Model Finding for Recursive
Functions in SMT

Andrew Reynolds
Jasmin Christian Blanchette
Simon Cruanes
Cesare Tinelli
IJCAR June 30, 2016

Recursive Functions

e Recursive function definitions:
f(x:Int) := 1f x20 then 0 else f(x-1)+x

* Are useful in applications:
* Software verification
* Theorem Proving

e Often, interested in finding models for

e Conjectures (dk.)P[£f, k] in the presence of recursive functions £
* This poses a challenge to current Satisfiability Modulo Theories (SMT) solvers

Recursive Functions

* Recursive function definitions:
f(x:Int) := 1if x20 then 0 else f(x-1)+x
e Can be expressed in SMT as quantified formulas (with theories):
Vx:Int. f(x)=ite (x20,0, f(x-1)+x)
* SMT solver must handle inputs of the form:
Vx.f, (x)=t,
A (dk.)P[Lf,..£ , k]
Vx.f (x)=t

n

Set of function definitions Conjecture

Outline

* In this talk:

e Existing techniques for quantified formulas in SMT
* Limited in their ability to find models when recursive functions are present

* A satisfiability-preserving translation A for function definitions
* Allows us to use existing techniques for model finding

* Implementation of translation A

* As a preprocessor in SMT solver CVC4
* In model finder for HOL Nunchaku

e Evaluation on benchmarks from theorem proving/verification

Existing Techniques for Quantified Formulas in SMT

* Heuristic Techniques for “unsat”:
* E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

* Limited Techniques for “sat”:
 Local theory extensions [Sofronie-Stokkermans 2005]
* Array fragments [Bradley et al 2006, Alberti et al 2014]
 Complete Instantiation [Ge/de Moura 2009]

* Implemented in Z3

* Finite Model Finding [Reynolds et al 2013]
* Implemented in CVC4

Existing Techniques for Quantified Formulas in SMT

* Heuristic Techniques for “unsat”:
* E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

* Limited Techniques for “sat”:
 Local theory extensions [Sofronie-Stokkermans 2005]
* Array fragments [Bradley et al 2006, Alberti et al 2014]
* Complete Instantiation [Ge/de Moura 2009]

* Implemented in Z3

* Finite Model Finding [Reynolds et al 2013]
* Implemented in CVC4

Focus of next slides

Complete Instantiation in Z3

* Complete method for V in essentially uninterpreted fragment

Vx:Int. (f(x)=g(x)+5) A f(a)=qg(b)

All occurrences of x are children of UF

Complete Instantiation in Z3

Vx:Int. (f(x)=g(x)+5) A f(a)=qg(b)

R(f;)=R(g;)=R(x),aeR(f;),beR(g;)
. R(x)={a,b}

Relevant domain R (x) of variable xis {a, b}

Complete Instantiation in Z3

Vx:Int. (f(x)=g(x)+5) A f(a)=qg(b)

R(f,)=R(g;)=R(x),a€eR(f;),beR(g;)
equisatisfiable to S R(x)={a,b}

f(a)=g(a)+to A £(b)=g((b)+5 A f£(a)=g(b)

}

Finite Model Finding in CVC4

* Finite Model-complete method for finite/uninterpreted V¥
Vxy:U. (x#y=f (x)#f (y)) A a#b

All variables have finite/uninterpreted sort U

Finite Model Finding in CVC4

Vxy:U. (x#y=f (x)#f (y)) A a#b

M(U) := {a,b}

Model interprets Uas thesetM (U) ={a, b}

Finite Model Finding in CVC4

Vxy:U. (x#2y=TF (x) #f (y))

equisatisfiable to I

aFra—=>f
aFb—=f
b#a=f
b#b=f

A a¥b

...Both fail on most Recursive Function Definitions!

* Example:

Vx:Int. (f(x)=ite(x20,0,f(x-1)+x)) A f£(k)>100

...Both fail on most Recursive Function Definitions!

* Example:

Vx:Int. (f(x)=1te(x£0,0,f(x-1)+x)) A f£(k)>100

 Complete instantiation:

* Fails, since body has subterm £ (x-1) +x with unshielded variable x
e R(x)={k,k-1,k-2,k-3,..}

...Both fail on most Recursive Function Definitions!

* Example:

Vx:Int. (f(x)=ite(x20,0,f(x-1)+x)) A f£(k)>100

 Complete instantiation:
* Fails, since body has subterm £ (x-1) +x with unshielded variable x
* R(x)={k,k-1,k-2,k-3,..}
* Finite Model Finding:

* Fails, since quantification is over infinite type Int
e M(Int)={..,, -3, -2, -1, 0, 1, 2, 3, ..}

Running example

Vx:Int. (f(x)=1ite (x£20,0,f(x-1)+x)) A
f(k)>100

* Example:
 f returns the sum of all positive integers up to x, when x is non-negative
e f (k) is greater than 100 for some k

* Formula is satisfiable: interpret k>14

—Neither Z3 or CVC4 can establish “sat” for this benchmark

Can we make the problem easier?
Vx:Int. (f(x)=1ite (x20,0,f(x-1)+x)) A
£(k)>100 G

e What if we assume function definitions in ® are well-behaved?
e E.g. we know that £ is terminating

Can we make the problem easier?

Vx:Int. (f(x)=1ite (x20,0,f(x-1)+x)) A
f(k)>100 %

e What if we assume function definitions in ® are well-behaved?
e E.g. we know that £ is terminating

—> Then, we may restrict V to subset of the domain of function definitions

Can we make the problem easier?

Vx:Int. (f(x)=1ite (x20,0,f(x-1)+x)) A
f(k)>100 D

 What if we assume function definitions in ® are well-behaved?

* E.g. we know that £ is terminating

—> Then, we may restrict V to subset of the domain of function definitions Translation

and.... “AY
Use existing techniques for model finding in Z3, CVC4 on A (D)

Translation A

Translation A: Part 1

Vx:o.ite (y(x) =0
£ (y(x))
£ (y(x))

4

0,
f(y(x)-1)+y(x))A

f(k)>100

* Introduce uninterpreted sort a

e Conceptually, a represents the set of relevant arguments of £
e Restrict the domain of function definition quantification to a

* Introduce uninterpreted functiony: o —-Int
* Maps between abstract and concrete domains

Translation A: Part 2

Vx:o.ite (y(x) =0
£ (y(x))
)

0
f(y(x))=f(y(x)-1)+y(x)A(dz:a.y(z)=y(x)-1))A
f(k)>100 A (dz:a.y(z)=k)

4

* Add appropriate constraints regarding o, y
* Each relevant concrete value must be mapped to by some abstract value

Translation A

x)-1)+y(x)A(dz:a.y(z) =y(x)-1)) A
) =k)

* VYV is essentially uninterpreted

Translation A

x)-1)+y(x)A(dz:a.y(z) =y(x)-1)) A
) =k)

 V is essentially uninterpreted, and over finite/uninterpreted sorts

Translation A

V(%) -1) +y(x)A(dz:o.y(z) =y(x)-1)) A
) =k)

* V is essentially uninterpreted, and over finite/uninterpreted sorts
—>Both Z3 (complete instantiation) and CVC4 (finite model finding)
find model for this benchmark in <.1 second

Translation A

V(x)-1) +y(x)A(dz:o.y(z) =y(x)-1)) A
) =k)

* Formula is satisfied by a model M where:
e M(k):=14
e M(f):=Ax.1ite(x=14,105,1ite(x=13,91,.. 1ite(x=1,1,0)..))

Translation A

V(x)-1) +y(x)A(dz:o.y(z) =y(x)-1)) A
) =k)

* Formula is satisfied by a model M where:
e M(k):=14
e M(f) =Ax.1ite(x=14,105,1ite(x=13,91,.. 1ite(x=1,1,0)..))

=M s correct only for relevant inputs of original formula, and note.qg. £ (15) =0

Translation A : Properties

* Translation A is:
e Refutation sound
e When A (D) is unsatisfiable, @ is unsatisfiable

* Model sound, when function definitions are admissible
e When A (D) is satisfiable, @ is satisfiable

Translation A : Properties

* Translation A is:
e Refutation sound
e When A (D) is unsatisfiable, @ is unsatisfiable

* Model sound, when function definitions are admissible
e When A (D) is satisfiable, @ is satisfiable

Focus of next slides

Admissible Function Definitions

* |ntuition:
* |f we evaluate f-applications in conjecture until a fixed point is reached:

Vx.f (x)=t[x]
) f(k)=2100

Admissible Function Definitions

* |ntuition:
* |f we evaluate f-applications in conjecture until a fixed point is reached:

Vx.f (x)=t[x] Vx.f (x)=t[x]
f(k)=2100 f (k)>100

Admissible Function Definitions

* |ntuition:
* |f we evaluate f-applications in conjecture until a fixed point is reached:

Vx.f (x)=t[x] Vx.f (x)=t[x]

f(k)=100 f(k)>100
f(k)=1ite (k<0,0, f (k-1) +k)

Admissible Function Definitions

* |ntuition:
* |f we evaluate f-applications in conjecture until a fixed point is reached:

Vx.f (x)=t[x] Vx.f (x)=t[x]

f(k)=100 £ (k)=100
f(k)=ite (k<0,0, £ (k-1)+k)

f(k-1)=1te (k<0,0, £(k-2) +k)

Admissible Function Definitions

* |ntuition:
* |f we evaluate f-applications in conjecture until a fixed point is reached:

Vx.f (x)=t[x] Vx.f (x)=t[x]
f(k)=2100 f (k)>100

f(k)=1te (k<0,0,f(k-1)+k)
f(k-1)=1te (k<0,0,£(k-2) +k)

f(k-14)=1te (k<0,0, £(k-15) +k)

Admissible Function Definitions

* |ntuition:
* |f we evaluate f-applications in conjecture until a fixed point is reached:

Vx.f(x)=t[x] Vx.f(x)=t[x]
f(k)=100 £(k)2100
f(k)=ite (k<0,0,f(k-1)+k)
P+ f(k-1)=ite (k<0,0,f (k-2)+k)

f(k-14)=1ite(k<0,0,f(k-15) +k)

Admissible Function Definitions

* |ntuition:
* |f we evaluate f-applications in conjecture until a fixed point is reached:

Vx.f(x)=t[x] Vx.f(x)=t[x]
f(k)=100 £(k)2100
f(k)=ite (k<0,0,f(k-1)+k)
g+ f(k-1)=ite (k<0,0,f (k-2)+k)

f(k-14)=1ite(k<0,0,f(k-15) +k)

e Definition of £ is admissible if:
e Yhasamodel & WY NVx.f (x)=t[x] has a model

Admissible Function Definitions

e Given a function definition A&Vx. f (x)=t [x]

* A (ground) formula W¥* is closed under function expansion w.r.t A if:
¥+ Ef (k) =t [k]
for all £-terms £ (k) occurring in \V*

 Ais admissible if:

YY" has a model < W* A A has a model
for every W* that is closed under function expansion

Admissible Function Definitions

e Given a function definition A&Vx. f (x)=t [x]

* A (ground) formula W¥* is closed under function expansion w.r.t A if:
¥+ Ef (k) =t [k]
for all £-terms £ (k) occurring in \V*

 Ais admissible if:

YY" has a model < W* A A has a model
for every W* that is closed under function expansion

* Thus, to establish A A Y has a model, suffices to:
Find W* s.t:
. P EVY
2. W is closed under function expansion
3. Y has amodel

Admissible Function Definitions

e Given a function definition A&Vx. f (x)=t [x]

* A (ground) formula W¥* is closed under function expansion w.r.t A if:
¥+ Ef (k) =t [k]
for all £-terms £ (k) occurring in \V*

 Ais admissible if:

YY" has a model < W* A A has a model
for every W* that is closed under function expansion

* Thus, to establish A A ¥ has a model, suffices to:
Find W* s.t:
. P EVY
2. W is closed under function expansion
3. Y has amodel

The SMT solver can do this

Admissible Function Definitions

* Examples of admissible definitions:
* Terminating functions: Vx. f (x)=1ite (x=0,0, £ (x-1) +x)
 ..fis well-founded (terminating)
* Some non-terminating, tail recursive: Vx. f (x)=£f (x-1) +1
e ...and productive corecursive functions

Admissible

Inadmissible Function Definitions

* Examples of inadmissible definitions:
* Inconsistent definitions: Vx. f (x)=f (x) +1
e ...nomodel for Vx.f (x)=f (x)+1
e Others: {Vx.f (x)=f(x)+g(x), VX.g(x)=g(x)}
e ...some ground formulas are inconsistent wrt these definitions
* Such cases are subtle, but rarely occur in practice

Translation as Preprocessor in CVC4

* CVC4 supports SMT LIB version 2.5 command:

(define-fun-rec £ ((x Int)) Int

(ite (<= x 0) 0 (+ (£ (- x 1)) x)))
(assert (> (f k) 100))
(check—-sat)

Translation as Preprocessor in CVC4

* Input (without 2) is equivalent to:

(assert (forall ((x Int))

(= (f x) (1te (<= x 0) O (+ (£ (- x 1))
(assert (> (f k) 100))
(check—-sat)

Translation as Preprocessor in CVC4

 Input (with 2) is equivalent to:

(declare-sort a 0)
(declare-fun g (a) Int
)

)
(assert (forall ((x a))
(1te (<= (g x) 0)
(= (£ (g x)) 0)
(and (= (£ (g x)) (+ (£ (= (g x) 1)) (g x))
(exists ((z a)) (= (g z) (= (g x) 1)))))))
(assert (and (> (£ k) 100) (exists ((z a)) (= (g z) k)))

(check-sat)

—> Enabled as preprocessor by command line parameter “--fmf-fun”

Translation as Preprocessor in CVC4

 Model (with 2) found is:

(model

(define-fun £ ((Sx1 Int)) Int
(ite (= $x1 14) 105 (ite (= S$x1 13) 91 (ite (= Sx1 12) 78
(ite (= $x1 11) o606 (ite (= $x1 10) 55 (ite (= $x1 4) 10
(ite (= $x1 9) 45 (ite (= $Sx1 8) 36 (ite (= Sx1 7) 28
(ite (= $x1 ©6) 21 (ite (= $x1 3) 6 (ite (= $x1 5) 15
(ite (= Sx1 2) 3 (ite (= 5Sx1 1) 1 .0)))))))))))))))

(

(define—-fun k () Int 14))

* Gives model that is correct for relevant inputs of function £

CVC4: Optimizations for Finite Model Finding

* Considered optimizations specialized to recursive functions:
* Allow sorts of cardinality O
* Infer the monotonicity of sorts
 Compute minimal satisfying assignments based on relevancy

Nunchaku: counterexamples for HOL

(higher-order logic) (dependent type theory) (set theory)
Isabelle/HOL Coq TLA
HOL4 Lean

HOLLmht
HaTT16

Nunchaku: counterexamples for HOL

(higher order logic, dependent type theory, set theory)

Counterexamples

Nunchaku: counterexamples for HOL

(higher order logic, dependent type theory, set theory)

|

Monomorphize/Specialize/Polarize

Encode (co)inductive predicates
Encode (co)recursive functions

Encode higher-order functions

(SMTLIBv2 + datatypes)
cvca

Encode (co)datatyes

(TPTP TFF) Encode sorts
Vampire

P (TPTP FOF)

l iProver,Paradox

/

Counterexamples

Nunchaku: counterexamples for HOL

(higher order logic, dependent type theory, set theory)

In this paper: l

Monomorphize/Specialize/Polarize

Encode (co)inductive predicates
Encode (co)recursive functions

Encode higher-order functions

(SMTLIBv2 + datatypes) Encode (co)datatyes
CVvVC4

(TPTP TFF) Encode sorts

Vampire
P (TPTP FOF)

l iProver,Paradox

/

Counterexamples

Evaluation

e Considered three sets of benchmarks:
° |p

* Challenge problems for inductive theorem provers
* Datatypes + recursive functions
* Leon
» Verification conditions from Leon verification tool (EPFL)
* Many theories: datatypes + recursive functions + bitvectors + arrays + sets + arithmetic

* Nun-Mut
* Mutated form of Isabelle conjectures of interest to Nunchaku project
* (Co)datatypes + (co)recursive functions

e Consider mutated forms of the first two sets (Ip-mut, Leon-mut)
* Obtained by swapping subterms in conjectures

* All benchmarks considered with/without translation A

Evaluation : solved SAT benchmarks

Z3 CV(C4h CV(C4aft
¢ Ale) ¢ Ale) ¢ Alp) #
IsaPlanner 0 0 0 0 0 0 79
IsaPlanner-Mut 0 41 0 0 0O 153 166
Leon 0 2 0 0 0 9 213
Leon-Mut 11 78 6 6 6 189 427
Nunchaku-Mut 4 27 0 0 3 199 357
Total 14 148 6 6 8 550 885

* Translation increases ability of SMT solvers for finding models:
* /3:14 —> 148
* CVC4f: 8 —» 550

* Finds counterexamples to verification conditions of interest in Leon

Evaluation : solved UNSAT benchmarks

23 CVC4h CVC4af
e Ale) ¢ Alp) ¢ Alp)

IsaPlanner 14 15 15 15 1 15
IsaPlanner-Mut 18 18 18 18 4 18
[.eon 74 79 8O0 80 17 78
[Leon-Mut 84 98 104 98 24 100
Nunchaku-Mut 61 59 46 53 45 59
Total 251 269 263 264 91 270

#

79
166
213
427
357

3885

* Translation also improves performance on UNSAT benchmarks:

 /3:251 — 269
* CVC4:263 — 264
* CVC4f:91 —> 270

summary

* Translation A:

* Increases ability of SMT solvers for model finding recursive functions

* Complete instantiation in Z3
* Finite Model Finding in CVC4

e |s model-sound for admissible function definitions
* Implemented:

* As a preprocessor in CVC4 “——fmf-fun”
* In Nunchaku, a counterexample generator for higher-order logic

Future Work

e Use translation in Nunchaku
e Support of multiple backends: CVC4, Paradox, Vampire?

* Improved support for finite model finding in SMT
* Currently the bottlebeck

* |dentify additional sufficient conditions for admissibility
e E.g. productive corecursive functions

Thanks!

* CVC4:

* Available at http://cvc4.cs.nyu.edu/downloads/

* To use translation A as a preprocessor:
e Use command line option “——fmf-fun”

 Nunchaku
* Available at https://github.com/nunchaku-inria/

Kontei.._

