
Generating Small Countermodels
using SMTusing SMT

Andrew Reynolds
MVD

September 21, 2012

Acknowledgements

• Intel Corporation
– Amit Goel, Sava Krstic

• University of Iowa
– Cesare Tinelli, Francois Bobot– Cesare Tinelli, Francois Bobot

• New York University
– Clark Barrett, Morgan Deters, Dejan Jovanovic

Overview

• Satisfiability Modulo Theories (SMT)
• SMT-Based System Verification
– Deductive Verification Framework (DVF)

• Challenge of quantifiers in SMT• Challenge of quantifiers in SMT
– Why do we care about quantifiers?
– Why are quantifiers difficult?

• Finite Model Finding
• Experimental Results

Satisfiability Modulo Theories (SMT)

• SMT solvers:
– Are powerful tools for determining satisfiability of

ground formulas
• Built-in decision procedures for many theories• Built-in decision procedures for many theories

– Arithmetic, arrays, bit vectors, datatypes, …

– Have improved performance in past 10 years

• Verification applications rely on SMT solvers
– System verifier DVF used by Intel

SMT-Based System Verification

DVF …
..

System +
Specifications

Verification
Condition

Verification
Condition

SMT
solver

…..

All verification
conditions hold

Some verification
condition fails

DVF Example
type resource
const resource null
type process
var array(resource, bool) valid = mk_array[resource](false)
var array(resource, int) count
var array(process, resource) ref = mk_array[process](null)
…
module S = Set<type process>

transition create (resource r)
require (r != null, !valid[r]){
valid[r] := true;

Definitions

Transition valid[r] := true;
count[r] := 0;

}
…

def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])
def bool refs_non_zero = forall (process p) (ref[p] != null => count[ref[p]] > 0)
…

goal main = invariant prop assuming refs_non_zero
...
goal rnz = formula (… && prop && … => refs_non_zero)

Transition
System

Properties

Goals

• Language corresponds closely to SMT constraints

DVF SMT Backend
type resource
const resource null
type process
var array(resource, bool) valid = mk_array[resource](false)
var array(resource, int) count
var array(process, resource) ref = mk_array[process](null)
…
module S = Set<type process>

transition create (resource r)
require (r != null, !valid[r]){
valid[r] := true;
count[r] := 0;

}
…

def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])
def bool refs_non_zero = forall (process p) (ref[p] != null =>
count[ref[p]] > 0)
… to SMT solver…
goal main = invariant prop assuming refs_non_zero
...
goal rnz = formula (… && prop && … => refs_non_zero)

Goals

…
..

SMT Query

SMT Query

goal main = invariant prop assuming refs_non_zero

to SMT solver…

• Goals translated into (possibly multiple) SMT queries

SMT Query
S, P, R : type
null : R
valid: Array(R, Bool)
count: Array(R, Int)
ref: Array(P, R)
empty : S
mem : (S, P) -> Bool
add, remove : (S, P) -> S

Definitions

…

∀x : R. count[x] > 0 ⇒ valid[x]
∀x : P. ¬ mem(empty, x)
∀x : S, y, z : P. mem(add(x, y), z) ⇒ (z = y ∨ mem(x, z))
∀x : S, y, z : P. mem(remove(x, y), z) ⇒ (z ≠ y ∧ mem(x, z))
…

¬ (... ∀x. (ref[x] != null => valid[ref[x]]) …)

Property to verify

Axioms

SMT for Verification Conditions

SMT
solver

Verification
Condition for

property P

solver
UNSAT SAT

Property P is
verified Concrete

counterexample
for Property P

Model

Proof
(optional)

…
..

SMT: DPLL(T) Architecture

SAT Theory

Satisfying assignment M

M is T-Consistent

F is SAT

F is UNSAT

Formula
F

SAT
Solver

Theory
Solvers

Clauses to add to F

UNSAT SAT
M is T-Consistent

M is T-Inconsistent

F is UNSAT

S, P, R : type
null : R
valid: Array(R, Bool)
count: Array(R, Int)
ref: Array(P, R)
empty : S
mem : (S, P) -> Bool

Why Quantifiers?
• Quantifiers exist in verification conditions:

Definitions

mem : (S, P) -> Bool
add : (S, P) -> S

∀x : R. count[x] > 0 ⇒ valid[x]
∀x : P. ¬ mem(empty, x)
∀x : S, y, z : P. mem(add(x, y), z) ⇒ (z = y ∨ mem(x, z))
∀x : S, y, z : P. mem(remove(x, y), z) ⇒ (z ≠ y ∧ mem(x, z))
…

¬ (... ∀x. (ref[x] != null => valid[ref[x]]) …)

Property to verify

Axioms

Challenge of Quantifiers in SMT

• In general, determining T-consistency of a set
of quantified formulas is undecidable

• SMT solvers will typically:• SMT solvers will typically:
– Add ground instances of quantified formulas

• i.e. for ∀x. F, add lemmas F[t1/x], F[t2/x], …
– If ground conflict exists, answer UNSAT
– Otherwise, may continue indefinitely

– Sound but incomplete procedure

Handling Verification Conditions

SMT
Solver

Verification
Condition for

property P
(with quantifiers)

Solver
UNSAT Unknown

Manual
Inspection

Candidate
ModelProperty P is

verified

Handling Verification Conditions

SMT
Solver

Verification
Condition for

property P
(with quantifiers)

Solver
UNSAT SAT

Property P is
verified

Model

Unknown

Manual
Inspection

Candidate
Model

⇒ Need method for answering SAT

Finite Model Finding

• Method to answer SAT in presence of quantifiers
• Given (G, Q):

– Set of ground constraints G
– Set of quantified assertions Q

1. Find a “smallest” model for G
• Least number of equivalence classes for terms

2. Try every instance of Q in the model
• Feasible if # eq classes we need to consider is finite

3. If every instance is true in model, answer SAT

• Consider quantifiers over uninterpreted sorts
– Values, Addresses, Processes, Resources, Sets, …

Finite Model Finding : Example

a ≠ b, b = c, ∀x. f(x) = x

1. Smallest model for G, size 2 : { a }, { b, c }

QG
1. Smallest model for G, size 2 : { a }, { b, c }
2. Substitute Q with [a/x], [b/x]:

• f(a) = a, f(b) = b added to G

3. Afterwards: { a, f(a) }, { b, c, f(b) }
• All instances are true

⇒ answer SAT

Finding Small Models

• “Smallest” model for sort S means:
– Fewest # equivalence classes of sort S

• To find small models:• To find small models:
– Try to find models of size 1, 2, 3, … etc.
• Impose cardinality constraints

• Requires solver for equality with cardinality
constraints

Solver for Eq + Cardinality Constraints
• Maintain disequality graph

– Nodes are equivalence classes
– Edges are disequalities

• For cardinality k, interested whether graph is k-colorable

• Partition disequality graph of the solver into regions where
the edge density is high, so that we:
– Discover cliques local to regions
– Suggest relevant terms to identify

Why Small Models?

• Easier to test against quantifiers
– Given quantified formula ∀x1…xn. F

• Naively, we require kn instantiations,
– where k is the cardinality of sort(x1 … xn)– where k is the cardinality of sort(x1 … xn)

– Feasible if either:
• Both n and k are small
• We can recognize/eliminate redundant instantiations

– Model-Based Quantifier Instantiation [Ge/deMoura 09]
– i.e. do not consider instances that are already true

Anatomy of Finite Model Finding

SAT Solver
Theory
Solvers

Satisfying assignment M

Theory conflicts

UNSAT

Verification
Condition for

property P

(with quantifiers)

M is T-ConsistentM is T-InconsistentTheory conflicts

…
..

Anatomy of Finite Model Finding

SAT Solver
Theory
Solvers

Satisfying assignment M

UNSAT

Verification
Condition for

property P

(with quantifiers)

Eq + Cardinality

M is T-Consistent

Cardinality conflicts, splits

Eq + Cardinality
Solver

M is minimalM is not minimal

…
..

Anatomy of Finite Model Finding

SAT Solver
Theory
Solvers

Satisfying assignment M

UNSAT

Verification
Condition for

property P

(with quantifiers)

Eq + Cardinality

M is T-Consistent

Relevant
instantiations

Eq + Cardinality
Solver

M is minimal

SAT

Exhaustive Quant.
Instantiation

No new instantiationsFilter Based on
Model

FMF + Heuristic Instantiation

• Idea:
– First see if instantiations based on heuristics exist
– If not, resort to exhaustive instantiation

• May lead to:• May lead to:
– Answering UNSAT more often

• Discover easy conflicts, if they exist

– Arriving at model faster
• Instantiations rule out spurious models

FMF + Heuristic Instantiation

SAT Solver
Theory
Solvers

Satisfying assignment M

UNSAT

Verification
Condition for

property P

(with quantifiers)

Eq + Cardinality

M is T-Consistent

Eq + Cardinality
Solver

Heuristic Quant.
Instantiation

M is minimal

SAT

No new instantiations

Exhaustive Quant.
Instantiation

No new instantiationsFilter Based on
Model

Instantiations

• Implemented in SMT Solver CVC4
• DVF Benchmarks
– Taken from real examples of interest to Intel
– Both SAT/UNSAT benchmarks

• SAT benchmarks generated by removing necessary pf assumptions

Experimental Results

• SAT benchmarks generated by removing necessary pf assumptions

– Many theories: UF, arithmetic, arrays, datatypes

• TPTP Benchmarks
– Taken from ATP community
– Heavily quantified
– Unsorted logic

Results: DVF
UNSAT german refcount agree apg bmk Total

cvc4 145 40 600 304 244 1333
cvc4+fmf 145 40 604 294 236 1319

z3 145 40 604 304 244 1337

145 40 604 304 244 1337

• 60 second timeout

SAT german refcount agree apg bmk Total
cvc4 2 0 0 0 0 2

cvc4+fmf 45 6 62 16 36 165

z3 45 1 0 0 0 46
45 6 62 19 37 169

Results: TPTP

• 10 second timeout
• 11613 UNSAT benchmarks:

– z3: 5471 solved
– cvc4: 4868 solved
– cvc4+fmf: 2246 solved, but orthogonal– cvc4+fmf: 2246 solved, but orthogonal

• 288 solved that cvc4 w/o finite model finding cannot

– Either cvc4 or cvc4+fmf: 5158 solved

• 1933 SAT benchmarks:
– z3: 866 solved
– cvc4+fmf: 920 solved

• Model-Based filtering of instances is essential

Summary

• Finite model finding in CVC4:
– Finds minimal models for ground constraints
–Uses exhaustive instantiation to test models
• Instantiations filtered by model

–Optionally, uses heuristic instantiation

Conclusions

• Finite Model Finding:
– Practical approach for SMT + quantifiers
– Can answer SAT quickly
• Generate simple counterexamples for DVF• Generate simple counterexamples for DVF

– Many models in real examples have cardinality 2 or 3

– Improves coverage in UNSAT cases
• Increased ability to discharge verification conditions

– Orthogonal to other approaches

Questions?

