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Overview

e cvc5: a state-of-the-art SMT solver for verification
» Supports many techniques for quantified formulas
 Combined with a wide array of theory solvers

* Interfaces for when things go right

* Interfaces for when things go wrong
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Landscape of Quantifier Strategies in cvcs

General purpose Domain Specific

Lightweight A~

—>Many verification applications rely on quantifier instantiation

Heavyweight .
* CVC5 supports many variants
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Landscape of Quantifier Strategies in cvch

General purpose Domain Specific
Lightweight A< —
Conflict-Based [ CEX-Guided
— Enabled by default \ Y )

SE RS | L Optionally enabled if the above do not suffice

E-Matching [ Enabled in specific logics (LIA, BV)
Heavyweight

Model-Based Syntax-Guided



Theory Solvers supported in cvch

e Support for many theories
* Arithmetic, Bit-vectors, Arrays, Datatypes, Floating-Points, Strings
* Extended: Sets, Sequences, Multisets, Finite Fields

* The use of theories can avoid (some) use of quantified formulas, see:
e (Co)datatypes [Reynolds et al CADE 2015]
* Relations [Meng et al CADE 2017]
* Sequences [Shing et al IJCAR 2022]
= If you have a new problem domain, we can add custom support for it



cve5: Interfaces for When Things go Right

i.e. when the solver says “sat” or “unsat”

* get—-model
 What is the counterexample to the theorem?
e Can be refined to only include relevant assignments get-model-core
* get-unsat-core

 What are the necessary assertions for proving this theorem?
* Can be minimized via option ——-minimal-unsat-core
* Finer-grained versions get-instantiations

* get—-proot
* What is the precise reasoning for proving the theorem?

DEMO



cvcS: Interfaces for When Things go Wrong

i.e. when the solver says “unknown” or times out

* get—-model

 What is a candidate counterexample to this theorem?
* Available even when the solver times out or gives up

* get-difficulty
* Which assertions where the reason why this problem was hard?

* get-timeout-core
* Which assertions suffice to make the solver time out again?

* get-learned-11its
 What immediate formulas were learned during solving?

* External tools for delta-debugging e.g. ddSmt [Kremer et al 2020]



Difficulty Estimation

* When cvc5 can’t solve an input, can we estimate why it was difficult?

T o= d1 The larger d,, the

; CVCS , > ... harder F. was to
solve for
l l i Fn —> dn
\ J
UNSAT SAT UNKNOWN |

Difficulty map



Difficulty Estimation

* Given input F; A ... AF_
* Model-based:

* When a candidate model M is constructed
* Increment difficulty measure for each F; that M does not satisfy

e Conflict-based:

* When a conflict clause (1,v... v1 ) is raised
* Foreach literal 1,, increment difficulty measure for the F, s.t. F', |=—.li

DEMO



Timeout Cores

e Given a timeout, can we construct a smaller problem cvc5 also cannot solve?

___________________________________________________

get-timeout-core
cvch | — i A FliZ AE;5
l cvecS
TIMEOUT l

TIMEOUT



Timeout Cores

* To compute a timeout core for F={F, .., F_ }:
* Maintain an (initially empty) set of models M

* Maintain an (initially empty) set of formulas C —F such that
* Each model in M does not satisfy at least one formula in C
* Repeat:
e If Cisunsat
* Report that Fis unsat, C is an unsat core of F
 If C makes the solver timeout
* Report that C is a timeout core of F
e If Cis sat with modelm
e |f m satisfies F
e Report that Fis sat
* Else, add mto M, add some F to C s.t. m does not satisfy F'., refine C DEMO



 SMT solver cvc5 is
* Efficient tool widely used in applications
* Handles many problem domains
* Many interfaces for when things go right (or wrong)

e Questions?
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