Generating Small Countermodels using SMT

Andrew Reynolds Intel August 30, 2012

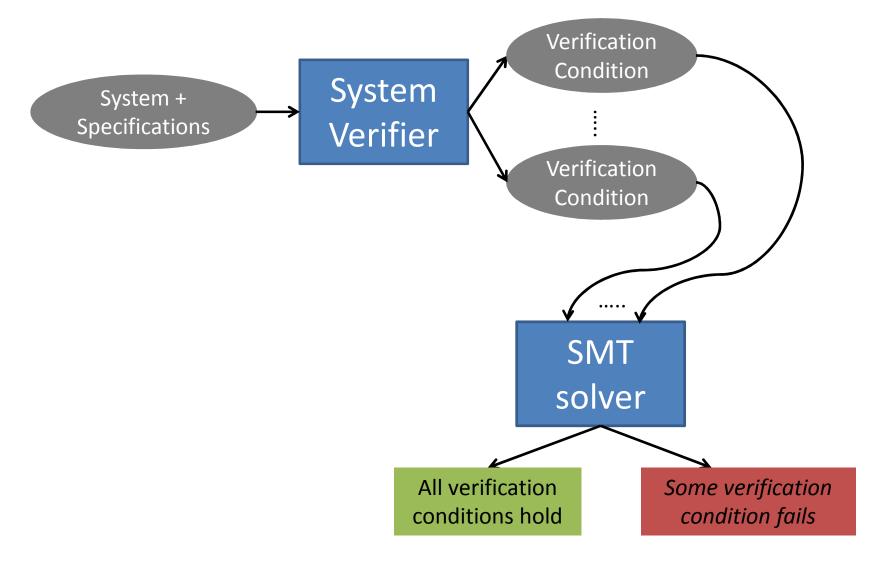
Acknowledgements

- Intel Corporation
 - Amit Goel, Sava Krstic
- University of Iowa
 - Cesare Tinelli, Francois Bobot
- New York University
 - Clark Barrett, Morgan Deters, Dejan Jovanovic

Overview

- SMT-Based System Verification
 - Deductive Verification Framework (DVF)
- SMT Overview
- Challenge of quantifiers in SMT
- Finite Model Finding:
 - Searching for small models
 - Checking models against quantifiers
- Experimental Results

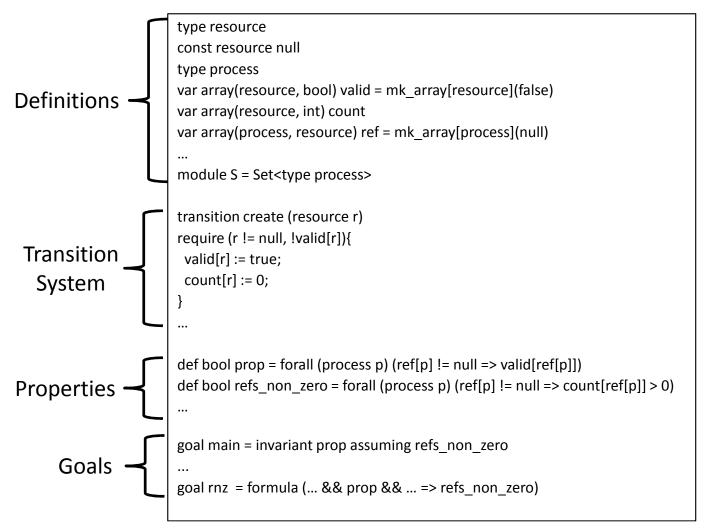
SMT-Based System Verification



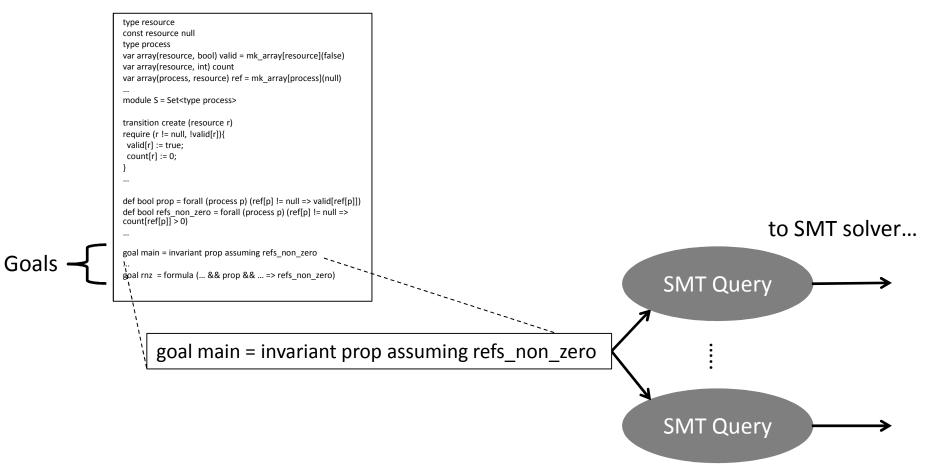
DVF

- Deductive Verification Framework
- Used for:
 - Architecture Validation
 - SOC Security Validation
- Language tailors to constraints SMT solvers can handle
 - Arithmetic, arrays, datatypes (enumerations, sum types, ...)
- This allows:
 - Tight integration with SMT solver
 - DVF program annotations can help SMT solver
 - SMT solver responses correspond to original program

DVF Example

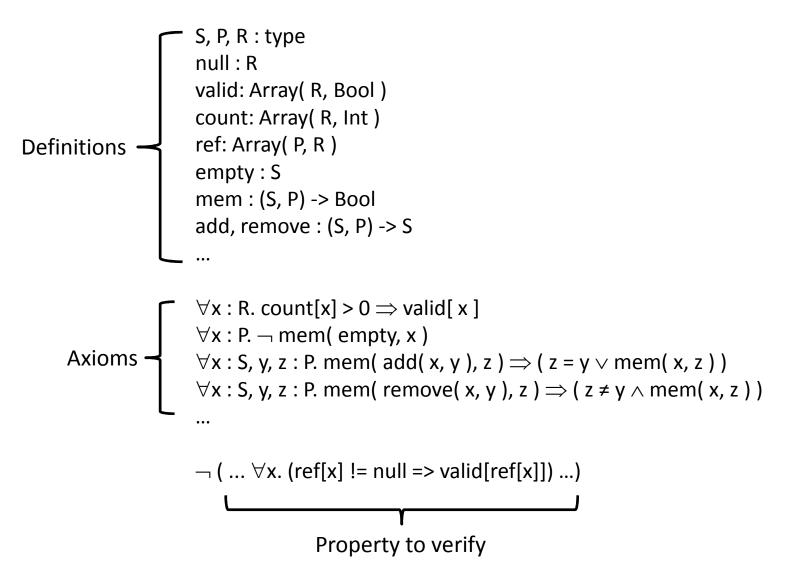


DVF SMT Backend

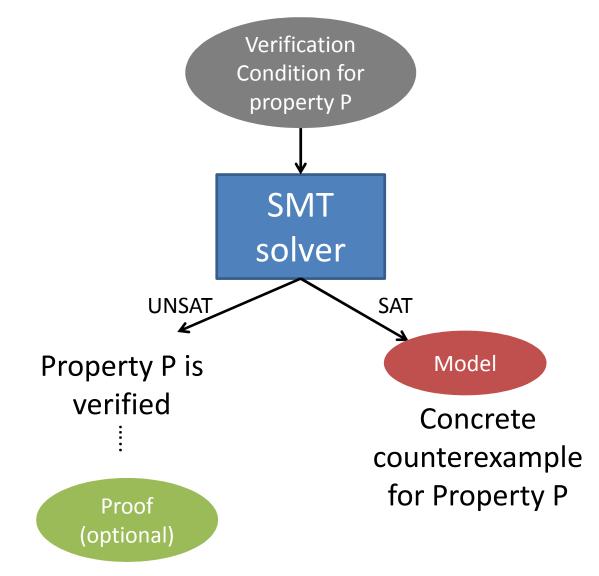


- Goals translated into (possibly multiple) SMT queries
 - Example: base/induction cases for proofs

SMT Query



SMT for Verification Conditions



Satisfiability Modulo Theories (SMT)

- SMT solvers:
 - Are powerful tools for determining satisfiability of ground formulas
 - Built-in decision procedures for many theories
 - Have applications in:
 - Software/Hardware verification
 - Planning and scheduling
 - Design automation
 - Had significant performance improvement in past 10 years
 - Many solvers use standard format
 - SMT LIB initiative

CVC4 : SMT Solver

- Support for many theories
 - Equality + Uninterpreted Functions
 - Integer/Real arithmetic
 - Bit Vectors
 - Arrays
 - Datatypes
- Work in progress: Quantifiers
 - Pattern-based instantiation
 - Model-based instantiation
 - Rewrite Rules
 - Finite Model Finding
- Highly competitive
 - Won multiple divisions of SMT COMP 2012

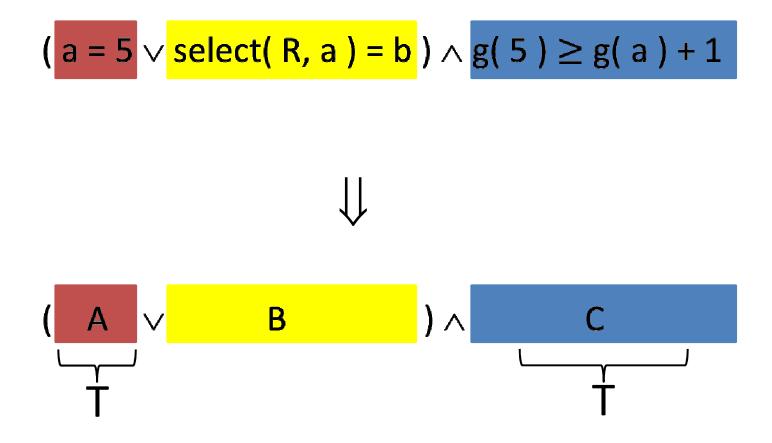
What is SMT?

(a = 5 \lor select(R, a) = b) \land g(5) \ge g(a) + 1

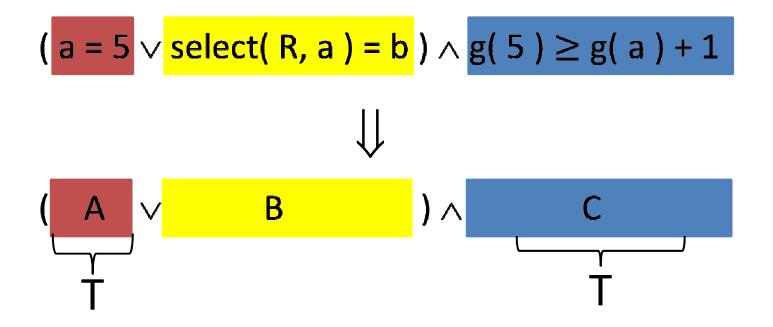
- Satisfiability Modulo Theories:
 - Determine if there exists satisfying assignment
 - If so, return SAT
 - Return UNSAT if none can be found
 - Satisfying assignment must be *T*-consistent

$(a = 5 \lor select(R, a) = b) \land g(5) \ge g(a) + 1$

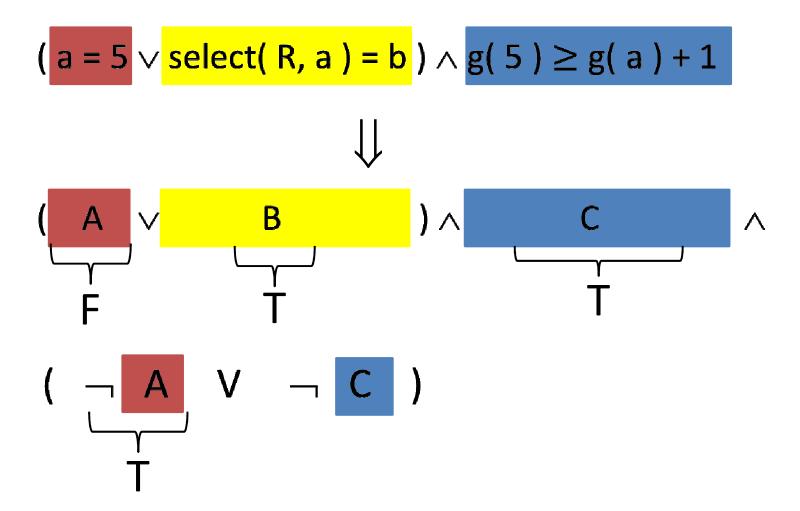
Convert to boolean satisfiability problem \bigcup A \lor B \land C



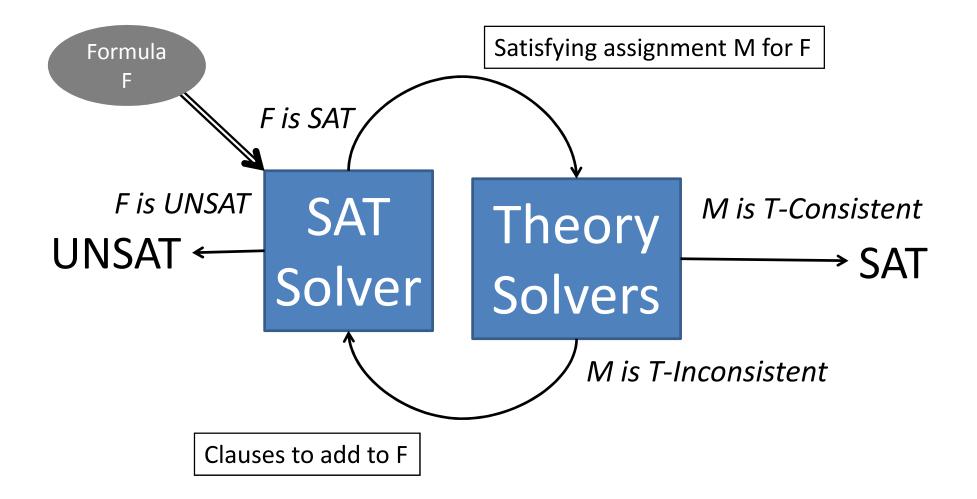
Find satisfying assignment ... A, C



- However, A and C are inconsistent according to theory:
 - -a = 5 and g(5) \ge g(a) + 1 cannot both be true according to UF + Int
 - Must add additional clause:

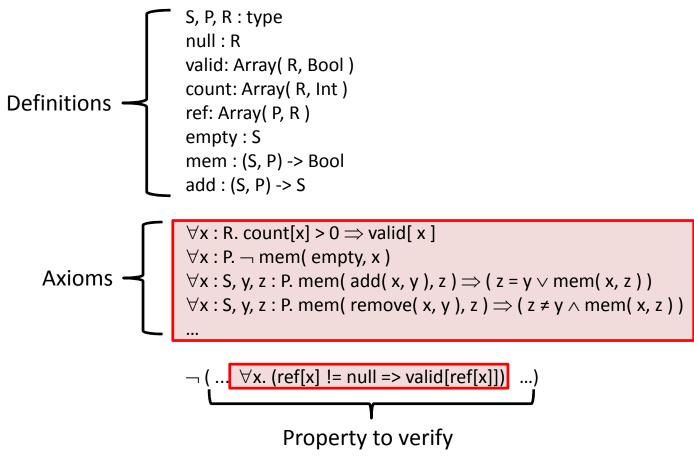


DPLL(T) Architecture

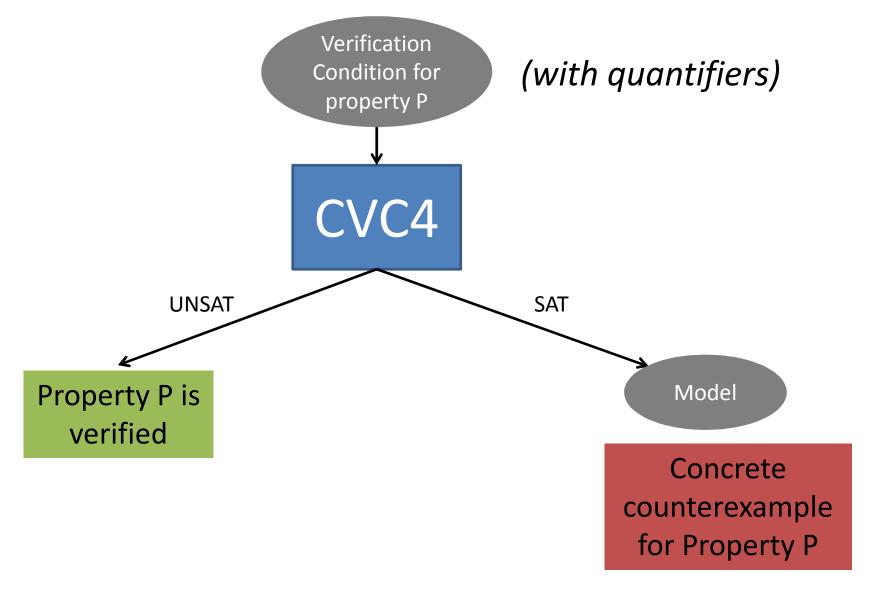


Why Quantifiers?

Quantifiers exist in verification conditions:

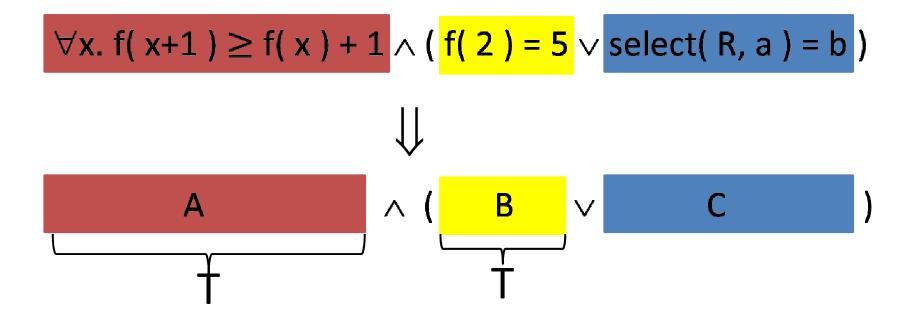


Handling Verification Conditions



Challenge: Quantifiers in SMT

• Treat each quantified formula as literal, as before



- Find satisfying assignment: A, B
- ⇒*Problem:* In general, determining consistency of quantified formulas is undecidable

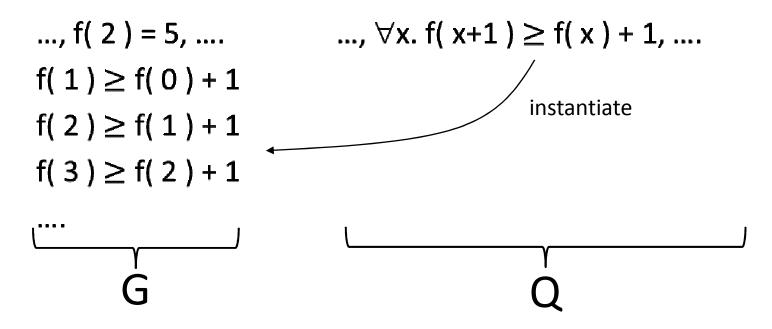
Quantifier Instantiation

- Divide problem into:
 - Ground portion G, and quantified portion Q:

- Determine if G is T-inconsistent
 - If not, *instantiate* Q with some set of ground values

Quantifier Instantiation

- Check again if G is T-inconsistent
 - If not, repeat



 \Rightarrow Sound but incomplete procedure

Quantifiers in SMT

- Given set of literals (G,Q):
 - Set of ground constraints G
 - Set of quantified assertions Q
- Questions:
 - -(1) How to choose instantiations for Q
 - -(2) When can we answer SAT?

Current Approaches for Quantifiers

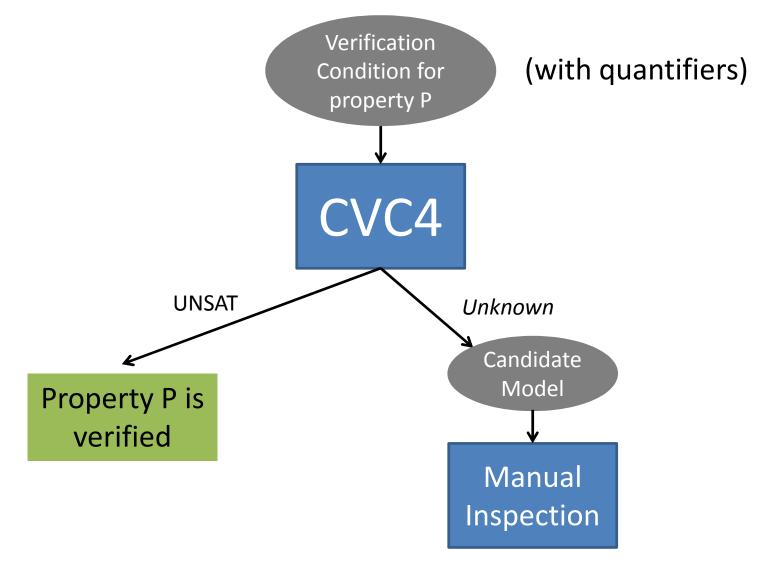
- *Most widely used*: Pattern-Based Instantiation
 - Determine instantiations heuristically
 - Based on finding ground terms in G with same shape as terms in Q

...,
$$b \neq a$$
, $f(a) = b$, ..., $\forall x. f(x) = x$
matches

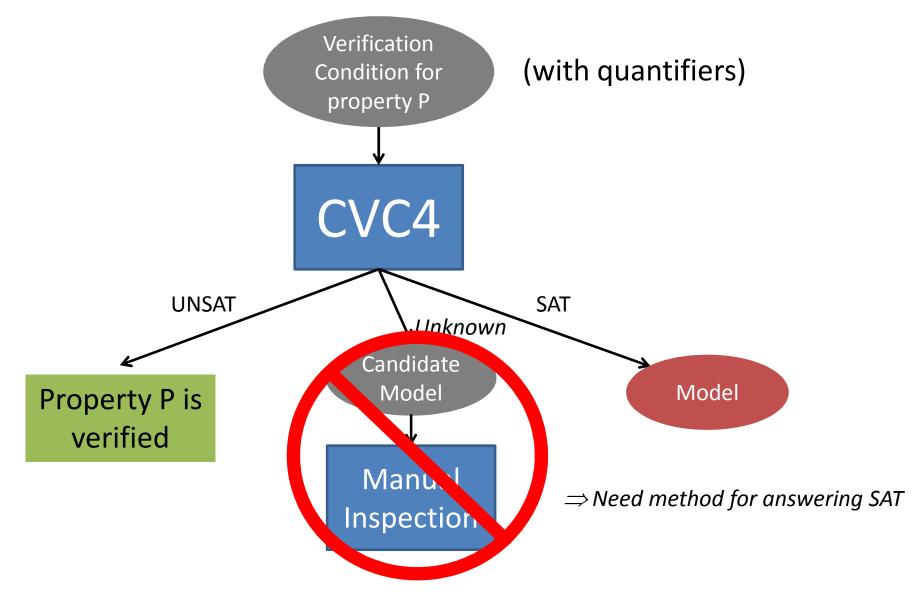
$$\Rightarrow$$
 instantiate [a/x]: f(a) = a,
T-inconsistent : $a = f(a) = b \neq a$

• However, If pattern matching fails, must answer "unknown"

Handling Verification Conditions



Handling Verification Conditions



Finite Model Finding

- Method to answer SAT in presence of quantifiers
- Given set of literals (G,Q):
 - Find a "smallest" model for G
 - Try every instantiation of Q in the model
 - Feasible if the domain we need to consider is *finite*
 - If every instantiation true in model, answer SAT

Finite Model Finding (for EUF)

For now, consider quantifiers over uninterpreted sorts:
∀x : S. ¬ mem(empty, x)
for all x of type S...

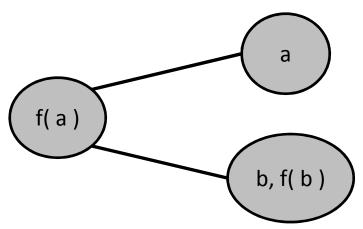
- Example uses:
 - Values, Addresses, Processes, Resources, Sets, ...

Finding Small Models

- What is a small model?
 - SMT solvers maintain a set of equivalence classes internally
 - "Smallest" model for sort S means:
 - Fewest # equivalence classes of sort S
- To find small models:
 - Impose *cardinality constraints* on (uninterpreted) sorts S
 - Predicate C_{S, k}, meaning "sort S has at most k equivalence classes"
 - Try to find models of size 1, 2, 3, ... etc.
- What this requires:
 - Control to DPLL(T) search for postulating cardinalities
 - Solver for UF + cardinality constraints

UF + Cardinality Constraints

- Given (G, C_{S, k})
 - Set of ground constraints G over sort S
 - Cardinality constraint C_{S, k}
- Maintain disequality graph $D_s = (V, E)$
 - V are equivalence classes of sort S
 - E are disequalities between terms of sort S
- D_s induced by asserted set of literals in G
 - So, f(a) \neq a, f(a) \neq b, b = f(b) becomes:

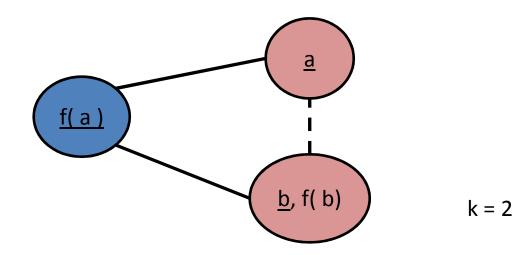


UF + Cardinality Constraints

• We are interested in whether D_S is k-colorable

– If no, then we have a conflict ($F \Rightarrow \neg C_{S,k}$)

- where F is explanation of sub-graph of D_s that is not kcolorable
- If yes, then we merge nodes with same color

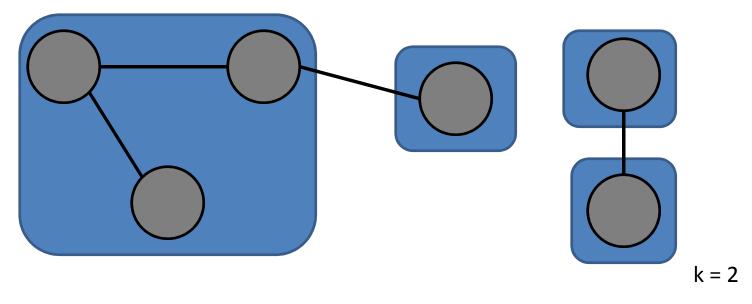


UF + Cardinality Constraints

- Challenges:
 - Determining k-colorability is NP-hard
 - Analysis must be incremental
- Solution: use a *region-based approach*
 - Partition nodes in *regions* with high edge density
 - Quickly recognize when D_s is not k-colorable
 - Helpful for suggesting relevant nodes to merge

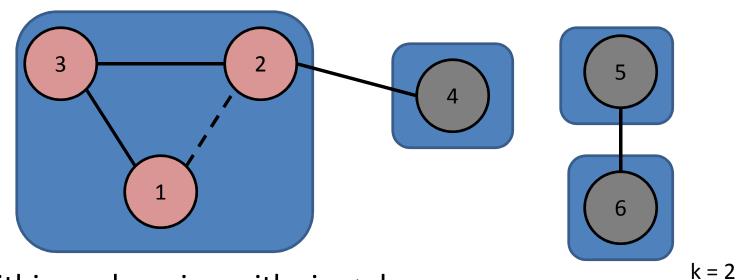
Region-Based Approach

• Partition nodes V of D_s into *regions*



- Invariant: need only search for (k+1)-cliques local to regions
- Region can be ignored if it has \leq k terms

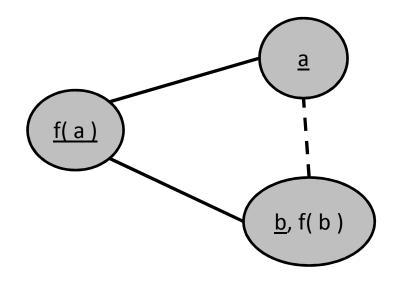
Region-Based Approach



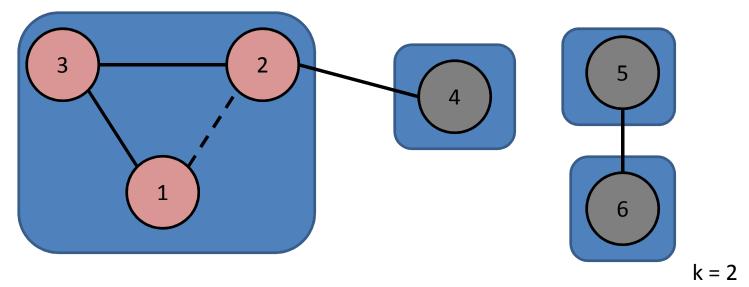
- Within each region with size > k:
 - Maintain a watched set N of k+1 nodes
 - Record pairs of nodes in N that are not linked
 - If this set is empty, N is a clique \Rightarrow report conflict
 - Otherwise, merge unlinked nodes in N

Region-Based Approach

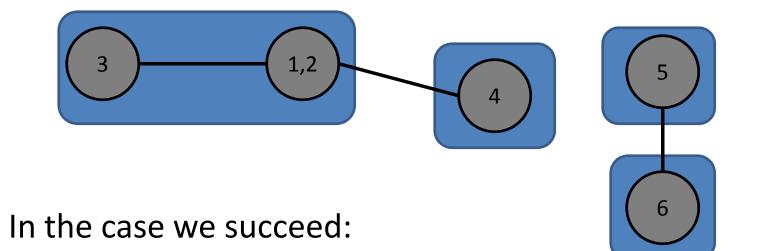
- Merging nodes may lead to T-inconsistency
 - For example, congruence axioms in UF:



 \Rightarrow In this case, we cannot merge a = b

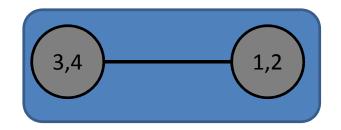


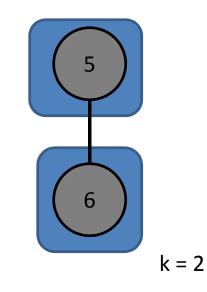
- Merging nodes 1 and 2 may:
 - Lead to T-inconsistency
 - Lead to a cardinality conflict (force a clique), or
 - Succeed

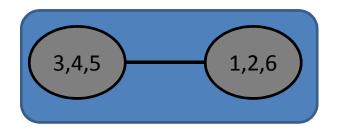


k = 2

- All regions \leq k nodes
 - We are ensured k-colorability
- However, still unsure a model of size k exists
 - Due to possible T-inconsistency
- \Rightarrow Must shrink model explicitly







k = 2

Merge until we have until ≤ k nodes overall
⇒ Guaranteed a model of size k exists

Finite Model Finding

- Given set of literals (G, Q):
 - 1. Find smallest model M for G
 - i.e. M with smallest # of equivalence classes
 - 2. Instantiate Q with all combinations of terms in M
 - 3. If all instantiations are true in model, and model size did not grow, then answer SAT

Finite Model Finding : Example

$$a \neq b, b = c, \forall x. f(x) = x$$

G Q

- 1. Smallest model for G, size 2 : { <u>a</u> }, { <u>b</u>, c }
- 2. Instantiate Q with [a/x, b/x]:
 - f(a) = a, f(b) = b added to G
- 3. After instantiation : { <u>a</u>, f(a) }, { <u>b</u>, c, f(b) }
 - All instantiations are true, model size did not grow ⇒ answer SAT

Why Small Models?

- Easier to test against quantifiers
 - Given quantified formula $\forall x_1...x_n$. F($x_1 ... x_n$)
 - Naively, we require O(kⁿ) instantiations
 - Where k is the cardinality of sort($x_1 ... x_n$)
 - Feasible if either:
 - Both n and k are small
 - We can recognize/eliminate redundant instantiations
 - Use Model-Based Quantifier Instantiation [Ge/deMoura 09]

Model-Based Quantifier Instantiation (MBQI)

- Idea : Do not consider instantiations that are already true in current model
- Strategy for (G, Q):
- 1. Build model M for G, consisting of:
 - Set of representatives R
 - Interpretation for all symbols in Q
- 2. For all quantifiers $\forall x. F[x]$ in Q:
 - Construct $F^{M}[x]$ according to interpretations in M
 - Add instantiations F[t] to G, for all $t \in R$ such that:
 - F^M[t] is not true in M

MBQI : Example

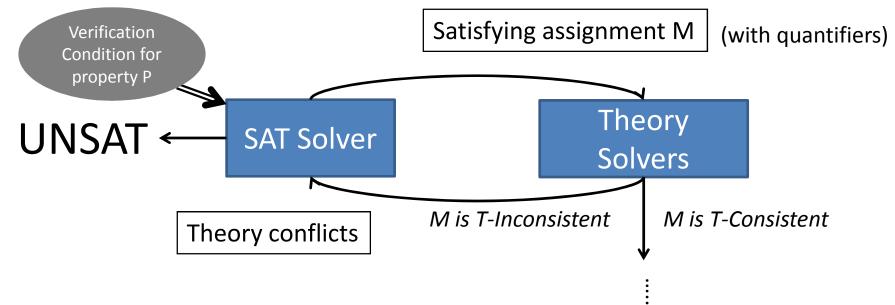
P(a, a),
$$a \neq b$$
, $\forall x. \neg P(x, b)$
Q

Find model M : { a }, { b }, $P^{M} := \lambda xy. (x=a \land y=a)$

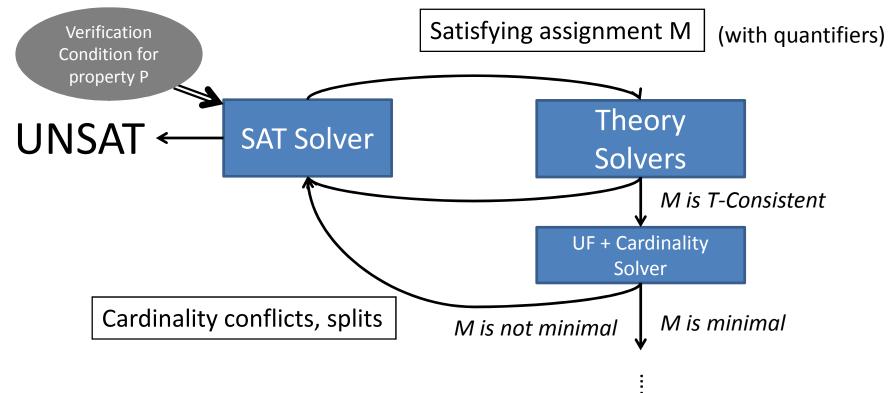
 $\neg P^{M}(x, b) \equiv \neg(x=a \land b=a) \equiv true$

 \Rightarrow All instantiations of Q are true in M

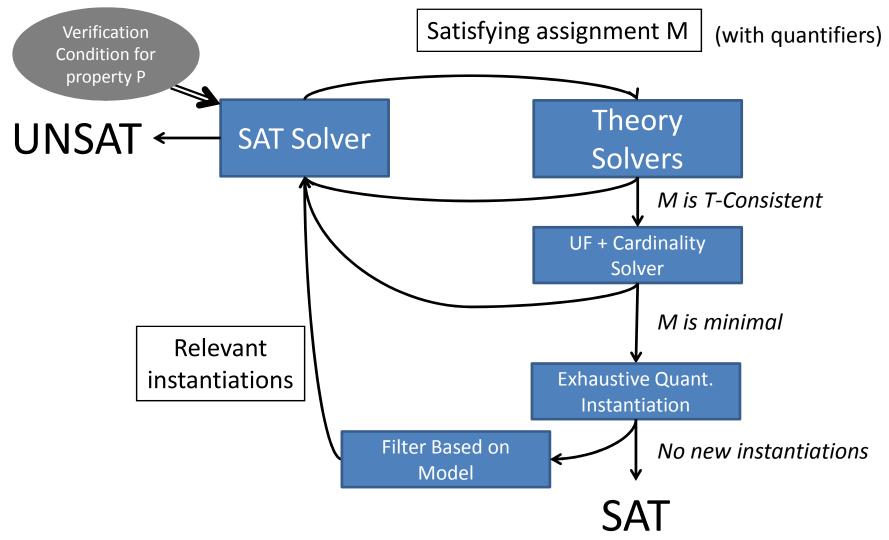
Anatomy of Finite Model Finding



Anatomy of Finite Model Finding



Anatomy of Finite Model Finding



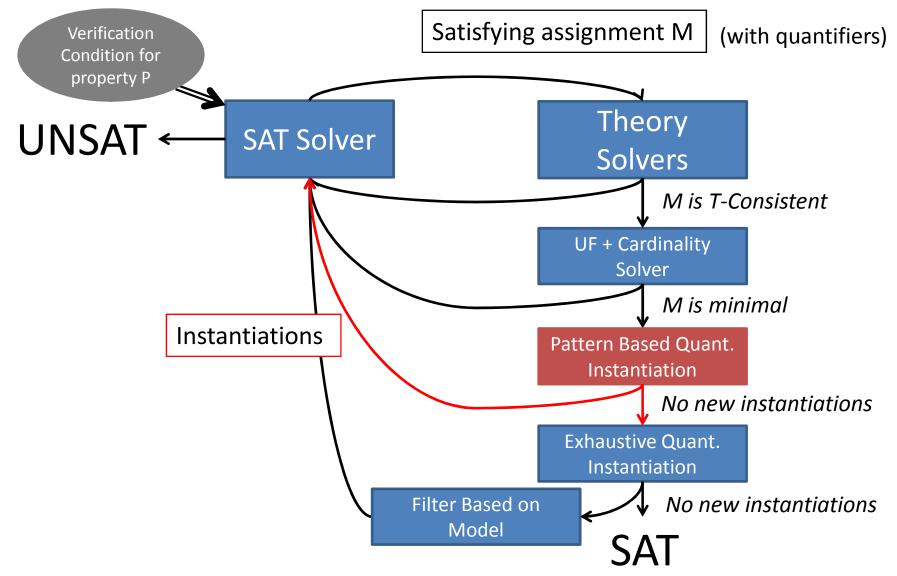
Other Instantiation Strategies

- Sometimes, # instantiations is still very large
- Other strategies:
 - Non-exhaustive instantiation:
 - Only add small # instantiations each round
 - Pro: (possibly) less instantiations added
 - Con: usually slower convergence to model
 - Exhaustive instantiation restricted to non-axioms
 - Rely on other methods for instantiating axioms, e.g...
 - Pattern-Based instantiation

FMF + Pattern-Based Instantiation

- Idea:
 - First see if instantiations based on patterns exist
 - If not, resort to exhaustive instantiation
- May lead to:
 - Answering UNSAT more often
 - Discover easy conflicts, if they exist
 - Arriving at model faster
 - Instantiations rule out spurious models

FMF + Pattern-Based Instantiation



Experimental Results

- DVF Benchmarks
 - Taken from real DVF examples
 - Both SAT/UNSAT benchmarks
 - SAT benchmarks generated by removing necessary pf assumptions
 - Many theories: UF, arithmetic, arrays, datatypes
- TPTP Benchmarks
 - Taken from ATP community
 - Heavily quantified
 - Unsorted logic

Results: DVF

UNSAT	german	refcount	agree	apg	bmk	Total
cvc4	145	40	600	304	244	1333
cvc4+fmf	145	40	604	294	236	1319
z3	145	40	604	304	244	1337
	145	40	604	304	244	1337

SAT	german	refcount	agree	apg	bmk	Total
cvc4	2	0	0	0	0	2
cvc4+fmf	45	6	62	16	36	165
z3	45	1	0	0	0	46
	45	6	62	19	37	169

• 60 second timeout

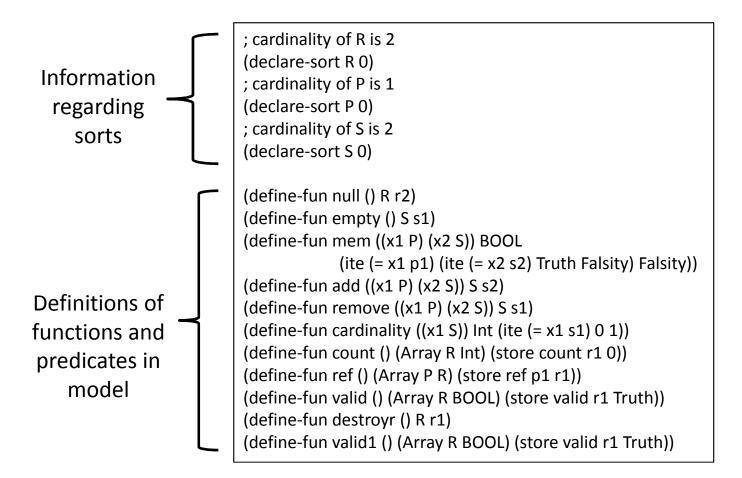
Results per Inst Strategy (cvc4+fmf)

UNSAT	german	refcount	agree	apg	bmk	Total
naïve	145	40	583	272	222	1262
mbqi	145	40	579	292	238	1294
mbqi+pattern-based inst	145	40	604	294	236	1319
	145	40	604	304	244	1337

SAT	german	refcount	agree	apg	bmk	Total
naïve	45	6	62	18	33	164
mbqi	45	6	60	15	36	162
mbqi+pattern-based inst	45	6	62	16	36	165
	45	6	62	19	37	169

⇒ Each SAT benchmark is solved by at least one configuration

Example Model from CVC4



Results: TPTP

- 10 second timeout
- 11613 UNSAT benchmarks:
 - z3: 5471 solved
 - cvc4: 4868 solved
 - cvc4+fmf: 2246 solved, but orthogonal
 - 288 solved that cvc4 w/o finite model finding cannot
 - Either cvc4 or cvc4+fmf: 5158 solved
- 1933 SAT benchmarks:
 - z3: 866 solved
 - cvc4+fmf: 920 solved
- Model-Based Quantifier Instantiation is essential

Summary

- Finite model finding in CVC4
 - Uses solver for UF + cardinality constraints
 - Finds minimal models for ground constraints
 - Uses exhaustive instantiation to test models
 - Instantiations filtered by MBQI
 - Optionally, uses pattern-based instantiation

Conclusions

- Finite Model Finding:
 - Practical approach for SMT + quantifiers
 - Can answer SAT quickly
 - Generate simple counterexamples for DVF
 - Improves coverage in UNSAT cases
 - Increased ability to discharge verification conditions
 - Orthogonal to other approaches

Future Work

- Rewrite rules for axiom sets
 - Use rewriting system instead of quant instantiation
- Improvements to MBQI
 - Use ATP techniques for constructing model
 - Model interpretation for theories
 - Equality, Bit Vectors, Arithmetic, etc.
- Encode relationships between cardinalities
- Improvements for Model Output
 - Focus on human readability