
How to use cvc5 Effectively
Andrew Reynolds

September 28, 2023



Overview

• cvc5: a state-of-the-art SMT solver for verification
• Supports many techniques for quantified formulas

• Combined with a wide array of theory solvers

• Interfaces for when things go right

• Interfaces for when things go wrong



Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

Preprocessor

Theory 
Solver(s)

UNSAT SAT UNKNOWN



Architecture of cvc5

cvc5

SAT Solver CDCL(T)

Satisfying Assignments

Conflicts, Lemmas

Arithmetic

Arrays

Datatypes

Quantifier Instantiation

Strings

T-Combination

Preprocessor

Bit-vectors



Landscape of Quantifier Strategies in cvc5

Lightweight

Domain Specific

Heavyweight

General purpose

Many verification applications rely on quantifier instantiation
• cvc5 supports many variants



Landscape of Quantifier Strategies in cvc5

Lightweight

Domain Specific

Heavyweight

General purpose

E-Matching

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]



Landscape of Quantifier Strategies in cvc5

Lightweight

Domain Specific

Heavyweight

General purpose

E-Matching

Model-Based

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

[Ge et al 2009]



Landscape of Quantifier Strategies in cvc5

Lightweight

Domain Specific

Heavyweight

General purpose

E-Matching

Model-Based Finite Model Finding

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

[Ge et al 2009] [Reynolds et al 2013]



Landscape of Quantifier Strategies in cvc5

Lightweight

Domain Specific

Heavyweight

General purpose

E-Matching

Conflict-Based

Model-Based Finite Model Finding

[Reynolds et al 2014,Barbosa et al 2017]

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

[Ge et al 2009] [Reynolds et al 2013]



Landscape of Quantifier Strategies in cvc5

Lightweight

Domain Specific

Heavyweight

General purpose

E-Matching

Conflict-Based

Model-Based Finite Model Finding

CEX-Guided

[Reynolds et al 2014,Barbosa et al 2017]

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

[Ge et al 2009] [Reynolds et al 2013]

[Reynolds et al 2015] (LIA) 
[Niemetz et al 2018] (BV)



Landscape of Quantifier Strategies in cvc5

Lightweight

Domain Specific

Heavyweight

General purpose

E-Matching

Conflict-Based

Model-Based Finite Model Finding

Enumerative

CEX-Guided

[Reynolds et al 2014,Barbosa et al 2017]

[Reynolds et al 2017, Janota et al 2021]

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

[Ge et al 2009] [Reynolds et al 2013]

[Reynolds et al 2015] (LIA) 
[Niemetz et al 2018] (BV)



Landscape of Quantifier Strategies in cvc5

Lightweight

Domain Specific

Heavyweight

General purpose

E-Matching

Conflict-Based

Model-Based Finite Model Finding

Enumerative

CEX-Guided

Syntax-Guided

[Reynolds et al 2014,Barbosa et al 2017]

[Reynolds et al 2017, Janota et al 2021]

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

[Ge et al 2009] [Reynolds et al 2013] [Niemetz et al 2021]

[Reynolds et al 2015] (LIA) 
[Niemetz et al 2018] (BV)



Landscape of Quantifier Strategies in cvc5

Lightweight

Domain Specific

Heavyweight

General purpose

E-Matching

Conflict-Based

Model-Based Finite Model Finding

Enumerative

CEX-Guided

Syntax-Guided

Enabled by default

Enabled in specific logics (LIA, BV)

Optionally enabled if the above do not suffice



Theory Solvers supported in cvc5

• Support for many theories
• Arithmetic, Bit-vectors, Arrays, Datatypes, Floating-Points, Strings

• Extended: Sets, Sequences, Multisets, Finite Fields

• The use of theories can avoid (some) use of quantified formulas, see:
• (Co)datatypes [Reynolds et al CADE 2015]

• Relations [Meng et al CADE 2017]

• Sequences [Shing et al IJCAR 2022]

 If you have a new problem domain, we can add custom support for it



cvc5: Interfaces for When Things go Right
i.e. when the solver says “sat” or “unsat”

• get-model
• What is the counterexample to the theorem?

• Can be refined to only include relevant assignments get-model-core

• get-unsat-core
• What are the necessary assertions for proving this theorem?

• Can be minimized via option --minimal-unsat-core

• Finer-grained versions get-instantiations

• get-proof
• What is the precise reasoning for proving the theorem?

DEMO



cvc5: Interfaces for When Things go Wrong
i.e. when the solver says “unknown” or times out

• get-model
• What is a candidate counterexample to this theorem?

• Available even when the solver times out or gives up

• get-difficulty
• Which assertions where the reason why this problem was hard? 

• get-timeout-core
• Which assertions suffice to make the solver time out again?

• get-learned-lits
• What immediate formulas were learned during solving?

• External tools for delta-debugging e.g. ddSmt [Kremer et al 2020]



Difficulty Estimation

F1  …  Fn

cvc5

UNSAT SAT

F1 → d1 
…

Fn → dn 

• When cvc5 can’t solve an input, can we estimate why it was difficult?

Difficulty map

The larger di, the 
harder Fi was to
solve for

get-difficulty

UNKNOWN



Difficulty Estimation

• Given input F1  …  Fn
• Model-based:

• When a candidate model M is constructed
• Increment difficulty measure for each Fj that M does not satisfy

• Conflict-based:
• When a conflict clause (l1… ln) is raised

• For each literal li, increment difficulty measure for the Fj s.t. Fj╞ li

DEMO



Timeout Cores

F1  …  Fn

cvc5

TIMEOUT

• Given a timeout, can we construct a smaller problem cvc5 also cannot solve?

get-timeout-core Fi1  Fi2  Fi3

cvc5

TIMEOUT



Timeout Cores

• To compute a timeout core for F={F1, …, Fn}:
• Maintain an (initially empty) set of models M

• Maintain an (initially empty) set of formulas C F such that
• Each model in M does not satisfy at least one formula in C

• Repeat:
• If C is unsat

• Report that F is unsat, C is an unsat core of F

• If C makes the solver timeout
• Report that C is a timeout core of F

• If C is sat with model m

• If m satisfies F

• Report that F is sat

• Else, add m to M, add some Fi to C s.t. m does not satisfy Fi, refine C DEMO



• SMT solver cvc5 is 
• Efficient tool widely used in applications

• Handles many problem domains

• Many interfaces for when things go right (or wrong)

• Questions?


	Slide 1: How to use cvc5 Effectively
	Slide 2: Overview
	Slide 3: Architecture of cvc5
	Slide 4: Architecture of cvc5
	Slide 5: Landscape of Quantifier Strategies in cvc5
	Slide 6: Landscape of Quantifier Strategies in cvc5
	Slide 7: Landscape of Quantifier Strategies in cvc5
	Slide 8: Landscape of Quantifier Strategies in cvc5
	Slide 9: Landscape of Quantifier Strategies in cvc5
	Slide 10: Landscape of Quantifier Strategies in cvc5
	Slide 11: Landscape of Quantifier Strategies in cvc5
	Slide 12: Landscape of Quantifier Strategies in cvc5
	Slide 13: Landscape of Quantifier Strategies in cvc5
	Slide 14: Theory Solvers supported in cvc5
	Slide 15: cvc5: Interfaces for When Things go Right
	Slide 16: cvc5: Interfaces for When Things go Wrong
	Slide 17: Difficulty Estimation
	Slide 18: Difficulty Estimation
	Slide 19: Timeout Cores
	Slide 20: Timeout Cores
	Slide 21

