
A Counterexample Based Approach
for Quantifier Instantiation in SMT

Andrew Reynolds, University of Iowa
MVD, September 30, 2011

Overview
� Introduction to Satisfiability Modulo Theories (SMT)
� Extending SMT to Quantifiers
� Approaches to Quantifier Instantiation

� E-Matching
� Model-Based Quantifier InstantiationModel-Based Quantifier Instantiation
� New: Counterexample-Based Approach

� Current Work

Satisifiability Modulo Theories (SMT)
� SMT extends boolean satisifiability problems to theories

F = { (f(c) = a ∨ c + 4 > a), (a = g(b)) }

� Construct satisfying assignment M for set of clauses F� Construct satisfying assignment M for set of clauses F
� i.e. M = { f(c) = a, a = g(b) }

� Is this assignment consistent according to theory
reasoning?

DPLL(T) Architecture

� SMT uses DPLL(T) architecture
� Operates on states of the form

M ║ F
� F is a set of clauses� F is a set of clauses
� M is a set of asserted theory literals “L”

� Literals may be decisions “Ld”

DPLL(T) Architecture

� For a DPLL(T) state M ║ F,
� SMT solver can answer UNSAT if:

� Some clause in F is falsified by M, and
� M contains no decision literals Ld

SMT solver can answer SAT if:� SMT solver can answer SAT if:
� Each clause in F is satisfied in M, and
� M is T-consistent

DPLL(T) Architecture

SAT Theory

Clauses to add to F

M is T-Consistent

M is T-Inconsistent

F is UNSAT SAT
Solver

Theory
Solvers

Satisfying assignment M

UNSAT SAT
M is T-Consistent

F is SAT

F is UNSAT

Role of Theory Solver T in SMT

� Accepts a set of theory literals M
� Determine if M is T-consistent
� If not, add lemmas C to F, where each C is T-valid

� Typically, use SMT for decidable logics� Typically, use SMT for decidable logics
� Quantifier-free UF, Linear Real Arithmetic, etc.

� Also may be interested in other logics
� Non-linear arithmetic, quantified logics, etc.

Quantifiers in SMT

� Universal and existential quantifiers
� ∀x. ϕ, ∃x. ϕ
� Treated as literals by the SAT solver

� Relegate these literals to quantifiers module
� Role is similar to theory solver� Role is similar to theory solver
� Checking T-consistency is undecidable

� When ∀x. ϕ is asserted, cannot answer SAT

� When asked whether M is T-consistent, and there is a
∀x. ϕ asserted in M, either:
� Answer UNKNOWN
� Add (instantiation) clause (¬∀x.ϕ ∨ ϕ[s/x]) to M

Quantifiers in SMT: Challenges
(1) Finding relevant instantiations

� How do we determine ground term s?

(2) Deciding when providing instantiations is no longer
worthwhile
� When should we answer UNKNOWN?� When should we answer UNKNOWN?

(3) Determining if all necessary instantiations have been
applied
� Can we answer SAT?

Related Work: E-matching

• Address challenge (1)
– Find relevant instantiations by matching terms in quantifiers
t[x] to ground terms t[s/x]

• To construct instantiation for ∀x.ϕ :
– Find trigger t, where x is in FV(t)

ϕ
– Find trigger t, where x is in FV(t)
– Find ground term g
– Find substitution [s/x] such that t[s/x] is equivalent to g
modulo set of equalities E
• “t E-matches g”

– Use s to instantiate ∀x.ϕ

Related Work: Model-Based Quantifier
Instantiation (MBQI)

� Address challenges (1) and (3)
� Determine if some model satisfies all quantifiers. If so,
answer SAT. Otherwise, use values for which model fails to
instantiate quantifiers.

� Given asserted quantified formula ∀x.ϕ:� Given asserted quantified formula ∀x.ϕ:
� Build explicit model MI for ground clauses F
� Replace uninterpretted symbols in ϕ to generate ϕI

� Determine the satisfiability of R ∧ ¬ϕI[e/x]
� If UNSAT, then ∀x.ϕ is valid in current context

� Otherwise, model for R ∧ ¬ϕI[e/x] is used to instantiate ∀x.ϕ
� Rules out MI on subsequent iterations

MBQI Example
� Check satisfiability of F ∧ ϕ
F: w ≥ v + 2 ∧ f(v) ≤ 1 ∧ f(w) ≤ 3

ϕ: ∀ i j. (i ≤ j⇒ f(i) ≤ f(j))

� Model MI for F:� Model MI for F:
v → 0, w → 2, f → [0 → 1, 2 → 3, else → 4]

� Check satisfiability of ¬ϕI[ei/i, ej/j]:
ei ≤ ej ∧ ite(ei=0, 1, ite(ei=2, 3, 4)) = ite(ej=0, 1, ite(ej=2, 3, 4))

Alternative Approach to MBQI

� MBQI builds explicit models MI

� Check sat for R ∧ ¬ϕI[e/x]

� Instead: Reason about counterexample e directly
� Add clause containing ¬ϕ[e/x] to SMT solver

� Potential advantages:
ϕ

� Potential advantages:
� Do not need to generate explicit models MI

� Reason about ¬ϕ[e/x] incrementally, using the same
instance of SMT solver

Counterexample Lemma

� Write ⊥ϕ to denote literal meaning:

“a counterexample to ϕ exists”
� SMT solver finds satisfying assignment to:

(∨ ⊥ϕ)
ϕ ϕ

(∨ ⊥ϕ)
“either ϕ holds or a ϕ has a counterexample”

(⊥ϕ ⇔ ¬ [e/x])
“ϕ has a counterexample if and only if its negation

holds for some value e”

Configurations for Quantifier/CE Literal

�ϕ is not asserted in M
� We don’t care about ϕ

�ϕ(d) and (⊥ϕ)d are asserted in M
ϕ

ϕ ϕ

ϕ
ϕ

ϕ and (⊥ϕ) are asserted in M
� ϕ is true but we might find a counterexample

�ϕ (d) and ¬⊥ϕ are asserted in M
� ϕ is true and we know it does not have a counterexample

� Requirement: Never assert ¬(⊥ ϕ)d

Recognizing SAT Instances with CE
Literals
� If ⊥ϕ is asserted negatively as a non-decision, then ϕ is
valid in the current context
� If this is true for all quantifiers ϕ, then we may answer SAT

� Conceptually: axiom ϕ does not apply in the current
context

ϕ

� Example: a=0 ∧ (∀ x. a > 0 ⇒ P(a, x))
� ⊥ ϕ ⇔ (a > 0 ∧ ¬P(a, e))

Features of Counterexample-Based
Approach

� May be able to recognize SAT instances
� Cases when no quantified axiom applies, i.e. counterexample is
unsatisifiable

� Use information about “e” for finding relevant
instantiationsinstantiations
� Theory-specific information

Theory-Specific Instantiators

� After finding satisfying assignment to ¬ϕ[e/x]
� Each theory solver has theory-specify information/constraints
involving e

SMT Solver

� How can we use this information?
� Naively, find arbitrary model and use value of e to instantiate ϕ

T-Solver1 T-Solvern…

Theory-Specific Instantiators

� Can we do better?
� For each theory, associate an instantiatior

� Has access to internal information stored in theory solver

SMT Solver

T-Solver1 T-Solvern…

T-Instantiator1 T-Instantiatorn…

Using Relationships between Triggers
� For EUF:

� Search method for finding relevant instantiations
� For literal t[e/x] = s, first try to find match t[g/x] in the equivalence
class of s

� Criteria for judging relevance of instantiations
� Do not consider instantiations g where e = g is unsatisifiable� Do not consider instantiations g where e = g is unsatisifiable

Quantifier Instantiation for EUF
� Multiple Iterations:

(1) Find if e = s is entailed for some ground term s
(2) Find if there exists some s such that all requirements for e

are entailed by e = s
(3) Find if there exists some s such that some requirements for

e are (partially) matched by e = se are (partially) matched by e = s
(4) Do E-matching

� Otherwise, see if (explicit) model can be constructed

Current Work
� Optimizations

� Computing matches efficiently (i.e. indexing, caching)
� Using splitting on demand

� Matching failed because c1 and c2 are not entailed to be equal
� Add lemma (c1 = c2 ∨ c1 ≠ c2)

� Quantifier Instantiation for Arithmetic� Quantifier Instantiation for Arithmetic
� Recognizing Other SAT instances

� If no matches can be found, construct explicit model MI and
see if MBQI succeeds

� Construction of MI based on information about e
� Backtracking decisions

� If stuck, explore another part of the search space

Questions?

