Finding Conflicting Instances of
Quantified Formulas in SMT

Andrew Reynolds
Cesare Tinelli
Leonardo De Moura
July 18, 2014

Outline of Talk

SMT solvers:

— Efficient methods for ground constraints
— Heuristic methods for quantified formulas
= Can we reduce dependency on heuristic methods?

New method for quantifiers in SMT

— Finds conflicting instances of quantified formulas

Experimental results
Summary and Future Work

Satisfiability Modulo Theories (SMT)

SMT solvers

— Are efficient for problems over ground constraints G

— Determine the satisfiability of G using a combination of:

e Off-the-shelf SAT solver
 Efficient ground decision procedures, e.g.

— Uninterpreted Functions f(3) = f(c) -

— Linear arithmetic c=2 v c+1=<0

— grrays a+l = read(A,b) G
— Datatypes tail(l,)=cons(a,l,)

Used in many applications:

— Software/hardware verification
— Scheduling and Planning

— Automated Theorem Proving

DPLL(T)-Based SMT Solver

f(a) =5 v f(b)=f(c) e
f(a)>10 v read(B, 5) <f(c)

[= = = == == == = = = e o= e e e e e e e e e e e e e e =

' SMT Solver

Ground
Theory

Solvers

DPLL(T)-Based SMT Solver

f(a) =5 v f(b)=f(c) e
f(a)>10 v read(B, 5) < f(c)

R Rttt f(a) =5 } M

unsat

Ground
SAT
Theory
Solvers

UNSAT
Solver

e SAT solver either:
— Determines G is unsatisfiable at propositional level
— Returns a satisfying assignment I, e.g. a “context”

DPLL(T)-Based SMT Solver

f(a) =5 v f(b)=f(c) e
f(a)>10 v read(B, 5) <f(c)

r——=-- T f(a) =5 M
f(a)>10

T-consistent

Ground
SAT
Theory
Solvers

UNSAT SAT

Solver

ﬂf(a) “5v —f(a)210 T-inconsistent

____________(T___

. Ground theory solvers either:
— Determines M is consistent according to theory
— Add clause to G that explains why M is inconsistent

SMT + Quantified Formulas

SMT solvers have limited support for:
— First-order universally quantified formulas O

f(a) =5 v f(b)=f(c)
f(a)210 v read(B,5)<f(c) | | ©
VvV x. f(x) <0 0

Used in an increasing number of applications, for:
— Defining axioms for symbols not supported natively
— Encoding frame axioms, transition systems, ...

— Universally quantified conjectures

When universally quantified formulas Q are present, decision
problem is generally undecidable

— General approaches for G U Q in SMT are heuristic

SMT Solver + Quantified Formulas

f(a) =5 v f(b)=f(c) Y x_f(x) < 0
f(@)>10 v read(B, 5) < f(c) } G X. f(x) }Q

SMT solver

Quantifiers
\Yi[eYe [V][=

Theory
Solvers

Ground |

SMT Solver + Quantified Formulas

f(a) =5 v f(b)=f(c)
f(a)>10 v read(B, 5) < f(c)

f(b)=f(c)

Ground
Theory
Solvers

* Find satisfying assignment M

VvV x. f(x) <0

Quantifiers

\Yi[eYe [V][=

SMT Solver + Quantified Formulas

f(a) =5 v f(b)=f(c) Y x_f(x) < 0
f(a)>10 v read(B, 5) < f(c) } G X. f(x) }Q

f(a) 210
— f(b)=f(c)

Ground -
Quantifiers

\Yi[eYe [V][=

Theory
Solvers

 If M is T-consistent,

— Then we must answer: “is M C Q consistent?”
* Problem is generally undecidable

Quantifier Instantiation

f(a) =5 v f(b)=f(c)
f(a)>10 v read(B, 5) <f(c)

}G VX.f(X)<O}Q

f(a) 210 M
— f(b)=f(c)

Ground -
Quantifiers

\Yi[eYe [V][=

Theory
Solvers

f(a)<0

f(b)<O

f(c)<0

Instantiation-based approaches:

— Add instances of quantified formulas, based on some strategy
* E.g. based on patterns (known as “E-matching”)

Instantiation-Based Approaches

* Complete approaches:

— E.g. Complete instantiation, local theory extensions,
finite model finding, Inst-Gen, user triggers
* |dea: identify a finite subset of instances of Q to consider

* Cons: only work for limited fragments

* General approaches: } Focus of this talk

— Heuristic E-matching
* ldea: choose instances of Q based on pattern matching

e Cons: only for UNSAT, highly heuristic, often inefficient

Motivation

e Current SMT solvers:

— Are highly efficient for ground constraints
e Recognizing theory conflicts, T-propagations, ...

— Resort to heuristic instantiation for quantified formulas

* Expensive, due to overloading the solver with instances

* |nthis talk: new method for handling quantified formulas
— Goals:

 Reduce dependency on heuristic methods
* Applicable to arbitrary quantified formulas

— Not goals:
 Completeness (thus, focus only on UNSAT)

Ground Theories : Conflicts

f(a)=10
--------------- f(a)=5

Ground
>Al Theory

Quantifiers

\Yi[eYe [V][=

Solvers

|
|
|
|
|
|
|
|
|
} Solver
|
|
|
|
|
|
|
|

e |f Mis inconsistent according to ground theory,

Ground Theories : Conflicts

f(a)=10
--------------- f(a)=5

SAT Ground

Quantifiers

Theory
Solvers

Solver \Yi[eYe [V][=

(—f (a) >10 v —£f (a)=5)

o e mm d e |

| . :
* Ground theory solver reports a single conflict clause

— Typically, can be determined efficiently

Quantifiers : Heuristic |

f(a) 210
f(c)=£f (b)

Ground

UNSAT Theory

Solvers

nstantiation?
Vx.f (x)<0

M is T-consistent

Quantifiers
\Yi[eYe [V][=

 The deC|S|on problem for MUQ is undecidable,

Quantifiers : Heuristic Instantiation?

f(a) 210
f(c)=£f (b)

UNSAT

Ground

Theory
Solvers

Vx.f (x)<0

Quantifiers

\Yi[eYe [V][=

E-matching

f(a)<0 | £(b)<O0

£(c)<0 <7 for(m, Q)

 Add a potentially large set of instances, heuristically
— This can overload the ground solver

Conflicting Instances

—>Can we make the quantifiers module behave
more like a theory solver?

* |dea: find cases when M U Q is inconsistent:
— Quantified formula O, €0

— Grounding substitution &
 SuchthatM =7 —Q,0

* Q.6 is a conflicting instance

Conflict-Based Instantiation

f(a) 210
----------- £ (c) =£ (b)

Vx.f (x)<0

|

|

|

|

|

|

: Ground Conflict-Based
l Instantiation
! Theory

: Solvers

:

|

: Heuristic

: “conflicting instance” Instantiation
|

|

* First, determine if a conflicting instance exists
— If not, resort to heuristic instantiation

Limit of Approach

e Caveat: No complete method will determine
whether a conflicting instance exists for (1,0Q)

* Thus, our approach:

1. Uses an incomplete procedure to determine a
conflicting instance for (I, Q)

2. If not, resort to E-matching for (M, Q)
=> In practice, Step 1 succeeds for a majority of (M, Q)

E-matching vs Conflicting Instances

Ground term

gb)#fa) | Vxfx)=ghi) | o
b=h(a) . ——

— Trigger term

* |[n above example,

— g(h(x)) is a trigger term for Q
* M = g(b)=g(h(x))o, for c = {x—>a}

= E-matching for (M,Q) returns o

E-matching vs Conflicting Instances

gb)#fla) | vx. f(x) = g(h(x)) | |- ©
b=h(a) H

—

* |n this example, for o = {x—a }:

1. Ground terms match each sub-term from Q
e M =7 g(b)=g(h(x))o
M T f(a) f(x)o
2. ...and the body of Q is falsified:
e M }:T f(x)=g(h(x))o

= o'is a conflicting substitution

E-matching vs Conflicting Instances

g(b)#f(a)
b=h(a)

M

—

Vx. f(x)

= g(h(x))

* |n this example, for o = {x—a }:
1. Ground terms match each sub-term from Q

.« M g

)=g(h(x))o

M Fr f(a) f(x)o
2. ...and the body of Q is falsified:
e M }:T f(x)=g(h(x))o

)

= o'is a conflicting substitution
* Finding o requires: modified version of E-matching

For now, limit T to EUF

-0

E-matching vs Conflicting Instances

g(b)=f(a) | Vx. f(x) = g(h(x)) | - @
b=h(a) 5

—

* Consider flat form of Q:

VXYY, Y3
Yy, =f(x) Ay, =8lys) Ays=h(x) =y, =y,
\ J

) ——

Matching constraints u Flattened body ¥

e Conflicting substitution o for (M, Q) is such that:
— Mentails uo
— Mentails =WYoo

Equality-Inducing Instances

g(b)=c
d=f(a)
b=h(a)

—_

—

vx. f(x) = g(h(x))

 Modified example, for c ={x—a }:
1. Ground terms match each sub-term from Q

2.

* M =p glb)=g(h(x))o

* M =1 f(a)=f(x)o
...but the body of Q is not falsified:

* M LL f(x)=g(h(x))o

-0

Equality-Inducing Instances

g(b)=c
d=f(a)
b=h(a)

—_

vx. f(x) = g(h(x))

-0

e Still, it may be useful to add the instance Q { x—a }

— It entails equality g(b) = f(a) between known terms in M

= {x—a }is an equality-inducing substitution

— Mimics T-propagation done by theory solvers

* Such substitutions produced by relaxing criteria #2

— M need not entail disequalities from —Q{ x—a}

Instantiation Strategy

InstantiationRound(Q, M)

(1) Return a (single) conflicting instance for (Q, M)

(2) Return a set of equality-inducing instances for (Q, M)
(3) Return instances based on E-matching for (Q, M)

Three configurations:

— cvcd : step (3)

— cvcd+c : steps (1), (3)

— cvcd+ci : steps (1),(2),(3)

Experimental Results

Implemented techniques in SMT solver CVC4

UNSAT benchmarks from:
— TPTP

— Isabelle

— SMT Lib

Solvers:

— cvce3, z3
— 3 configurations: cvc4, cvcd+c, cvcd+ci

UNSAT Benchmarks Solved

cvc3 23 cvcd cvcd+c cvcd+ci

TPTP 5234 6268 6100 6413 @ 6616
Isabelle | 3827 3506 3858 3983 = 4082
SMTLIB | 3407 3983 3680 3721 3747

Total 12468 13757 13638 14117 @ 14445

e Configuration cvcd+ci solves the most (14,445)
— Against cvc4 : 1,049 vs 235 (+807)
— Against z3: 1,998 vs 1,310 (+688)

— 359 that no implementation of E-matching (cvc3, z3,
cvcd) can solve

Instantiations for Solved Benchmarks

TPTP Isabelle SMT lib
Solved Inst Solved Inst | Solved Inst
cvec3 5245 627.0M 3827 186.9M 3407 42.3M
z3 6269 613.5M 3506 67.0M 3983 6.4M
cvcad 6100 879.0M 3858 119.M 3680 60.7M
cvca+c 6413 190.8M 3983 54.0M 3721 41.1M
cvcld+ci 6616 150.9M 4082 28.2M 3747 32.5M

* cvca+ci

— Solves the most benchmarks for TPTP and Isabelle

— Requires almost an order of magnitude fewer instantiations
* |Improvements less noticeable on SMT LIB

— Due to encodings that make heavy use of theory symbols
* Method for finding conflicting instances is more incomplete

InstantiationRound(Q, M)
(1) conflicting instance for (Q, M)

I n Sta n Ce S P ro d u Ce d (2) equality-inducing instances for (Q, M)

(3) E-matching for (Q, M)

E-matching Conflicting C-Inducing
IR IR # IR # IR #
smtlib cvcd 14032 | 100.0% 60.7M
cvca+c 51696 24.3% 41.0M | 75.7% 39.1K
cvcd+cp 58003 20.0% 323M | 71.6% 41.5K 8.4% 51.5K
TPTP cvcd 71634 | 100.0% 879.0M
cvca+c 201990 | 21.7% 190.1M | 78.3% 158.2K
cvcad+cp 208970 | 20.3% 150.4M | 76.4% 160.0K | 3.3% 41.6K
Isabelle cvcd 6969 100.0% 119.0M
cvcd+c 18160 28.9% 54.0M | 71.1% 12.9K
cvca+cp 21756 22.4% 28.2M | 64.0% 139K | 13.6% 130.1K

Conflicting instances found on ~75% of IR

cvcd+ci :
— Requires 3.1x more instantiation rounds w.r.t. cvc4

— Calls E-matching 1.5x fewer times overall
e As aresult, adds 5x fewer instantiations

Details on Solved Problems

 For the 30,081 benchmarks we considered:
— cvcd+ci solves more (14,445) than any other
— 359 are solved uniquely by cvcd+c or cvcd+ci
* Techniques increase precision of SMT solver

— cvcd+ci does not rely on E-matching for 21% of
benchmarks
* 94 of these not solved by any E-matching implementation
e Techniques reduce dependency on heuristic instantiation

Comparison with ATP

* Modern ATP use strategy scheduling

— Using scheduling strategy from CASC 24:
* E solves 9,751 unsatisfiable TPTP benchmarks
e iProver solves 6,508

— Using scheduling with techniques from paper:
e CVC4 solves 7,227

= Fairly competitive with modern ATP systems

* For more comparison, see CVC4 in CASC J7 FOF

Summary and Future Work

* Conflict-based method for quantifiers in SMT
— Supplements existing techniques

— Improves performance, both in:

 Number of instantiations required for UNSAT
* Number of UNSAT benchmarks solved

* Future work:
— More incremental instantiation strategies

— Specialize techniques to other theories
* Handle quantified formulas containing (e.g.) linear arithmetic

— Completeness
* |dentify criteria for saturation

Thank You

* Solver is publicly available:
http://cvcd.cs.nyu.edu/

* Techniques enabled by option:

7

“cvcd —--quant-cf ..

