
Generating Small Countermodels
using SMTusing SMT

Andrew Reynolds
Intel

August 30, 2012

Acknowledgements

• Intel Corporation
– Amit Goel, Sava Krstic

• University of Iowa
– Cesare Tinelli, Francois Bobot– Cesare Tinelli, Francois Bobot

• New York University
– Clark Barrett, Morgan Deters, Dejan Jovanovic

Overview

• SMT-Based System Verification
– Deductive Verification Framework (DVF)

• SMT Overview
• Challenge of quantifiers in SMT• Challenge of quantifiers in SMT
• Finite Model Finding:
– Searching for small models
– Checking models against quantifiers

• Experimental Results

SMT-Based System Verification

System
Verifier

…
..

System +
Specifications

Verification
Condition

Verification
Condition

SMT
solver

…..

All verification
conditions hold

Some verification
condition fails

DVF

• Deductive Verification Framework
• Used for:

– Architecture Validation
– SOC Security Validation

• Language tailors to constraints SMT solvers can handle• Language tailors to constraints SMT solvers can handle
– Arithmetic, arrays, datatypes (enumerations, sum types, …)

• This allows:
– Tight integration with SMT solver

• DVF program annotations can help SMT solver
• SMT solver responses correspond to original program

DVF Example
type resource
const resource null
type process
var array(resource, bool) valid = mk_array[resource](false)
var array(resource, int) count
var array(process, resource) ref = mk_array[process](null)
…
module S = Set<type process>

transition create (resource r)
require (r != null, !valid[r]){

Definitions

require (r != null, !valid[r]){
valid[r] := true;
count[r] := 0;

}
…

def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])
def bool refs_non_zero = forall (process p) (ref[p] != null => count[ref[p]] > 0)
…

goal main = invariant prop assuming refs_non_zero
...
goal rnz = formula (… && prop && … => refs_non_zero)

Transition
System

Properties

Goals

DVF SMT Backend
type resource
const resource null
type process
var array(resource, bool) valid = mk_array[resource](false)
var array(resource, int) count
var array(process, resource) ref = mk_array[process](null)
…
module S = Set<type process>

transition create (resource r)
require (r != null, !valid[r]){
valid[r] := true;
count[r] := 0;

}
…

def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])
def bool refs_non_zero = forall (process p) (ref[p] != null =>
count[ref[p]] > 0)
… to SMT solver…
goal main = invariant prop assuming refs_non_zero
...
goal rnz = formula (… && prop && … => refs_non_zero)

Goals

…
..

SMT Query

SMT Query

goal main = invariant prop assuming refs_non_zero

to SMT solver…

• Goals translated into (possibly multiple) SMT queries
- Example: base/induction cases for proofs

SMT Query
S, P, R : type
null : R
valid: Array(R, Bool)
count: Array(R, Int)
ref: Array(P, R)
empty : S
mem : (S, P) -> Bool
add, remove : (S, P) -> S

Definitions

…

∀x : R. count[x] > 0 ⇒ valid[x]
∀x : P. ¬ mem(empty, x)
∀x : S, y, z : P. mem(add(x, y), z) ⇒ (z = y ∨ mem(x, z))
∀x : S, y, z : P. mem(remove(x, y), z) ⇒ (z ≠ y ∧ mem(x, z))
…

¬ (... ∀x. (ref[x] != null => valid[ref[x]]) …)

Property to verify

Axioms

SMT for Verification Conditions

SMT
solver

Verification
Condition for

property P

solver
UNSAT SAT

Property P is
verified Concrete

counterexample
for Property P

Model

Proof
(optional)

…
..

Satisfiability Modulo Theories (SMT)

• SMT solvers:
– Are powerful tools for determining satisfiability of ground

formulas
• Built-in decision procedures for many theories

– Have applications in:– Have applications in:
• Software/Hardware verification
• Planning and scheduling
• Design automation

– Had significant performance improvement in past 10 years
– Many solvers use standard format

• SMT LIB initiative

CVC4 : SMT Solver
• Support for many theories

– Equality + Uninterpreted Functions
– Integer/Real arithmetic
– Bit Vectors
– Arrays
– Datatypes– Datatypes

• Work in progress: Quantifiers
– Pattern-based instantiation
– Model-based instantiation
– Rewrite Rules
– Finite Model Finding

• Highly competitive
– Won multiple divisions of SMT COMP 2012

What is SMT?

⇒⇒

⇒⇒
T T

⇒

T T

⇒

F TT

T

DPLL(T) Architecture

SAT Theory

Satisfying assignment M for F

M is T-Consistent

F is SAT

F is UNSAT

Formula
F

SAT
Solver

Theory
Solvers

Clauses to add to F

UNSAT SAT
M is T-Consistent

M is T-Inconsistent

F is UNSAT

S, P, R : type
null : R
valid: Array(R, Bool)
count: Array(R, Int)
ref: Array(P, R)
empty : S
mem : (S, P) -> Bool

Why Quantifiers?
• Quantifiers exist in verification conditions:

Definitions

mem : (S, P) -> Bool
add : (S, P) -> S

∀x : R. count[x] > 0 ⇒ valid[x]
∀x : P. ¬ mem(empty, x)
∀x : S, y, z : P. mem(add(x, y), z) ⇒ (z = y ∨ mem(x, z))
∀x : S, y, z : P. mem(remove(x, y), z) ⇒ (z ≠ y ∧ mem(x, z))
…

¬ (... ∀x. (ref[x] != null => valid[ref[x]]) …)

Property to verify

Axioms

Handling Verification Conditions

CVC4

Verification
Condition for

property P
(with quantifiers)

CVC4
UNSAT SAT

Property P is
verified

Concrete
counterexample

for Property P

Model

Challenge: Quantifiers in SMT

For all integers x…

⇒

TT

Quantifier Instantiation

QG

Quantifier Instantiation

QG

instantiate

Quantifiers in SMT

• Given set of literals (G, Q):
– Set of ground constraints G
– Set of quantified assertions Q

• Questions:• Questions:
– (1) How to choose instantiations for Q
– (2) When can we answer SAT?

• Most widely used: Pattern-Based Instantiation
– Determine instantiations heuristically

• Based on finding ground terms in G with same shape as terms in Q

…., b ≠ a, f(a) = b, …,∀x. f(x) = x

Current Approaches for Quantifiers

…., b ≠ a, f(a) = b, …,∀x. f(x) = x

⇒ instantiate [a/x]: f(a) = a,

T-inconsistent : a = f(a) = b ≠ a

• However, If pattern matching fails, must answer “unknown”

matches

Handling Verification Conditions

CVC4

Verification
Condition for

property P
(with quantifiers)

CVC4
UNSAT Unknown

Manual
Inspection

Candidate
ModelProperty P is

verified

Handling Verification Conditions

CVC4

Verification
Condition for

property P
(with quantifiers)

CVC4
UNSAT SAT

Property P is
verified

Model

Unknown

Manual
Inspection

Candidate
Model

⇒ Need method for answering SAT

Finite Model Finding

• Method to answer SAT in presence of quantifiers

• Given set of literals (G, Q):
– Find a “smallest” model for G
– Try every instantiation of Q in the model

• Feasible if the domain we need to consider is finite

– If every instantiation true in model, answer SAT

Finite Model Finding (for EUF)

• For now, consider quantifiers over uninterpreted sorts:
∀x : S. ¬ mem(empty, x)

for all x of type S…

– Example uses:
• Values, Addresses, Processes, Resources, Sets, …

Finding Small Models

• What is a small model?
– SMT solvers maintain a set of equivalence classes internally
– “Smallest” model for sort S means:

• Fewest # equivalence classes of sort S

• To find small models:• To find small models:
– Impose cardinality constraints on (uninterpreted) sorts S

• Predicate CS, k, meaning “sort S has at most k equivalence classes”

– Try to find models of size 1, 2, 3, … etc.

• What this requires:
– Control to DPLL(T) search for postulating cardinalities
– Solver for UF + cardinality constraints

UF + Cardinality Constraints
• Given (G, CS, k)

– Set of ground constraints G over sort S
– Cardinality constraint CS, k

• Maintain disequality graph DS = (V, E)
– V are equivalence classes of sort S
– E are disequalities between terms of sort S

• D induced by asserted set of literals in G• DS induced by asserted set of literals in G
– So, f(a) ≠ a, f(a) ≠ b, b = f(b) becomes:

f(a)

a

b, f(b)

UF + Cardinality Constraints

• We are interested in whether DS is k-colorable
– If no, then we have a conflict (F ⇒ ¬CS,k)

• where F is explanation of sub-graph of DS that is not k-
colorable

– If yes, then we merge nodes with same color– If yes, then we merge nodes with same color

f(a)

a

b, f(b) k = 2

UF + Cardinality Constraints

• Challenges:
– Determining k-colorability is NP-hard
– Analysis must be incremental

• Solution: use a region-based approach• Solution: use a region-based approach
– Partition nodes in regions with high edge density
– Quickly recognize when DS is not k-colorable
– Helpful for suggesting relevant nodes to merge

• Partition nodes V of DS into regions

Region-Based Approach

• Invariant: need only search for (k+1)-cliques local to regions
• Region can be ignored if it has ≤ k terms

k = 2

Region-Based Approach

3 2 5
4

• Within each region with size > k:
– Maintain a watched set N of k+1 nodes
– Record pairs of nodes in N that are not linked

• If this set is empty, N is a clique ⇒ report conflict
• Otherwise, merge unlinked nodes in N

1
6

k = 2

Region-Based Approach
• Merging nodes may lead to T-inconsistency

– For example, congruence axioms in UF:

a

⇒ In this case, we cannot merge a = b

f(a)

b, f(b)

Region-Based Approach

3 2 5
4

• Merging nodes 1 and 2 may:
– Lead to T-inconsistency
– Lead to a cardinality conflict (force a clique), or
– Succeed

1
6

k = 2

Region-Based Approach

3 1,2 5
4

• In the case we succeed:
– All regions ≤ k nodes

• We are ensured k-colorability
– However, still unsure a model of size k exists

• Due to possible T-inconsistency
⇒ Must shrink model explicitly

6

k = 2

Region-Based Approach

3,4 1,2 5

6

k = 2

Region-Based Approach

3,4,5 1,2,6

• Merge until we have until ≤ k nodes overall

⇒ Guaranteed a model of size k exists

k = 2

Finite Model Finding

• Given set of literals (G, Q):
1. Find smallest model M for G

• i.e. M with smallest # of equivalence classes

2. Instantiate Q with all combinations of terms in M2. Instantiate Q with all combinations of terms in M
3. If all instantiations are true in model, and model

size did not grow, then answer SAT

Finite Model Finding : Example

a ≠ b, b = c, ∀x. f(x) = x

1. Smallest model for G, size 2 : { a }, { b, c }

QG
1. Smallest model for G, size 2 : { a }, { b, c }
2. Instantiate Q with [a/x, b/x]:

• f(a) = a, f(b) = b added to G

3. After instantiation : { a, f(a) }, { b, c, f(b) }
• All instantiations are true, model size did not grow

⇒ answer SAT

Why Small Models?

• Easier to test against quantifiers
– Given quantified formula ∀x1…xn. F(x1 … xn)

• Naively, we require O(kn) instantiations
– Where k is the cardinality of sort(x1 … xn)– Where k is the cardinality of sort(x1 … xn)

– Feasible if either:
• Both n and k are small
• We can recognize/eliminate redundant instantiations

– Use Model-Based Quantifier Instantiation [Ge/deMoura 09]

Model-Based Quantifier Instantiation
(MBQI)

• Idea : Do not consider instantiations that are
already true in current model

• Strategy for (G, Q):
1. Build model M for G, consisting of:1. Build model M for G, consisting of:
– Set of representatives R
– Interpretation for all symbols in Q

2. For all quantifiers ∀x. F[x] in Q:
– Construct FM[x] according to interpretations in M
– Add instantiations F[t] to G, for all t ∈ R such that:

• FM[t] is not true in M

MBQI : Example

P(a, a), a ≠ b, ∀x. ¬ P(x, b)

Find model M : { a }, { b },

Q

Find model M : { a }, { b },
PM := λ xy. (x=a ∧ y=a)

¬ PM(x, b) ≡ ¬(x=a ∧ b=a) ≡ true

⇒ All instantiations of Q are true in M

Anatomy of Finite Model Finding

SAT Solver
Theory
Solvers

Satisfying assignment M

Theory conflicts

UNSAT

Verification
Condition for

property P

(with quantifiers)

M is T-ConsistentM is T-InconsistentTheory conflicts

…
..

Anatomy of Finite Model Finding

SAT Solver
Theory
Solvers

Satisfying assignment M

UNSAT

Verification
Condition for

property P

(with quantifiers)

UF + Cardinality

M is T-Consistent

Cardinality conflicts, splits

UF + Cardinality
Solver

M is minimalM is not minimal

…
..

Anatomy of Finite Model Finding

SAT Solver
Theory
Solvers

Satisfying assignment M

UNSAT

Verification
Condition for

property P

(with quantifiers)

UF + Cardinality

M is T-Consistent

Relevant
instantiations

UF + Cardinality
Solver

M is minimal

SAT

Exhaustive Quant.
Instantiation

No new instantiationsFilter Based on
Model

Other Instantiation Strategies

• Sometimes, # instantiations is still very large
• Other strategies:
– Non-exhaustive instantiation:

• Only add small # instantiations each round• Only add small # instantiations each round
– Pro: (possibly) less instantiations added
– Con: usually slower convergence to model

– Exhaustive instantiation restricted to non-axioms
• Rely on other methods for instantiating axioms, e.g…

– Pattern-Based instantiation

FMF + Pattern-Based Instantiation

• Idea:
– First see if instantiations based on patterns exist
– If not, resort to exhaustive instantiation

• May lead to:• May lead to:
– Answering UNSAT more often

• Discover easy conflicts, if they exist

– Arriving at model faster
• Instantiations rule out spurious models

FMF + Pattern-Based Instantiation

SAT Solver
Theory
Solvers

Satisfying assignment M

UNSAT

Verification
Condition for

property P

(with quantifiers)

UF + Cardinality

M is T-Consistent

UF + Cardinality
Solver

Pattern Based Quant.
Instantiation

M is minimal

SAT

No new instantiations

Exhaustive Quant.
Instantiation

No new instantiationsFilter Based on
Model

Instantiations

• DVF Benchmarks
– Taken from real DVF examples
– Both SAT/UNSAT benchmarks

• SAT benchmarks generated by removing necessary pf assumptions

– Many theories: UF, arithmetic, arrays, datatypes

Experimental Results

– Many theories: UF, arithmetic, arrays, datatypes

• TPTP Benchmarks
– Taken from ATP community
– Heavily quantified
– Unsorted logic

Results: DVF
UNSAT german refcount agree apg bmk Total

cvc4 145 40 600 304 244 1333
cvc4+fmf 145 40 604 294 236 1319

z3 145 40 604 304 244 1337

145 40 604 304 244 1337

• 60 second timeout

SAT german refcount agree apg bmk Total
cvc4 2 0 0 0 0 2

cvc4+fmf 45 6 62 16 36 165

z3 45 1 0 0 0 46
45 6 62 19 37 169

Results per Inst Strategy (cvc4+fmf)
UNSAT german refcount agree apg bmk Total

naïve 145 40 583 272 222 1262
mbqi 145 40 579 292 238 1294

mbqi+pattern-based inst 145 40 604 294 236 1319

145 40 604 304 244 1337

⇒ Each SAT benchmark is solved by at least one configuration

SAT german refcount agree apg bmk Total
naïve 45 6 62 18 33 164
mbqi 45 6 60 15 36 162

mbqi+pattern-based inst 45 6 62 16 36 165

45 6 62 19 37 169

Example Model from CVC4

; cardinality of R is 2
(declare-sort R 0)
; cardinality of P is 1
(declare-sort P 0)
; cardinality of S is 2
(declare-sort S 0)

(define-fun null () R r2)

Information
regarding

sorts

(define-fun null () R r2)
(define-fun empty () S s1)
(define-fun mem ((x1 P) (x2 S)) BOOL

(ite (= x1 p1) (ite (= x2 s2) Truth Falsity) Falsity))
(define-fun add ((x1 P) (x2 S)) S s2)
(define-fun remove ((x1 P) (x2 S)) S s1)
(define-fun cardinality ((x1 S)) Int (ite (= x1 s1) 0 1))
(define-fun count () (Array R Int) (store count r1 0))
(define-fun ref () (Array P R) (store ref p1 r1))
(define-fun valid () (Array R BOOL) (store valid r1 Truth))
(define-fun destroyr () R r1)
(define-fun valid1 () (Array R BOOL) (store valid r1 Truth))

Definitions of
functions and
predicates in

model

Results: TPTP

• 10 second timeout
• 11613 UNSAT benchmarks:

– z3: 5471 solved
– cvc4: 4868 solved
– cvc4+fmf: 2246 solved, but orthogonal– cvc4+fmf: 2246 solved, but orthogonal

• 288 solved that cvc4 w/o finite model finding cannot

– Either cvc4 or cvc4+fmf: 5158 solved

• 1933 SAT benchmarks:
– z3: 866 solved
– cvc4+fmf: 920 solved

• Model-Based Quantifier Instantiation is essential

Summary

• Finite model finding in CVC4
– Uses solver for UF + cardinality constraints
– Finds minimal models for ground constraints
– Uses exhaustive instantiation to test models– Uses exhaustive instantiation to test models
• Instantiations filtered by MBQI

– Optionally, uses pattern-based instantiation

Conclusions

• Finite Model Finding:
– Practical approach for SMT + quantifiers
– Can answer SAT quickly
• Generate simple counterexamples for DVF• Generate simple counterexamples for DVF

– Improves coverage in UNSAT cases
• Increased ability to discharge verification conditions

– Orthogonal to other approaches

Future Work

• Rewrite rules for axiom sets
– Use rewriting system instead of quant instantiation

• Improvements to MBQI
– Use ATP techniques for constructing model– Use ATP techniques for constructing model
– Model interpretation for theories

• Equality, Bit Vectors, Arithmetic, etc.

• Encode relationships between cardinalities
• Improvements for Model Output
– Focus on human readability

