How to use cvc5 Effectively

Andrew Reynolds
September 28, 2023

L
i
The UNIVERSITY
OF lowa

Overview

e cvc5: a state-of-the-art SMT solver for verification
» Supports many techniques for quantified formulas
 Combined with a wide array of theory solvers

* Interfaces for when things go right

* Interfaces for when things go wrong

Architecture of cvch

*.smt2, ...

Preprocessor

Theory
Solver(s)

SAT Solver

Architecture of cvch

Preprocessor

SAT Solver

cveh

Satisfying Assignments

——>

<ijcocuTﬁ;>

Conflicts, Lemmas

Arithmetic

Datatypes

| Strings
Arrays

Quantifier Instantiation

Landscape of Quantifier Strategies in cvcs

General purpose Domain Specific

Lightweight A~

—>Many verification applications rely on quantifier instantiation

Heavyweight .
* CVC5 supports many variants

Landscape of Quantifier Strategies in cvch

General purpose Domain Specific

Lightweight A~

E-Matching

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

Heavyweight

Landscape of Quantifier Strategies in cvch

General purpose Domain Specific

Lightweight A~

E-Matching

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

Heavyweight Model-Based

[Ge et al 2009]

Landscape of Quantifier Strategies in cvch

General purpose Domain Specific

Lightweight A~

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

E-Matching
Heavyweight

Model-Based Finite Model Finding

[Ge et al 2009] [Reynolds et al 2013]

Landscape of Quantifier Strategies in cvch

General purpose Domain Specific

Lightweight A~

Conflict-Based

[Reynolds et al 2014,Barbosa et al 2017]

E-Matching
Heavyweight

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

Model-Based Finite Model Finding

[Ge et al 2009] [Reynolds et al 2013]

Landscape of Quantifier Strategies in cvch

General purpose Domain Specific
Lightweight A~
Conflict-Based CEX-Guided
[Reynolds et al 2014,Barbosa et al 2017] [Reynolds et al 2015] (LIA)
[Niemetz et al 2018] (BV)

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

E-Matching
Heavyweight

Model-Based Finite Model Finding

[Ge et al 2009] [Reynolds et al 2013]

Landscape of Quantifier Strategies in cvch

General purpose Domain Specific
Lightweight A~
Conflict-Based CEX-Guided
[Reynolds et al 2014,Barbosa et al 2017] [Reynolds et al 2015] (LIA)
[Niemetz et al 2018] (BV)

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

Enumeratlve

[Reynolds et al 2017, Janota et al 2021]

Model-Based Finite Model Finding

[Ge et al 2009] [Reynolds et al 2013]

E-Matching
Heavyweight

Landscape of Quantifier Strategies in cvch

General purpose Domain Specific
Lightweight A~
Conflict-Based CEX-Guided
[Reynolds et al 2014,Barbosa et al 2017] [Reynolds et al 2015] (LIA)
[Niemetz et al 2018] (BV)

[Detlefs et al 2003, deMoura et al 2007, Ge et al 2007]

Enumeratlve

[Reynolds et al 2017, Janota et al 2021]

Model-Based Syntax-Guided

[Ge et al 2009] [Reynolds et al 2013] [Niemetz et al 2021]

E-Matching
Heavyweight

Landscape of Quantifier Strategies in cvch

General purpose Domain Specific
Lightweight A< —
Conflict-Based [CEX-Guided
— Enabled by default \ Y)

SE RS | L Optionally enabled if the above do not suffice

E-Matching [Enabled in specific logics (LIA, BV)
Heavyweight

Model-Based Syntax-Guided

Theory Solvers supported in cvch

e Support for many theories
* Arithmetic, Bit-vectors, Arrays, Datatypes, Floating-Points, Strings
* Extended: Sets, Sequences, Multisets, Finite Fields

* The use of theories can avoid (some) use of quantified formulas, see:
e (Co)datatypes [Reynolds et al CADE 2015]
* Relations [Meng et al CADE 2017]
* Sequences [Shing et al IJCAR 2022]
= If you have a new problem domain, we can add custom support for it

cve5: Interfaces for When Things go Right

i.e. when the solver says “sat” or “unsat”

* get—-model
 What is the counterexample to the theorem?
e Can be refined to only include relevant assignments get-model-core
* get-unsat-core

 What are the necessary assertions for proving this theorem?
* Can be minimized via option ——-minimal-unsat-core
* Finer-grained versions get-instantiations

* get—-proot
* What is the precise reasoning for proving the theorem?

DEMO

cvcS: Interfaces for When Things go Wrong

i.e. when the solver says “unknown” or times out

* get—-model

 What is a candidate counterexample to this theorem?
* Available even when the solver times out or gives up

* get-difficulty
* Which assertions where the reason why this problem was hard?

* get-timeout-core
* Which assertions suffice to make the solver time out again?

* get-learned-11its
 What immediate formulas were learned during solving?

* External tools for delta-debugging e.g. ddSmt [Kremer et al 2020]

Difficulty Estimation

* When cvc5 can’t solve an input, can we estimate why it was difficult?

T o= d1 The larger d,, the

; CVCS , > ... harder F. was to
solve for
l l i Fn —> dn
\ J
UNSAT SAT UNKNOWN |

Difficulty map

Difficulty Estimation

* Given input F; A ... AF_
* Model-based:

* When a candidate model M is constructed
* Increment difficulty measure for each F; that M does not satisfy

e Conflict-based:

* When a conflict clause (1,v... v1) is raised
* Foreach literal 1,, increment difficulty measure for the F, s.t. F', |=—.li

DEMO

Timeout Cores

e Given a timeout, can we construct a smaller problem cvc5 also cannot solve?

get-timeout-core
cvch | — i A FliZ AE;5
l cvecS
TIMEOUT l

TIMEOUT

Timeout Cores

* To compute a timeout core for F={F, .., F_ }:
* Maintain an (initially empty) set of models M

* Maintain an (initially empty) set of formulas C —F such that
* Each model in M does not satisfy at least one formula in C
* Repeat:
e If Cisunsat
* Report that Fis unsat, C is an unsat core of F
 If C makes the solver timeout
* Report that C is a timeout core of F
e If Cis sat with modelm
e |f m satisfies F
e Report that Fis sat
* Else, add mto M, add some F to C s.t. m does not satisfy F'., refine C DEMO

 SMT solver cvc5 is
* Efficient tool widely used in applications
* Handles many problem domains
* Many interfaces for when things go right (or wrong)

e Questions?

	Slide 1: How to use cvc5 Effectively
	Slide 2: Overview
	Slide 3: Architecture of cvc5
	Slide 4: Architecture of cvc5
	Slide 5: Landscape of Quantifier Strategies in cvc5
	Slide 6: Landscape of Quantifier Strategies in cvc5
	Slide 7: Landscape of Quantifier Strategies in cvc5
	Slide 8: Landscape of Quantifier Strategies in cvc5
	Slide 9: Landscape of Quantifier Strategies in cvc5
	Slide 10: Landscape of Quantifier Strategies in cvc5
	Slide 11: Landscape of Quantifier Strategies in cvc5
	Slide 12: Landscape of Quantifier Strategies in cvc5
	Slide 13: Landscape of Quantifier Strategies in cvc5
	Slide 14: Theory Solvers supported in cvc5
	Slide 15: cvc5: Interfaces for When Things go Right
	Slide 16: cvc5: Interfaces for When Things go Wrong
	Slide 17: Difficulty Estimation
	Slide 18: Difficulty Estimation
	Slide 19: Timeout Cores
	Slide 20: Timeout Cores
	Slide 21

