A Counterexample Based Approach for Quantifier Instantiation in SMT

Andrew Reynolds, University of Iowa MVD, September 30, 2011

Overview

- Introduction to Satisfiability Modulo Theories (SMT)
- Extending SMT to Quantifiers
- Approaches to Quantifier Instantiation
 - E-Matching
 - Model-Based Quantifier Instantiation
 - New: Counterexample-Based Approach
- Current Work

Satisifiability Modulo Theories (SMT)

SMT extends boolean satisifiability problems to theories

$$F = \{ (f(c) = a \lor c + 4 > a), (a = g(b)) \}$$

- Construct satisfying assignment M for set of clauses F
 i.e. M = { f(c) = a, a = g(b) }
- Is this assignment consistent according to theory reasoning?

DPLL(T) Architecture

- SMT uses DPLL(T) architecture
- Operates on states of the form

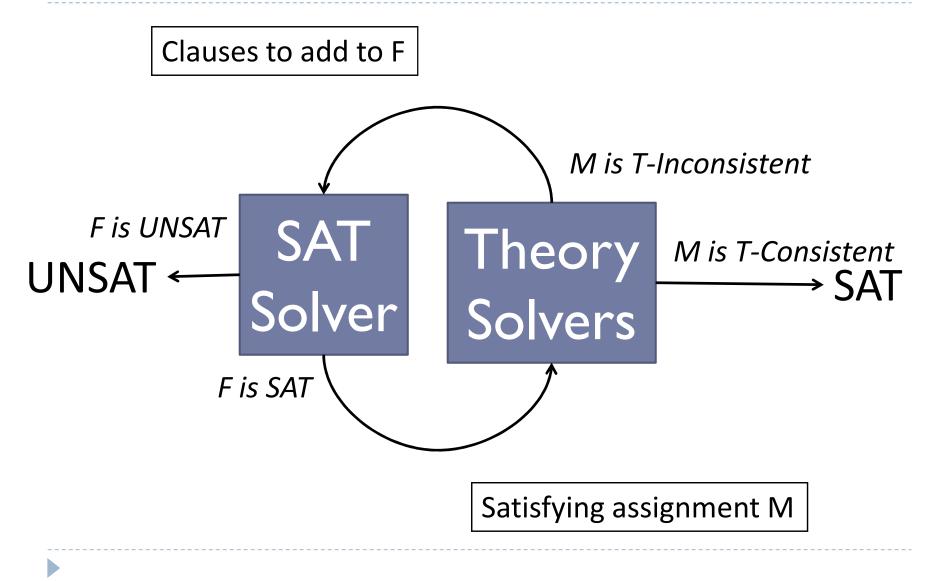
M ∥ F

- F is a set of clauses
- M is a set of asserted theory literals "L"
 - Literals may be decisions "L^d"

DPLL(T) Architecture

For a DPLL(T) state M \parallel F,

- SMT solver can answer UNSAT if:
 - Some clause in F is falsified by M, and
 - M contains no decision literals L^d
- SMT solver can answer SAT if:
 - Each clause in F is satisfied in M, and
 - M is T-consistent



Role of Theory Solver T in SMT

Accepts a set of theory literals M

- Determine if M is T-consistent
- If not, add lemmas C to F, where each C is T-valid
- Typically, use SMT for decidable logics
 - Quantifier-free UF, Linear Real Arithmetic, etc.
- Also may be interested in other logics
 - Non-linear arithmetic, quantified logics, etc.

Quantifiers in SMT

Universal and existential quantifiers

- ∀x. φ, ∃x. φ
- Treated as literals by the SAT solver
- Relegate these literals to quantifiers module
 - Role is similar to theory solver
 - Checking T-consistency is undecidable
 - \blacktriangleright When $\forall \textbf{x}. \ \varphi$ is asserted, cannot answer SAT
- When asked whether M is T-consistent, and there is a $\forall x. \varphi$ asserted in M, either:
 - Answer UNKNOWN

Add (instantiation) clause ($\neg \forall x. \varphi \lor \varphi[s/x]$) to M

Quantifiers in SMT: Challenges

(I) Finding relevant instantiations

- How do we determine ground term s?
- (2) Deciding when providing instantiations is no longer worthwhile
 - When should we answer UNKNOWN?

(3) Determining if all necessary instantiations have been applied

• Can we answer SAT?

Related Work: E-matching

Address challenge (1)

- Find relevant instantiations by matching terms in quantifiers t[x] to ground terms t[s/x]
- To construct instantiation for $\forall x. \varphi$:
 - Find trigger t, where x is in FV(t)
 - Find ground term g
 - Find substitution [s/x] such that t[s/x] is equivalent to g modulo set of equalities E
 - "t E-matches g"
 - Use s to instantiate $\forall x. \varphi$

Related Work: Model-Based Quantifier Instantiation (MBQI)

Address challenges (I) and (3)

Determine if some model satisfies all quantifiers. If so, answer SAT. Otherwise, use values for which model fails to instantiate quantifiers.

• Given asserted quantified formula $\forall x. \varphi$:

- Build explicit model M^I for ground clauses F
- Replace uninterpretted symbols in ϕ to generate ϕ^{I}
- \blacktriangleright Determine the satisfiability of R $\wedge \neg \varphi^{\text{I}}[\text{e/x}]$
- If UNSAT, then $\forall x. \varphi$ is valid in current context
 - Otherwise, model for $R \land \neg \varphi^{I}[e/x]$ is used to instantiate $\forall x. \varphi$
 - Rules out M^I on subsequent iterations

MBQI Example

• Check satisfiability of $F \land \varphi$ F: $w \ge v + 2 \land f(v) \le I \land f(w) \le 3$ $\varphi: \forall i j. (i \le j \Longrightarrow f(i) \le f(j))$

Model M^I for F:

- $v \rightarrow 0, w \rightarrow 2, f \rightarrow [0 \rightarrow 1, 2 \rightarrow 3, else \rightarrow 4]$
- Check satisfiability of $\neg \varphi^{I}[e_{i}/i, e_{j}/j]$: $e_{i} \leq e_{j} \wedge ite(e_{i}=0, I, ite(e_{i}=2, 3, 4)) = ite(e_{j}=0, I, ite(e_{j}=2, 3, 4))$

Alternative Approach to MBQI

- MBQI builds explicit models M^I
 - Check sat for $R \land \neg \varphi^{I}[e/x]$
- Instead: Reason about counterexample e directly
 - Add clause containing $\neg \phi[e/x]$ to SMT solver
- Potential advantages:
 - Do not need to generate explicit models M^I
 - Reason about ¬φ[e/x] incrementally, using the same instance of SMT solver

Counterexample Lemma

"either φ holds or a φ has a counterexample"

$$(\perp^{\varphi} \Leftrightarrow \neg \varphi[e/x])$$

" ϕ has a counterexample if and only if its negation holds for some value e"

Configurations for Quantifier/CE Literal

$\bullet \phi$ is not asserted in M

 \blacktriangleright We don't care about φ

$\blacktriangleright \varphi^{(d)}$ and $(\bot^{\varphi})^d$ are asserted in M

• ϕ is true but we might find a counterexample

$\blacktriangleright \varphi$ $^{(d)}$ and $\neg \bot ^{\varphi}~~$ are asserted in M

• ϕ is true and we know it does not have a counterexample

▶ Requirement: Never assert $-(\angle \phi)^d$

Recognizing SAT Instances with CE Literals

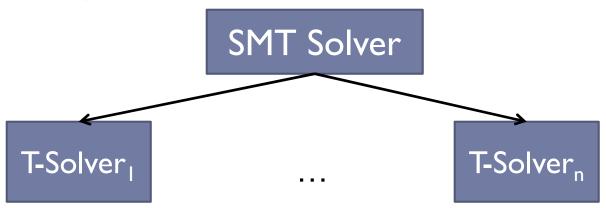
- If \perp^{φ} is asserted negatively as a non-decision, then φ is valid in the current context
 - > If this is true for all quantifiers ϕ , then we may answer SAT
- Conceptually: axiom φ does not apply in the current context
- Example: $a=0 \land (\forall x. a > 0 \Rightarrow P(a, x))$
 - ▶ $\bot^{\phi} \Leftrightarrow (a \ge 0 \land \neg P(a, e))$

Features of Counterexample-Based Approach

- May be able to recognize SAT instances
 - Cases when no quantified axiom applies, i.e. counterexample is unsatisifiable
- Use information about "e" for finding relevant instantiations
 - Theory-specific information

Theory-Specific Instantiators

- After finding satisfying assignment to $\neg \phi[e/x]$
 - Each theory solver has theory-specify information/constraints involving e



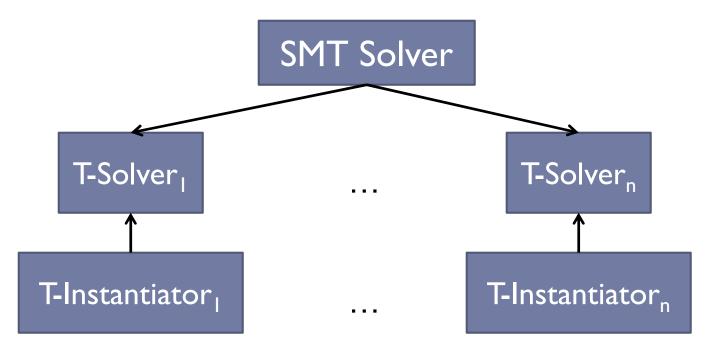
• How can we use this information?

 \blacktriangleright Naively, find arbitrary model and use value of e to instantiate φ

Theory-Specific Instantiators

• Can we do better?

- ▶ For each theory, associate an instantiatior
 - Has access to internal information stored in theory solver



Using Relationships between Triggers

For EUF:

- Search method for finding relevant instantiations
 - For literal t[e/x] = s, first try to find match t[g/x] in the equivalence class of s
- Criteria for judging relevance of instantiations
 - Do not consider instantiations g where e = g is unsatisifiable

Quantifier Instantiation for EUF

Multiple Iterations:

- (1) Find if e = s is entailed for some ground term s
- (2) Find if there exists some s such that all requirements for e are entailed by e = s
- (3) Find if there exists some s such that some requirements for e are (partially) matched by e = s
- (4) Do E-matching

Otherwise, see if (explicit) model can be constructed

Current Work

Optimizations

- Computing matches efficiently (i.e. indexing, caching)
- Using splitting on demand
 - Matching failed because c_1 and c_2 are not entailed to be equal
 - Add lemma ($c_1 = c_2 \lor c_1 \neq c_2$)
- Quantifier Instantiation for Arithmetic
- Recognizing Other SAT instances
 - If no matches can be found, construct explicit model M^I and see if MBQI succeeds
 - Construction of M^I based on information about e
- Backtracking decisions
 - If stuck, explore another part of the search space

Questions?