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In this talk:

• Previous work:
– LFSC: meta-format for defining proofs
– High performance proof checker (C++)
– Applications to SMT proofs– Applications to SMT proofs

• New work on LFSC:
– New implementation (Ocaml), more optimizations
– Language for defining proof signatures
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Challenges of Proof Checking in SMT

• Many theories
– UF, Arrays, Arithmetic, Datatypes, Bitvectors
– … Quantifiers

• Solvers have unique implementations• Solvers have unique implementations
– Have highly optimized decision procedures
– Use unique proof inferences

• Proofs can be very large
– Can be on the order of gigabytes



Challenges of Proof Checking in SMT

• Most SMT solvers:
– Do propositional reasoning via SAT solver 
– Perform CNF conversion
– Use theory solvers
– Apply simplification to input– Apply simplification to input

• ITE removal, theory-specific rewriting of literals, …
– Use theory combination
– Apply quantifier instantiation/elimination
– …

• Proof system must account for all of these
– In CVC3: 200+ fine/coarse grained proof rules



Challenges of Proof Checking in SMT
• In purely declarative proof format
– Proof size can be impractical

• Consider arithmetic:
( t1 + … tn ) = ( s1 + … + sn ), 
where s1 … sn is a permutation of t1 … tnwhere s1 … sn is a permutation of t1 … tn

– Requires O( n2 ) applications of declarative rules
• i.e. associative/commutative properties of addition

ØProposed solution: 
– use simple computational checks within proof rules

• i.e. polynomial normalization



LFSC: Proof Checker for SMT

• Flexible
– Meta-format for defining proof systems
– Proof rules in user-defined signature
– One checker suffices for many signatures– One checker suffices for many signatures

• Fast
– High performance C++ code
– Use of side conditions to reduce proof size
– In most cases, checking time << solving time



LFSC: LF with Side Conditions

• Edinburgh Logical Framework
– Curry-Howard Isomorphism
• Proofs as terms
• Proof checking becomes type checking• Proof checking becomes type checking

• Extends LF with side conditions
– Written in simple functional programming language
– Each side condition:
• (Intended to be) small enough to verify by inspection



Framework for Proof Checking in SMT
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Previous Work

• LFSC as:
– Framework defining proof systems
– Efficient proof checker for SMT
– Flexible proof checker for linear arithmetic
–Certified interpolant generator



Optimizations in LFSC [Oe et al 09]

• Optimizations in LFSC
– Incremental Checking

• Proofs checked as they are parsed

– Optimized proof rules for boolean resolution– Optimized proof rules for boolean resolution
• Lazy approach to applying side conditions

– Side condition compilation
• Integrated into C++ source, instead of interpreted

• Each leads to order of magnitude speedup



Linear Real Arithmetic [Reynolds et al 10]

• LFSC Signature for Linear Real Arithmetic (LRA)
– Conversion of terms to normalized polynomials

• t1 = t2 becomes p = 0, where p is ( t1 – t2 )↓
– 60 lines of side condition code

• Code complexity roughly of merge sort

• Exploit continuum of possible proof systems
– Declarative proof system

• Rewrite rules of the form t1 = t2 ↔ t’1 = t’2
– Computational proof system

• Side conditions to perform operations on polynomials 



Linear Real Arithmetic

• Experiments on SMT LIB benchmarks
• Used CVC3 for proof generation
• Computational proof system is advantageous
– For proofs of theory lemmas:– For proofs of theory lemmas:

• 5x reduction in proof size
• 2.5x reduction in proof checking time

• Proof checking in both systems is fast
– 10x faster than solving time



Interpolant Generation [Reynolds et al 11]

• Interpolant for inconsistent formulas (A,B)
– Summarizes the inconsistency, in language of A ∩ B

• Interpolants are useful in verification
– Model checking, abstraction refinement, …

• Correctness of interpolant can be critical• Correctness of interpolant can be critical
• Often, interpolant can be extracted from proof

– Use of interpolant generating calculi:

⇒
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Certified Interpolant Generation

• LFSC generates certified interpolants
–Comes as side effect of proof checking

• Approach is practical:
–2x slower than checking unannotated proofs
–Checking is 5x faster than solving
• 22% overhead



LFSC: Looking Forward

• User-friendly language for defining Pf signatures
– Surface language
– Core language

• Translation from surface to core language

• Highly optimized proof checker
– Signature compilation

• Side conditions as well as type checking rules

– Implicit  arguments for proof rules
• Reduction in proof size



LFSC : Proof Checker
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LFSC : Proof Checker Generator
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Example Proof System



Example Proof System in LF
formula : Type;
imp : formula -> formula -> formula;

holds : formula ->  Type.

imp_intro : 
Π ΠΠ f1:formula. Π f2:formula.

((holds f1) -> (holds f2)) -> (holds (imp f1 f2)).

imp_elim : 
Π f1:formula. Π f2:formula.

(holds (imp f1 f2)) -> (holds f1) -> (holds f2).

ØCan be burdensome to write proof signatures in this format



LFSC : Surface Language Support
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Surface Language

… …

SYNTAX
formula f ::= imp f1 f2. 

JUDGMENTS
(holds f)

RULES
[ holds f1 ] |- holds f2 [ holds f1 ] |- holds f2 
----------------------------- imp_intro
holds (imp f1 f2) .

holds (imp f1 f2) ,  holds f1
----------------------------- imp_elim
holds f2 .



Core Language

… …

tctor formula : Type .

ctor imp : 
Pi+(f1: formula, f2:formula) .

tctor holds : Pi(f:formula).Type .

ctor imp_intro : 
Pi-(f2:formula).
Pi+(f1:formula, p:Pi+(p:(holds f1)).(holds f2)).

(holds (imp f1 f2)).

ctor imp_elim : 
Pi-(f1:formula, f2:formula).
Pi+(p1:(holds (imp f1 f2)), p2:(holds f1)).

(holds f2).



Compiled C++

… …

...
string s = parse_string();
if( s==“imp_intro” ){
...

}else if( s==“imp_elim” ){
Expr* e1 = parse_expr();Expr* e1 = parse_expr();
Expr* e2 = parse_expr();
if( e1->kind==k_holds &&

e2->kind==k_holds &&
e1->child[0]==e2->child[0] ){

return e1->child[1];
}else{
Error(“proof checking failed”);

}
} ØActual generated C++ code is highly optimized



Example Proof

… …



Example Proof : LFSC

… …

imp_intro (imp p (imp (imp p q) q)) p
u . imp_intro (imp (imp p q) q) (imp p q)
v . imp_elim (imp p q) q u v



Example Proof : LFSC

… …

• Proof size may be reduced via use of 
implicit arguments:implicit arguments:

Ø Automatically determine which arguments made implicit

imp_intro p
u . imp_intro (imp p q)
v . imp_elim u v



Surface Language Example : SMT
SYNTAX

sort s ::= arrow s1 s2 | bool .

term<sort> t ::= 
true<bool>

| false<bool>
| (not t1<bool>)<bool>| (not t1<bool>)<bool>
| (and t1<bool> t2<bool>)<bool>
| (or t1<bool> t2<bool>)<bool>
...
| (ite t1<bool> t2<s> t3<s>)<s>
| (forall t<s> ^ t<bool>)<bool>
| (apply t1<arrow s1 s2> t2<s1>)<s2> 
| (eq t1<s> t2<s>)<bool>.

formula f ::= t<bool> .



Surface Language Example : SMT
…
JUDGMENTS
(th_holds f)

RULES
---------------------------- refl
th_holds (eq t1<s> t2<s>) .

th_holds (eq t1<s> t2<s>) th_holds (eq t1<s> t2<s>) 
---------------------------- symm
th_holds (eq t2<s> t1<s>) .

th_holds (eq t1<s1> t2<s1>) 
-------------------------------------------- cong
th_holds (eq (apply t3<arrow s1 s2> t1<s1>) 

(apply t3<arrow s1 s2> t2<s1>) ) .

th_holds (eq t1<s> t2<s>) th_holds (eq t2<s> t3<s>) 
--------------------------------------------------- trans
th_holds (eq t1<s> t3<s>) .



Current Work on LFSC

• Design of core language
– Side conditions
– Implicit/Explicit arguments

• Conversion of core language to proof checker• Conversion of core language to proof checker
• Optimizations for proof checking
• Develop signatures for various SMT theories
– Arithmetic, parametric datatypes, quantifiers

• Integration of LFSC into SMT solver CVC4



Summary

• Previous work on LFSC:
– Fast and flexible approach for SMT proofs

• New version of LFSC:
– Generates proof checker from user signature– Generates proof checker from user signature
– Surface language for defining proof signatures
– Plans for highly optimized proof checker

• Currently in Development



Questions?Questions?


