
LFSC for SMT Proofs:
Work in ProgressWork in Progress

Aaron Stump, Andrew Reynolds, Cesare
Tinelli, Austin Laugesen, Harley Eades,

Corey Oliver, Ruoyu Zhang
PxTP workshop

June 30th, 2012

Acknowledgements

• Current LFSC team:
– Aaron Stump, Andrew Reynolds, Cesare Tinelli, Austin

Laugesen, Harley Eades, Corey Oliver, Ruoyu Zhang

• Previous work on LFSC:• Previous work on LFSC:
– University of Iowa
• Duckki Oe, Jed McClurg, Cuong Thai

– New York University
• Liana Hadarean, Yeting Ge, Clark Barrett

In this talk:

• Previous work:
– LFSC: meta-format for defining proofs
– High performance proof checker (C++)
– Applications to SMT proofs– Applications to SMT proofs

• New work on LFSC:
– New implementation (Ocaml), more optimizations
– Language for defining proof signatures

Proof Checking in SMT

SMT Solver

sat

Formula ϕ

unsatsat unsat

Proof P

Proof Checker

pf valid pf invalid

Model

Challenges of Proof Checking in SMT

• Many theories
– UF, Arrays, Arithmetic, Datatypes, Bitvectors
– … Quantifiers

• Solvers have unique implementations• Solvers have unique implementations
– Have highly optimized decision procedures
– Use unique proof inferences

• Proofs can be very large
– Can be on the order of gigabytes

Challenges of Proof Checking in SMT

• Most SMT solvers:
– Do propositional reasoning via SAT solver
– Perform CNF conversion
– Use theory solvers
– Apply simplification to input– Apply simplification to input

• ITE removal, theory-specific rewriting of literals, …
– Use theory combination
– Apply quantifier instantiation/elimination
– …

• Proof system must account for all of these
– In CVC3: 200+ fine/coarse grained proof rules

Challenges of Proof Checking in SMT
• In purely declarative proof format
– Proof size can be impractical

• Consider arithmetic:
(t1 + … tn) = (s1 + … + sn),
where s1 … sn is a permutation of t1 … tnwhere s1 … sn is a permutation of t1 … tn

– Requires O(n2) applications of declarative rules
• i.e. associative/commutative properties of addition

ØProposed solution:
– use simple computational checks within proof rules

• i.e. polynomial normalization

LFSC: Proof Checker for SMT

• Flexible
– Meta-format for defining proof systems
– Proof rules in user-defined signature
– One checker suffices for many signatures– One checker suffices for many signatures

• Fast
– High performance C++ code
– Use of side conditions to reduce proof size
– In most cases, checking time << solving time

LFSC: LF with Side Conditions

• Edinburgh Logical Framework
– Curry-Howard Isomorphism
• Proofs as terms
• Proof checking becomes type checking• Proof checking becomes type checking

• Extends LF with side conditions
– Written in simple functional programming language
– Each side condition:
• (Intended to be) small enough to verify by inspection

Framework for Proof Checking in SMT

SMT Solver

sat

Formula ϕ

unsatsat unsat

Proof P

Proof Checker

pf valid pf invalid

Signature

Model

LFSC

is P of type
(holds ϕ) → (holds false)?

Previous Work

• LFSC as:
– Framework defining proof systems
– Efficient proof checker for SMT
– Flexible proof checker for linear arithmetic
–Certified interpolant generator

Optimizations in LFSC [Oe et al 09]

• Optimizations in LFSC
– Incremental Checking

• Proofs checked as they are parsed

– Optimized proof rules for boolean resolution– Optimized proof rules for boolean resolution
• Lazy approach to applying side conditions

– Side condition compilation
• Integrated into C++ source, instead of interpreted

• Each leads to order of magnitude speedup

Linear Real Arithmetic [Reynolds et al 10]

• LFSC Signature for Linear Real Arithmetic (LRA)
– Conversion of terms to normalized polynomials

• t1 = t2 becomes p = 0, where p is (t1 – t2)↓
– 60 lines of side condition code

• Code complexity roughly of merge sort

• Exploit continuum of possible proof systems
– Declarative proof system

• Rewrite rules of the form t1 = t2 ↔ t’1 = t’2
– Computational proof system

• Side conditions to perform operations on polynomials

Linear Real Arithmetic

• Experiments on SMT LIB benchmarks
• Used CVC3 for proof generation
• Computational proof system is advantageous
– For proofs of theory lemmas:– For proofs of theory lemmas:

• 5x reduction in proof size
• 2.5x reduction in proof checking time

• Proof checking in both systems is fast
– 10x faster than solving time

Interpolant Generation [Reynolds et al 11]

• Interpolant for inconsistent formulas (A,B)
– Summarizes the inconsistency, in language of A ∩ B

• Interpolants are useful in verification
– Model checking, abstraction refinement, …

• Correctness of interpolant can be critical• Correctness of interpolant can be critical
• Often, interpolant can be extracted from proof

– Use of interpolant generating calculi:

⇒

Certified Interpolant Generation
unsat

Proof

Proof

Apply annotations
to proof

SMT Solver

Proof Checker

pf valid, pf invalid

Extended
SignatureLFSC

Proof

Interpolant

Certified Interpolant Generation

• LFSC generates certified interpolants
–Comes as side effect of proof checking

• Approach is practical:
–2x slower than checking unannotated proofs
–Checking is 5x faster than solving
• 22% overhead

LFSC: Looking Forward

• User-friendly language for defining Pf signatures
– Surface language
– Core language

• Translation from surface to core language

• Highly optimized proof checker
– Signature compilation

• Side conditions as well as type checking rules

– Implicit arguments for proof rules
• Reduction in proof size

LFSC : Proof Checker

SMT Solver

sat unsat

Proof
…

Proof Checker

pf valid pf invalid

SignatureLFSC

• For optimization, compile signature into proof checker

LFSC : Proof Checker Generator

SMT Solver

sat unsat

Proof Signature
…

Proof Checker

pf valid pf invalid

LFSC Proof Checker
Generator

Ø Generic translation of signature into
C++ code for proof checker

Example Proof System

Example Proof System in LF
formula : Type;
imp : formula -> formula -> formula;

holds : formula -> Type.

imp_intro :
Π ΠΠ f1:formula. Π f2:formula.

((holds f1) -> (holds f2)) -> (holds (imp f1 f2)).

imp_elim :
Π f1:formula. Π f2:formula.

(holds (imp f1 f2)) -> (holds f1) -> (holds f2).

ØCan be burdensome to write proof signatures in this format

LFSC : Surface Language Support

SMT Solver

sat unsat
Signature

…
Surface to Core

Translation

Proof

Proof Checker

pf valid pf invalid

LFSC Proof Checker
Generator

Translation

Core
Signature

Surface Language

… …

SYNTAX
formula f ::= imp f1 f2.

JUDGMENTS
(holds f)

RULES
[holds f1] |- holds f2 [holds f1] |- holds f2
----------------------------- imp_intro
holds (imp f1 f2) .

holds (imp f1 f2) , holds f1
----------------------------- imp_elim
holds f2 .

Core Language

… …

tctor formula : Type .

ctor imp :
Pi+(f1: formula, f2:formula) .

tctor holds : Pi(f:formula).Type .

ctor imp_intro :
Pi-(f2:formula).
Pi+(f1:formula, p:Pi+(p:(holds f1)).(holds f2)).

(holds (imp f1 f2)).

ctor imp_elim :
Pi-(f1:formula, f2:formula).
Pi+(p1:(holds (imp f1 f2)), p2:(holds f1)).

(holds f2).

Compiled C++

… …

...
string s = parse_string();
if(s==“imp_intro”){
...

}else if(s==“imp_elim”){
Expr* e1 = parse_expr();Expr* e1 = parse_expr();
Expr* e2 = parse_expr();
if(e1->kind==k_holds &&

e2->kind==k_holds &&
e1->child[0]==e2->child[0]){

return e1->child[1];
}else{
Error(“proof checking failed”);

}
} ØActual generated C++ code is highly optimized

Example Proof

… …

Example Proof : LFSC

… …

imp_intro (imp p (imp (imp p q) q)) p
u . imp_intro (imp (imp p q) q) (imp p q)
v . imp_elim (imp p q) q u v

Example Proof : LFSC

… …

• Proof size may be reduced via use of
implicit arguments:implicit arguments:

Ø Automatically determine which arguments made implicit

imp_intro p
u . imp_intro (imp p q)
v . imp_elim u v

Surface Language Example : SMT
SYNTAX

sort s ::= arrow s1 s2 | bool .

term<sort> t ::=
true<bool>

| false<bool>
| (not t1<bool>)<bool>| (not t1<bool>)<bool>
| (and t1<bool> t2<bool>)<bool>
| (or t1<bool> t2<bool>)<bool>
...
| (ite t1<bool> t2<s> t3<s>)<s>
| (forall t<s> ^ t<bool>)<bool>
| (apply t1<arrow s1 s2> t2<s1>)<s2>
| (eq t1<s> t2<s>)<bool>.

formula f ::= t<bool> .

Surface Language Example : SMT
…
JUDGMENTS
(th_holds f)

RULES
---------------------------- refl
th_holds (eq t1<s> t2<s>) .

th_holds (eq t1<s> t2<s>) th_holds (eq t1<s> t2<s>)
---------------------------- symm
th_holds (eq t2<s> t1<s>) .

th_holds (eq t1<s1> t2<s1>)
-- cong
th_holds (eq (apply t3<arrow s1 s2> t1<s1>)

(apply t3<arrow s1 s2> t2<s1>)) .

th_holds (eq t1<s> t2<s>) th_holds (eq t2<s> t3<s>)
--- trans
th_holds (eq t1<s> t3<s>) .

Current Work on LFSC

• Design of core language
– Side conditions
– Implicit/Explicit arguments

• Conversion of core language to proof checker• Conversion of core language to proof checker
• Optimizations for proof checking
• Develop signatures for various SMT theories
– Arithmetic, parametric datatypes, quantifiers

• Integration of LFSC into SMT solver CVC4

Summary

• Previous work on LFSC:
– Fast and flexible approach for SMT proofs

• New version of LFSC:
– Generates proof checker from user signature– Generates proof checker from user signature
– Surface language for defining proof signatures
– Plans for highly optimized proof checker

• Currently in Development

Questions?Questions?

