Generating Small Countermodels using SMT

Andrew Reynolds

MVD

September 21, 2012

Acknowledgements

- Intel Corporation
 - Amit Goel, Sava Krstic
- University of Iowa
 - Cesare Tinelli, Francois Bobot
- New York University
 - Clark Barrett, Morgan Deters, Dejan Jovanovic

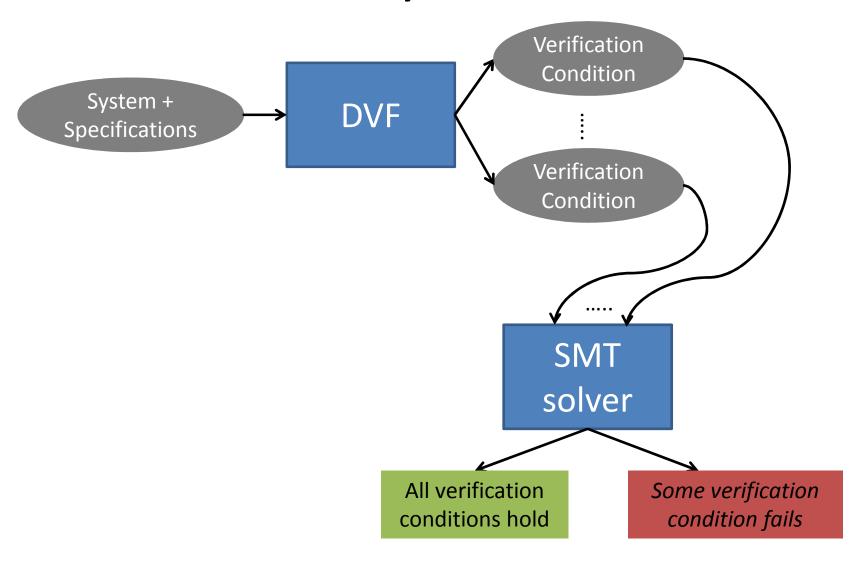
Overview

- Satisfiability Modulo Theories (SMT)
- SMT-Based System Verification
 - Deductive Verification Framework (DVF)
- Challenge of quantifiers in SMT
 - Why do we care about quantifiers?
 - Why are quantifiers difficult?
- Finite Model Finding
- Experimental Results

Satisfiability Modulo Theories (SMT)

- SMT solvers:
 - Are powerful tools for determining satisfiability of ground formulas
 - Built-in decision procedures for many theories
 - Arithmetic, arrays, bit vectors, datatypes, ...
 - Have improved performance in past 10 years
- Verification applications rely on SMT solvers
 - System verifier DVF used by Intel

SMT-Based System Verification

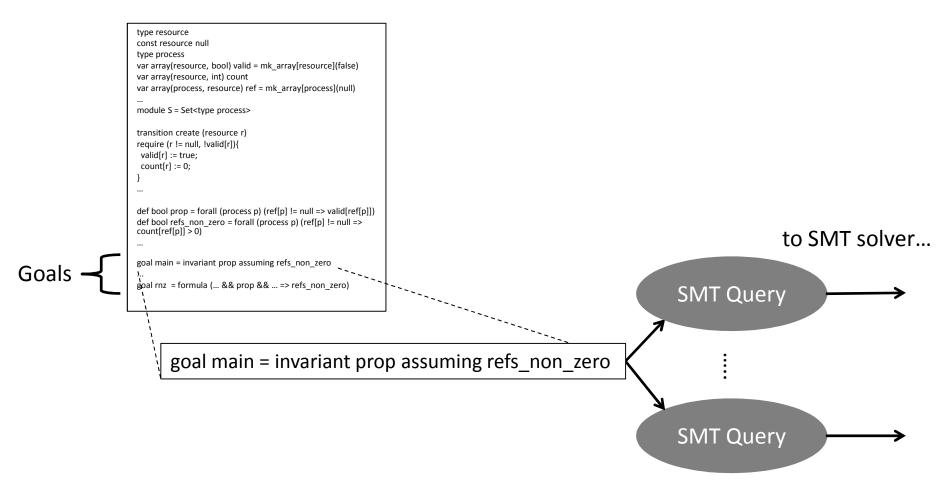


DVF Example

```
type resource
                         const resource null
                         type process
                         var array(resource, bool) valid = mk array[resource](false)
Definitions
                         var array(resource, int) count
                         var array(process, resource) ref = mk array[process](null)
                         module S = Set<type process>
                         transition create (resource r)
                         require (r != null, !valid[r]){
 Transition
                          valid[r] := true;
   System
                          count[r] := 0;
                         def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])
Propertie
                         def bool refs_non_zero = forall (process p) (ref[p] != null => count[ref[p]] > 0)
                         goal main = invariant prop assuming refs non zero
                         goal rnz = formula (... && prop && ... => refs_non_zero)
```

Language corresponds closely to SMT constraints

DVF SMT Backend

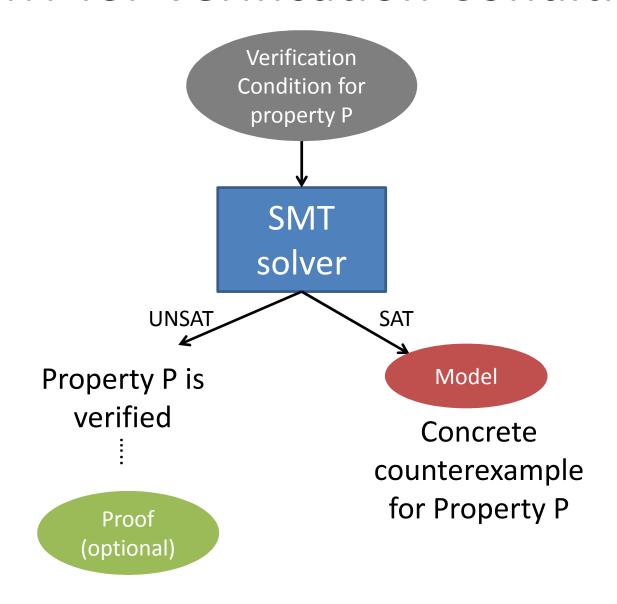


• Goals translated into (possibly multiple) SMT queries

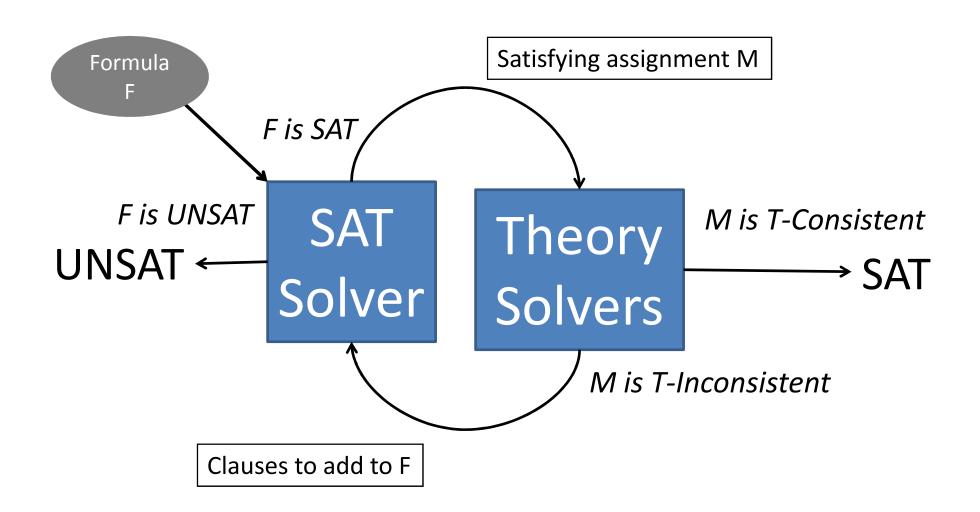
SMT Query

```
S, P, R: type
                                    null: R
                                    valid: Array(R, Bool)
                                   count: Array(R, Int)
Definitions -
                                ref: Array(P, R)
                                   empty: S
                                    mem: (S, P) -> Bool
                                    add, remove: (S, P) -> S
        Axioms  \begin{cases} \forall x : R. \ count[x] > 0 \Rightarrow valid[x] \\ \forall x : P. \neg \ mem(\ empty, x) \\ \forall x : S, \ y, \ z : P. \ mem(\ add(\ x, \ y), \ z) \Rightarrow (\ z = y \lor mem(\ x, \ z)) \\ \forall x : S, \ y, \ z : P. \ mem(\ remove(\ x, \ y), \ z) \Rightarrow (\ z \neq y \land mem(\ x, \ z)) \end{cases} 
                                    \neg ( ... \forallx. (ref[x] != null => valid[ref[x]]) ...)
                                                              Property to verify
```

SMT for Verification Conditions



SMT: DPLL(T) Architecture



Why Quantifiers?

Quantifiers exist in verification conditions:

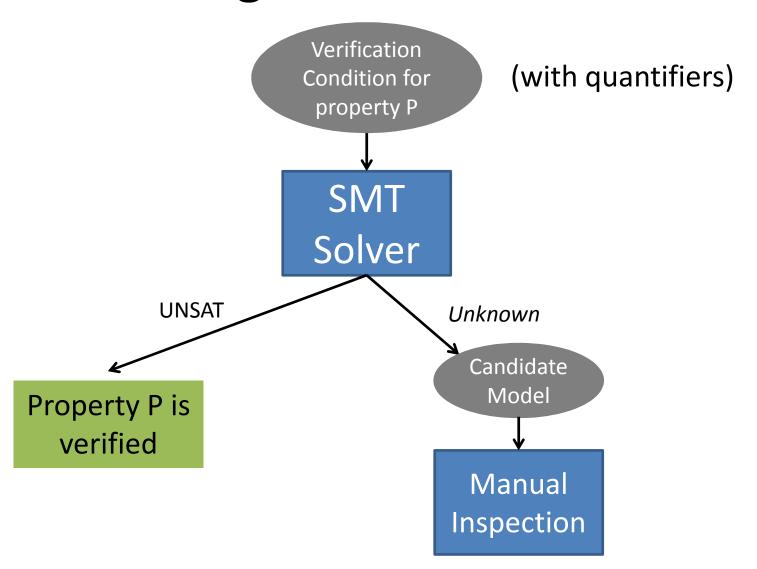
```
S, P, R: type
                                null:R
                                valid: Array(R, Bool)
                                count: Array(R, Int)
Definitions
                                ref: Array(P, R)
                                empty: S
                                mem: (S, P) -> Bool
                                add: (S, P) -> S
                                \forall x : R. count[x] > 0 \Rightarrow valid[x]
                                \forall x : P. \neg mem(empty, x)
                                \forall x : S, y, z : P. mem( add( x, y ), z ) \Rightarrow ( z = y \lor mem( x, z ) )
\forall x : S, y, z : P. mem( remove( x, y ), z ) \Rightarrow ( z \neq y \land mem( x, z ) )
      Axioms
                                         \forall x. (ref[x] != null => valid[ref[x]]) ...)
                                                 Property to verify
```

Challenge of Quantifiers in SMT

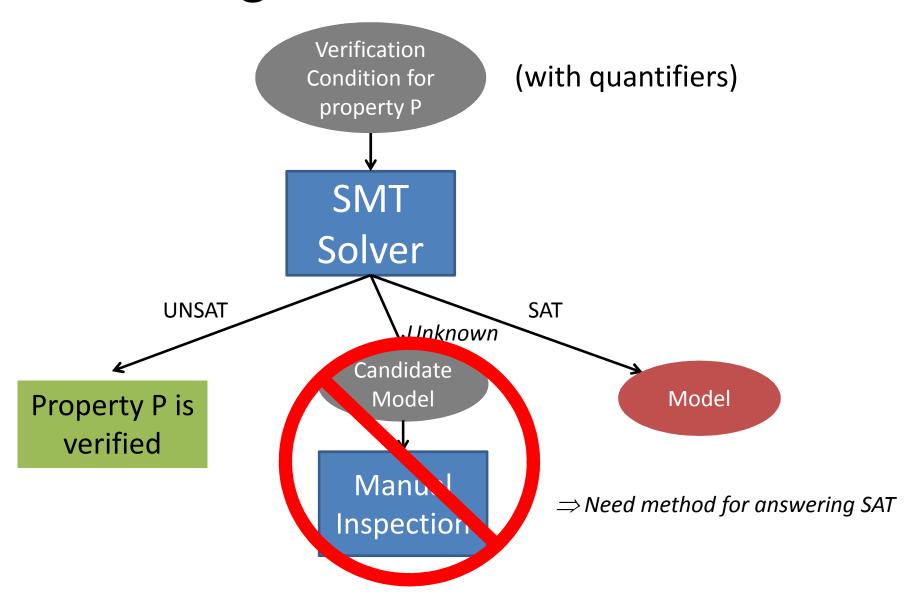
• In general, determining T-consistency of a set of quantified formulas is *undecidable*

- SMT solvers will typically:
 - Add ground instances of quantified formulas
 - i.e. for $\forall x$. F, add lemmas $F[t_1/x]$, $F[t_2/x]$, ...
 - If ground conflict exists, answer UNSAT
 - Otherwise, may continue indefinitely
 - Sound but incomplete procedure

Handling Verification Conditions



Handling Verification Conditions



Finite Model Finding

- Method to answer SAT in presence of quantifiers
- Given (G, Q):
 - Set of ground constraints G
 - Set of quantified assertions Q
 - Find a "smallest" model for G
 - Least number of equivalence classes for terms
 - 2. Try every instance of Q in the model
 - Feasible if # eq classes we need to consider is *finite*
 - 3. If every instance is true in model, answer SAT
- Consider quantifiers over uninterpreted sorts
 - Values, Addresses, Processes, Resources, Sets, ...

Finite Model Finding: Example

$$a \neq b, b = c, \forall x. f(x) = x$$

$$G \qquad Q$$

- 1. Smallest model for G, size 2 : { <u>a</u> }, { <u>b</u>, c }
- 2. Substitute Q with [a/x], [b/x]:
 - f(a) = a, f(b) = b added to G
- 3. Afterwards: { <u>a</u>, f(a) }, { <u>b</u>, c, f(b) }
 - All instances are true

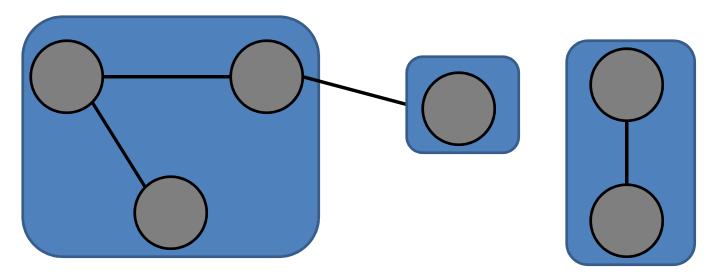
 \Rightarrow answer SAT

Finding Small Models

- "Smallest" model for sort S means:
 - Fewest # equivalence classes of sort S
- To find small models:
 - Try to find models of size 1, 2, 3, ... etc.
 - Impose cardinality constraints
- Requires solver for equality with cardinality constraints

Solver for Eq + Cardinality Constraints

- Maintain disequality graph
 - Nodes are equivalence classes
 - Edges are disequalities
- For cardinality k, interested whether graph is k-colorable

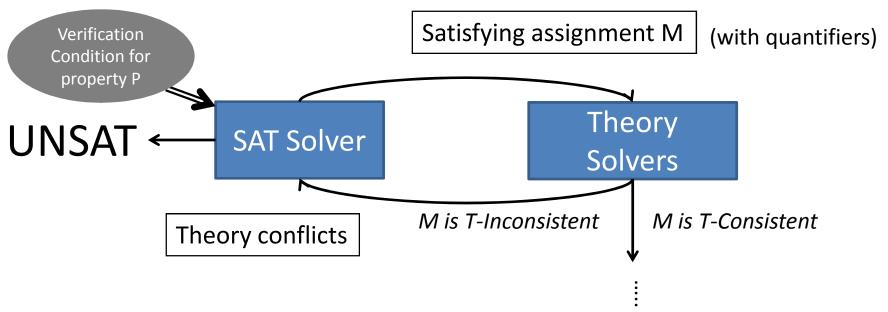


- Partition disequality graph of the solver into regions where the edge density is high, so that we:
 - Discover cliques local to regions
 - Suggest relevant terms to identify

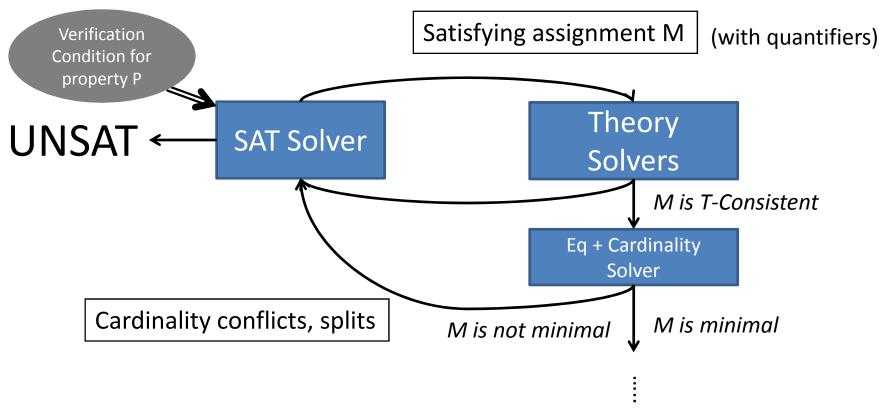
Why Small Models?

- Easier to test against quantifiers
 - Given quantified formula $\forall x_1...x_n$. F
 - Naively, we require kⁿ instantiations,
 - where k is the cardinality of sort($x_1 ... x_n$)
 - Feasible if either:
 - Both n and k are small
 - We can recognize/eliminate redundant instantiations
 - Model-Based Quantifier Instantiation [Ge/deMoura 09]
 - i.e. do not consider instances that are already true

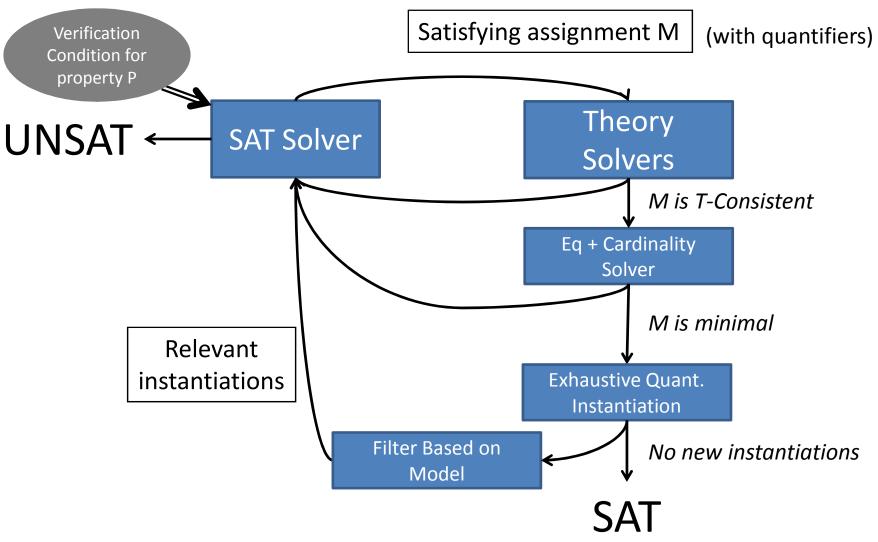
Anatomy of Finite Model Finding



Anatomy of Finite Model Finding



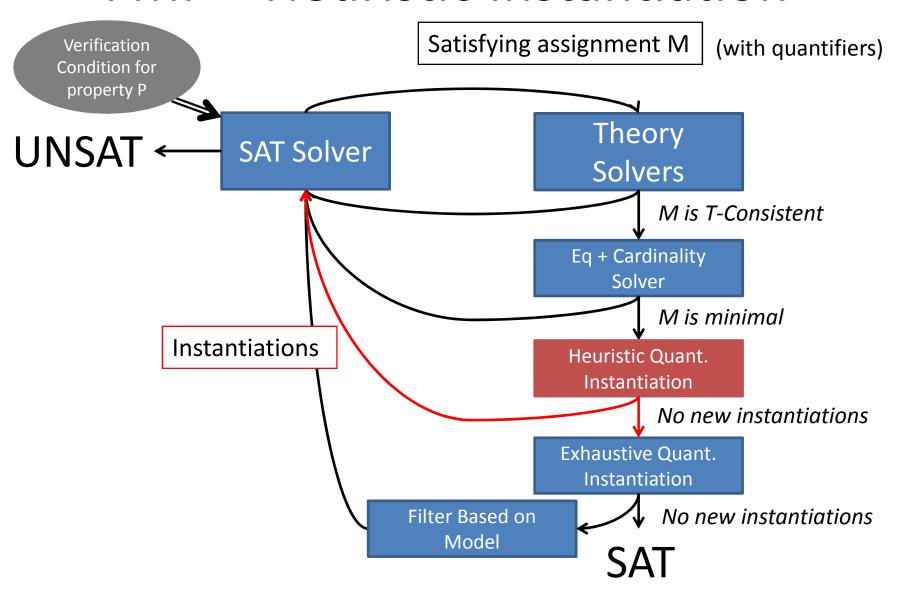
Anatomy of Finite Model Finding



FMF + Heuristic Instantiation

- Idea:
 - First see if instantiations based on heuristics exist
 - If not, resort to exhaustive instantiation
- May lead to:
 - Answering UNSAT more often
 - Discover easy conflicts, if they exist
 - Arriving at model faster
 - Instantiations rule out spurious models

FMF + Heuristic Instantiation



Experimental Results

- Implemented in SMT Solver CVC4
- DVF Benchmarks
 - Taken from real examples of interest to Intel
 - Both SAT/UNSAT benchmarks
 - SAT benchmarks generated by removing necessary pf assumptions
 - Many theories: UF, arithmetic, arrays, datatypes
- TPTP Benchmarks
 - Taken from ATP community
 - Heavily quantified
 - Unsorted logic

Results: DVF

UNSAT	german	refcount	agree	apg	bmk	Total
cvc4	145	40	600	304	244	1333
cvc4+fmf	145	40	604	294	236	1319
z3	145	40	604	304	244	1337
	145	40	604	304	244	1337

SAT	german	refcount	agree	apg	bmk	Total
cvc4	2	0	0	0	0	2
cvc4+fmf	45	6	62	16	36	165
z3	45	1	0	0	0	46
	45	6	62	19	37	169

• 60 second timeout

Results: TPTP

- 10 second timeout
- 11613 UNSAT benchmarks:
 - z3: **5471** solved
 - cvc4: 4868 solved
 - cvc4+fmf: 2246 solved, but orthogonal
 - 288 solved that cvc4 w/o finite model finding cannot
 - Either cvc4 or cvc4+fmf: 5158 solved
- 1933 SAT benchmarks:
 - z3: 866 solved
 - cvc4+fmf: **920** solved
- Model-Based filtering of instances is essential

Summary

- Finite model finding in CVC4:
 - Finds minimal models for ground constraints
 - Uses exhaustive instantiation to test models
 - Instantiations filtered by model
 - -Optionally, uses heuristic instantiation

Conclusions

- Finite Model Finding:
 - Practical approach for SMT + quantifiers
 - Can answer SAT quickly
 - Generate simple counterexamples for DVF
 - Many models in real examples have cardinality 2 or 3
 - Improves coverage in UNSAT cases
 - Increased ability to discharge verification conditions
 - Orthogonal to other approaches

Questions?