Generating Small Countermodels using SMT

Andrew Reynolds

MVD
September 21, 2012

Acknowledgements

- Intel Corporation
- Amit Goel, Sava Krstic
- University of lowa
- Cesare Tinelli, Francois Bobot
- New York University
- Clark Barrett, Morgan Deters, Dejan Jovanovic

Overview

- Satisfiability Modulo Theories (SMT)
- SMT-Based System Verification
- Deductive Verification Framework (DVF)
- Challenge of quantifiers in SMT
- Why do we care about quantifiers?
- Why are quantifiers difficult?
- Finite Model Finding
- Experimental Results

Satisfiability Modulo Theories (SMT)

- SMT solvers:
- Are powerful tools for determining satisfiability of ground formulas
- Built-in decision procedures for many theories
- Arithmetic, arrays, bit vectors, datatypes, ...
- Have improved performance in past 10 years
- Verification applications rely on SMT solvers
- System verifier DVF used by Intel

SMT-Based System Verification

DVF Example

- Language corresponds closely to SMT constraints

DVF SMT Backend

- Goals translated into (possibly multiple) SMT queries

SMT Query

Definitions $\left\{\begin{array}{l}\text { S, P, R : type } \\ \text { null : R } \\ \text { valid: } \operatorname{Array(~R,~Bool~)~} \\ \text { count: Array(R, Int) } \\ \text { ref: Array(P, R) } \\ \text { empty : S } \\ \text { mem : (S, P) -> Bool } \\ \text { add, remove : (S, P) -> S } \\ \text {... }\end{array}\right.$

$$
\text { Axioms }\left\{\begin{array}{l}
\forall x: R . \operatorname{count}[x]>0 \Rightarrow \operatorname{valid}[x] \\
\forall x: P . \neg \operatorname{mem}(\operatorname{empty}, x) \\
\forall x: S, y, z: P . \operatorname{mem}(\operatorname{add}(x, y), z) \Rightarrow(z=y \vee \operatorname{mem}(x, z)) \\
\forall x: S, y, z: P . \operatorname{mem}(\operatorname{remove}(x, y), z) \Rightarrow(z \neq y \wedge \operatorname{mem}(x, z)) \\
\ldots \\
\neg(\ldots \forall x .(\operatorname{ref}[x]!=\text { null }=>\operatorname{valid}[\operatorname{ref}[x]]) \ldots) \\
\underbrace{}_{\text {Property to verify }}
\end{array}\right.
$$

SMT for Verification Conditions

SMT: DPLL(T) Architecture

Why Quantifiers?

- Quantifiers exist in verification conditions:

Challenge of Quantifiers in SMT

- In general, determining T-consistency of a set of quantified formulas is undecidable
- SMT solvers will typically:
- Add ground instances of quantified formulas
- i.e. for $\forall x$. F , add lemmas $\mathrm{F}\left[\mathrm{t}_{1} / \mathrm{x}\right], \mathrm{F}\left[\mathrm{t}_{2} / \mathrm{x}\right]$, ...
- If ground conflict exists, answer UNSAT
- Otherwise, may continue indefinitely
- Sound but incomplete procedure

Handling Verification Conditions

Handling Verification Conditions

Finite Model Finding

- Method to answer SAT in presence of quantifiers
- Given (G, Q):
- Set of ground constraints G
- Set of quantified assertions Q

1. Find a "smallest" model for G

- Least number of equivalence classes for terms

2. Try every instance of Q in the model

- Feasible if \# eq classes we need to consider is finite

3. If every instance is true in model, answer SAT

- Consider quantifiers over uninterpreted sorts
- Values, Addresses, Processes, Resources, Sets, ...

Finite Model Finding : Example

1. Smallest model for G, size $2:\{\underline{a}\},\{\underline{b}, c\}$
2. Substitute Q with $[a / x],[b / x]$:

- $f(a)=a, f(b)=b$ added to G

3. Afterwards: $\{\underline{a}, f(a)\},\{\underline{b}, c, f(b)\}$

- All instances are true

$$
\Rightarrow \text { answer SAT }
$$

Finding Small Models

- "Smallest" model for sort S means:
- Fewest \# equivalence classes of sort S
- To find small models:
- Try to find models of size 1, 2, 3, ... etc.
- Impose cardinality constraints
- Requires solver for equality with cardinality constraints

Solver for Eq + Cardinality Constraints

- Maintain disequality graph
- Nodes are equivalence classes
- Edges are disequalities
- For cardinality k, interested whether graph is k-colorable

- Partition disequality graph of the solver into regions where the edge density is high, so that we:
- Discover cliques local to regions
- Suggest relevant terms to identify

Why Small Models?

- Easier to test against quantifiers
- Given quantified formula $\forall x_{1} \ldots x_{n}$. F
- Naively, we require k^{n} instantiations,
- where k is the cardinality of $\operatorname{sort}\left(x_{1} \ldots x_{n}\right)$
- Feasible if either:
- Both n and k are small
- We can recognize/eliminate redundant instantiations
- Model-Based Quantifier Instantiation [Ge/deMoura 09]
- i.e. do not consider instances that are already true

Anatomy of Finite Model Finding

Anatomy of Finite Model Finding

Anatomy of Finite Model Finding

FMF + Heuristic Instantiation

- Idea:
- First see if instantiations based on heuristics exist
- If not, resort to exhaustive instantiation
- May lead to:
- Answering UNSAT more often
- Discover easy conflicts, if they exist
- Arriving at model faster
- Instantiations rule out spurious models

FMF + Heuristic Instantiation

Experimental Results

- Implemented in SMT Solver CVC4
- DVF Benchmarks
- Taken from real examples of interest to Intel
- Both SAT/UNSAT benchmarks
- SAT benchmarks generated by removing necessary pf assumptions
- Many theories: UF, arithmetic, arrays, datatypes
- TPTP Benchmarks
- Taken from ATP community
- Heavily quantified
- Unsorted logic

Results: DVF

UNSAT	german	refcount	agree	apg	bmk	Total
cvc4	$\mathbf{1 4 5}$	$\mathbf{4 0}$	600	$\mathbf{3 0 4}$	$\mathbf{2 4 4}$	1333
cvc4+fmf	$\mathbf{1 4 5}$	$\mathbf{4 0}$	$\mathbf{6 0 4}$	294	236	1319
z3	$\mathbf{1 4 5}$	$\mathbf{4 0}$	$\mathbf{6 0 4}$	$\mathbf{3 0 4}$	$\mathbf{2 4 4}$	$\mathbf{1 3 3 7}$
	145	40	604	304	244	1337

SAT	german	refcount	agree	apg	bmk	Total
cvc4	2	0	0	0	0	2
cvc4+fmf	$\mathbf{4 5}$	$\mathbf{6}$	$\mathbf{6 2}$	$\mathbf{1 6}$	$\mathbf{3 6}$	$\mathbf{1 6 5}$
$\mathrm{z3}$	$\mathbf{4 5}$	1	0	0	0	46
	45	6	62	19	37	169

- 60 second timeout

Results: TPTP

- 10 second timeout
- 11613 UNSAT benchmarks:
- z3: 5471 solved
- cvc4: 4868 solved
- cvc4+fmf: 2246 solved, but orthogonal
- 288 solved that cvc4 w/o finite model finding cannot
- Either cvc4 or cvc4+fmf: 5158 solved
- 1933 SAT benchmarks:
- z3: 866 solved
- cvc4+fmf: 920 solved
- Model-Based filtering of instances is essential

Summary

- Finite model finding in CVC4:
-Finds minimal models for ground constraints
- Uses exhaustive instantiation to test models
- Instantiations filtered by model
-Optionally, uses heuristic instantiation

Conclusions

- Finite Model Finding:
- Practical approach for SMT + quantifiers
- Can answer SAT quickly
- Generate simple counterexamples for DVF
- Many models in real examples have cardinality 2 or 3
- Improves coverage in UNSAT cases
- Increased ability to discharge verification conditions
- Orthogonal to other approaches

Questions?

