• Terminating functions: x.f(x)=ite(x≤0,0,f(x-1)+x)

• …f is well-founded (terminating)

• Some non-terminating, tail recursive: x.f(x)=f(x-1)+1
• …aŶd pƌoduĐtive corecursive functions

 Admissible

Terminating

Inadmissible Function Definitions

• Examples of inadmissible definitions:

• Inconsistent definitions: x.f(x)=f(x)+1
• …Ŷo ŵodel foƌ x.f(x)=f(x)+1

• Others:{x.f(x)=f(x)+g(x), x.g(x)=g(x)}
• …soŵe gƌouŶd foƌŵulas aƌe iŶĐoŶsisteŶt wrt these definitions

• Such cases are subtle, but rarely occur in practice

Translation as Preprocessor in CVC4

• CVC4 supports SMT LIB version 2.5 command:

…
(define-fun-rec f ((x Int)) Int

 (ite (<= x 0) 0 (+ (f (- x 1)) x)))

(assert (> (f k) 100))

(check-sat)

Translation as Preprocessor in CVC4

• Input (without A) is equivalent to:

…
(assert (forall ((x Int))

 (= (f x) (ite (<= x 0) 0 (+ (f (- x 1)) x))))

(assert (> (f k) 100))

(check-sat)

Translation as Preprocessor in CVC4

• Input (with A) is equivalent to:

 EŶaďled as pƌepƌoĐessoƌ ďy ĐoŵŵaŶd liŶe paƌaŵeteƌ ͞--fmf-fun͟

…
(declare-sort a 0)

(declare-fun g (a) Int)

(assert (forall ((x a))

 (ite (<= (g x) 0)

 (= (f (g x)) 0)

 (and (= (f (g x)) (+ (f (- (g x) 1)) (g x))

 (exists ((z a)) (= (g z) (- (g x) 1)))))))

(assert (and (> (f k) 100) (exists ((z a)) (= (g z) k)))

(check-sat)

Translation as Preprocessor in CVC4

• Model (with A) found is:

• Gives model that is correct for relevant inputs of function f

(model

(define-fun f (($x1 Int)) Int

 (ite (= $x1 14) 105 (ite (= $x1 13) 91 (ite (= $x1 12) 78

 (ite (= $x1 11) 66 (ite (= $x1 10) 55 (ite (= $x1 4) 10

 (ite (= $x1 9) 45 (ite (= $x1 8) 36 (ite (= $x1 7) 28

 (ite (= $x1 6) 21 (ite (= $x1 3) 6 (ite (= $x1 5) 15

 (ite (= $x1 2) 3 (ite (= $x1 1) 1 0)))))))))))))))

(define-fun k () Int 14))

CVC4: Optimizations for Finite Model Finding

• Considered optimizations specialized to recursive functions:

• Allow sorts of cardinality 0

• Infer the monotonicity of sorts

• Compute minimal satisfying assignments based on relevancy

Nunchaku: counterexamples for HOL

Nunchaku

(higher-order logic)

Isabelle/HOL

HOL4

HOL Light

(dependent type theory)

Coq

Lean

(set theory)

TLA

Counterexamples

[HaTT16]

Nunchaku

Nunchaku: counterexamples for HOL
(higher order logic, dependent type theory, set theory)

Counterexamples

Nunchaku

Nunchaku: counterexamples for HOL

Counterexamples

Monomorphize/Specialize/Polarize

Encode (co)inductive predicates

Encode (co)recursive functions

Encode higher-order functions

(SMTLIBv2 + datatypes)

CVC4

Encode (co)datatyes

Encode sorts (TPTP TFF)

Vampire
(TPTP FOF)

iProver,Paradox

(higher order logic, dependent type theory, set theory)

Nunchaku

Nunchaku: counterexamples for HOL

Counterexamples

Monomorphize/Specialize/Polarize

Encode (co)inductive predicates

Encode (co)recursive functions

Encode higher-order functions

(SMTLIBv2 + datatypes)

CVC4

Encode (co)datatyes

Encode sorts (TPTP TFF)

Vampire
(TPTP FOF)

iProver,Paradox

In this paper:
(higher order logic, dependent type theory, set theory)

Evaluation

• Considered three sets of benchmarks:
• Ip

• Challenge problems for inductive theorem provers
• Datatypes + recursive functions

• Leon
• Verification conditions from Leon verification tool (EPFL)
• Many theories: datatypes + recursive functions + bitvectors + arrays + sets + arithmetic

• Nun-Mut
• Mutated form of Isabelle conjectures of interest to Nunchaku project
• (Co)datatypes + (co)recursive functions

• Consider mutated forms of the first two sets (Ip-mut, Leon-mut)
• Obtained by swapping subterms in conjectures

• All benchmarks considered with/without translation A

Evaluation : solved SAT benchmarks

• Translation increases ability of SMT solvers for finding models:
• Z3: 14  148

• CVC4f: 8  550

• Finds counterexamples to verification conditions of interest in Leon

79

166

213

427

357

885

Evaluation : solved UNSAT benchmarks

• Translation also improves performance on UNSAT benchmarks:

• Z3 : 251  269

• CVC4 : 263  264

• CVC4f : 91  270

79

166

213

427

357

885

Summary

• Translation A:

• Increases ability of SMT solvers for model finding recursive functions
• Complete instantiation in Z3

• Finite Model Finding in CVC4

• Is model-sound for admissible function definitions

• Implemented:

• As a preprocessor in CVC4 ͞--fmf-fun͟
• In Nunchaku, a counterexample generator for higher-order logic

Future Work

• Use translation in Nunchaku

• Support of multiple backends: CVC4, Paradox, Vampire?

• Improved support for finite model finding in SMT

• Currently the bottlebeck

• Identify additional sufficient conditions for admissibility

• E.g. productive corecursive functions

Thanks!

• CVC4:

• Available at http://cvc4.cs.nyu.edu/downloads/

• To use translation A as a preprocessor:

• Use ĐoŵŵaŶd liŶe optioŶ ͞--fmf-fun͟

• Nunchaku

• Available at https://github.com/nunchaku-inria/

