
Finding Conflicting Instances of

Quantified Formulas in SMT

Andrew Reynolds

Cesare Tinelli

Leonardo De Moura

July 18, 2014

Outline of Talk

• SMT solvers:

– Efficient methods for ground constraints

– Heuristic methods for quantified formulas

  Can we reduce dependency on heuristic methods?

• New method for quantifiers in SMT

– Finds conflicting instances of quantified formulas

• Experimental results

• Summary and Future Work

Satisfiability Modulo Theories (SMT)

• SMT solvers
– Are efficient for problems over ground constraints G

– Determine the satisfiability of G using a combination of:
• Off-the-shelf SAT solver

• Efficient ground decision procedures, e.g.
– Uninterpreted Functions

– Linear arithmetic

– Arrays

– Datatypes

– …

• Used in many applications:
– Software/hardware verification

– Scheduling and Planning

– Automated Theorem Proving

f(3)  f(c)

c=2  c+1≤0

a+1 = read(A,b)

tail(l1)=cons(a,l2)

G

DPLL(T)-Based SMT Solver

SAT

Solver

f(a) =5  f(b)=f(c)

f(a)≥10  read(B, 5) ≤ f(c)

Ground

Theory

Solvers

SMT Solver

G

DPLL(T)-Based SMT Solver

SAT

Solver

f(a) =5  f(b)=f(c)

f(a)≥10  read(B, 5) ≤ f(c)

Ground

Theory

Solvers

G

f(a) =5

f(a)≥10
M

• SAT solver either:

– Determines G is unsatisfiable at propositional level

– Returns a satisfying assignment M, e.g. a ͞ĐoŶteǆt͟

UNSAT

unsat

sat

DPLL(T)-Based SMT Solver

SAT

Solver

f(a) =5  f(b)=f(c)

f(a)≥10  read(B, 5) ≤ f(c)

Ground

Theory

Solvers

G

• Ground theory solvers either:
– Determines M is consistent according to theory

– Add clause to G that explains why M is inconsistent

UNSAT SAT

T-inconsistent

T-consistent

f(a) =5

f(a)≥10
M

f(a) =5  f(a)≥10

SMT + Quantified Formulas
• SMT solvers have limited support for:

– First-order universally quantified formulas Q

• Used in an increasing number of applications, for:
– Defining axioms for symbols not supported natively

– EŶĐodiŶg fraŵe aǆioŵs, traŶsitioŶ sǇsteŵs, …

– Universally quantified conjectures

• When universally quantified formulas Q are present, decision
problem is generally undecidable
– General approaches for G  Q in SMT are heuristic

f(a) =5  f(b)=f(c)

f;aͿ≥ϭϬ  read(B, 5) ≤ f(c)

 x. f(x) < 0

G

Q

SMT Solver + Quantified Formulas

SAT

Solver

Ground

Theory

Solvers

Quantifiers

Module

 x. f(x) < 0

SMT solver

f(a) =5  f(b)=f(c)

f(a)≥10  read(B, 5) ≤ f(c) G Q

SMT Solver + Quantified Formulas

SAT

Solver

Ground

Theory

Solvers

Quantifiers

Module

 x. f(x) < 0 f(a) =5  f(b)=f(c)

f(a)≥10  read(B, 5) ≤ f(c) G

M

Q

f(a) ≥10

f(b)=f(c)

• Find satisfying assignment M

SMT Solver + Quantified Formulas

SAT

Solver

Ground

Theory

Solvers

Quantifiers

Module

 x. f(x) < 0 f(a) =5  f(b)=f(c)

f(a)≥10  read(B, 5) ≤ f(c) G

M

Q

f(a) ≥10

f(b)=f(c)

• If M is T-consistent,

– TheŶ we ŵust aŶswer: ͞is M  Q consistent?”

• Problem is generally undecidable

T-sat

Quantifier Instantiation

SAT

Solver

Ground

Theory

Solvers

Quantifiers

Module

 x. f(x) < 0 f(a) =5  f(b)=f(c)

f(a)≥10  read(B, 5) ≤ f(c) G

M

Q

f(a) ≥ϭϬ

f(b)=f(c)

• Instantiation-based approaches:
– Add instances of quantified formulas, based on some strategy

• E.g. ďased oŶ patterŶs ;kŶowŶ as ͞E-ŵatĐhiŶg͟Ϳ

f(a)<0 f(c)<0 f(b)<0
…

Instantiation-Based Approaches

• Complete approaches:

– E.g. Complete instantiation, local theory extensions,

finite model finding, Inst-Gen, user triggers

• Idea: identify a finite subset of instances of Q to consider

• Cons: only work for limited fragments

• General approaches:

– Heuristic E-matching

• Idea: choose instances of Q based on pattern matching

• Cons: only for UNSAT, highly heuristic, often inefficient

Focus of this talk

Motivation

• Current SMT solvers:

– Are highly efficient for ground constraints

• Recognizing theory conflicts, T-propagatioŶs, …

– Resort to heuristic instantiation for quantified formulas

• Expensive, due to overloading the solver with instances

• In this talk: new method for handling quantified formulas

– Goals:

• Reduce dependency on heuristic methods

• Applicable to arbitrary quantified formulas

– Not goals:

• Completeness (thus, focus only on UNSAT)

Ground Theories : Conflicts

SAT

Solver

Ground

Theory

Solvers

Quantifiers

Module
UNSAT

f(a)≥10
f(a)=5

…

• If M is inconsistent according to ground theory,

M

Ground Theories : Conflicts

SAT

Solver

Ground

Theory

Solvers

Quantifiers

Module
UNSAT

(f(a) ≥ 10  f(a)=5)

• Ground theory solver reports a single conflict clause
– Typically, can be determined efficiently

f(a)≥10
f(a)=5

…

Quantifiers : Heuristic Instantiation?

SAT

Solver

Ground

Theory

Solvers

Quantifiers

Module

x.f(x)<0

UNSAT

M is T-consistent

f(a) ≥ 10
f(c)=f(b)

…

• The decision problem for MQ is undecidable,

Quantifiers : Heuristic Instantiation?

SAT

Solver

Ground

Theory

Solvers

Quantifiers

Module

x.f(x)<0

UNSAT

E-matching

for (M, G) f(a)<0 f(c)<0 f(b)<0 …

• Add a potentially large set of instances, heuristically

– This can overload the ground solver

f(a) ≥ 10
f(c)=f(b)

…

Conflicting Instances

Can we make the quantifiers module behave

more like a theory solver?

• Idea: find cases when M  Q is inconsistent:

– Quantified formula Q1 Q
– Grounding substitution s
• Such that M Q1s

• Q1s is a conflicting instance

Conflict-Based Instantiation

SAT

Solver

Ground

Theory

Solvers

Conflict-Based

Instantiation
UNSAT

f(a)<0
Heuristic

Instantiation

x.f(x)<0
f(a) ≥ 10
f(c)=f(b)

…

͞ĐoŶfliĐtiŶg iŶstaŶĐe͟

• First, determine if a conflicting instance exists
– If not, resort to heuristic instantiation

Limit of Approach

• Caveat: No complete method will determine

whether a conflicting instance exists for (M,Q)

• Thus, our approach:

1. Uses an incomplete procedure to determine a

conflicting instance for (M, Q)

2. If not, resort to E-matching for (M, Q)

 In practice, Step 1 succeeds for a majority of (M, Q)

E-matching vs Conflicting Instances

x. f(x) = g(h(x)) g(b)f(a)

b=h(a)

• In above example,

– g(h(x)) is a trigger term for Q

• M g(b)=g(h(x))s, for s = {xa}

 E-matching for (M,Q) returns s

M
Q

Ground term

Trigger term

E-matching vs Conflicting Instances

• In this example, for s = { xa }:

1. Ground terms match each sub-term from Q
• M g(b)=g(h(x))s
• M f(a)=f(x)s

2. …aŶd the ďodǇ of Q is falsified:
• M f(x)g(h(x))s

 s is a conflicting substitution

x. f(x) = g(h(x)) g(b)f(a)

b=h(a) M
Q

E-matching vs Conflicting Instances

• In this example, for s = { xa }:

1. Ground terms match each sub-term from Q
• M g(b)=g(h(x))s
• M f(a)=f(x)s

2. …aŶd the ďodǇ of Q is falsified:
• M f(x)g(h(x))s

 s is a conflicting substitution

• Finding s requires: modified version of E-matching

x. f(x) = g(h(x)) g(b)f(a)

b=h(a) M
Q

For now, limit T to EUF

E-matching vs Conflicting Instances

• Consider flat form of Q:

x. f(x) = g(h(x)) g(b)f(a)

b=h(a) M
Q

• Conflicting substitution s for (M, Q) is such that:

– M entails ms
– M entails Ys

x y1 y2 y3.

y1 = f(x)  y2 = g(y3)  y3 = h(x)  y1 = y2

Matching constraints m Flattened body Y

Equality-Inducing Instances

• Modified example, for s = { xa }:

1. Ground terms match each sub-term from Q

• M g(b)=g(h(x))s
• M f(a)=f(x)s

2. …ďut the ďodǇ of Q is not falsified:

• M f(x)g(h(x))s

x. f(x) = g(h(x))
g(b)c

d=f(a)

b=h(a)

M Q

Equality-Inducing Instances

• Still, it may be useful to add the instance Q { xa }

– It entails equality g(b) = f(a) between known terms in M

 { xa } is an equality-inducing substitution

– Mimics T-propagation done by theory solvers

• Such substitutions produced by relaxing criteria #2

– M need not entail disequalities from Q{ xa }

x. f(x) = g(h(x))
g(b)c

d=f(a)

b=h(a)

M Q

Instantiation Strategy

• Three configurations:

– cvc4 : step (3)

– cvc4+c : steps (1), (3)

– cvc4+ci : steps (1),(2),(3)

InstantiationRound(Q, M)

(1) Return a (single) conflicting instance for (Q, M)

(2) Return a set of equality-inducing instances for (Q, M)

(3) Return instances based on E-matching for (Q, M)

Experimental Results

• Implemented techniques in SMT solver CVC4

• UNSAT benchmarks from:

– TPTP

– Isabelle

– SMT Lib

• Solvers:

– cvc3, z3

– 3 configurations: cvc4, cvc4+c, cvc4+ci

UNSAT Benchmarks Solved

• Configuration cvc4+ci solves the most (14,445)
– Against cvc4 : 1,049 vs 235 (+807)

– Against z3: 1,998 vs 1,310 (+688)

– 359 that no implementation of E-matching (cvc3, z3,
cvc4) can solve

 cvc3 z3 cvc4 cvc4+c cvc4+ci

TPTP 5234 6268 6100 6413 6616

Isabelle 3827 3506 3858 3983 4082

SMTLIB 3407 3983 3680 3721 3747

Total 12468 13757 13638 14117 14445

Instantiations for Solved Benchmarks

• cvc4+ci
– Solves the most benchmarks for TPTP and Isabelle

– Requires almost an order of magnitude fewer instantiations

• Improvements less noticeable on SMT LIB
– Due to encodings that make heavy use of theory symbols

• Method for finding conflicting instances is more incomplete

 TPTP Isabelle SMT lib

 Solved Inst Solved Inst Solved Inst

cvc3 5245 627.0M 3827 186.9M 3407 42.3M

z3 6269 613.5M 3506 67.0M 3983 6.4M

cvc4 6100 879.0M 3858 119.M 3680 60.7M

cvc4+c 6413 190.8M 3983 54.0M 3721 41.1M

cvc4+ci 6616 150.9M 4082 28.2M 3747 32.5M

Instances Produced

• Conflicting instances found on ~75% of IR

• cvc4+ci :
– Requires 3.1x more instantiation rounds w.r.t. cvc4

– Calls E-matching 1.5x fewer times overall
• As a result, adds 5x fewer instantiations

InstantiationRound(Q, M)

(1) conflicting instance for (Q, M)

(2) equality-inducing instances for (Q, M)

(3) E-matching for (Q, M)

 E-matching Conflicting C-Inducing

 IR IR # IR # IR #

smtlib cvc4 14032 100.0% 60.7M

 cvc4+c 51696 24.3% 41.0M 75.7% 39.1K

 cvc4+cp 58003 20.0% 32.3M 71.6% 41.5K 8.4% 51.5K

TPTP cvc4 71634 100.0% 879.0M

 cvc4+c 201990 21.7% 190.1M 78.3% 158.2K

 cvc4+cp 208970 20.3% 150.4M 76.4% 160.0K 3.3% 41.6K

Isabelle cvc4 6969 100.0% 119.0M

 cvc4+c 18160 28.9% 54.0M 71.1% 12.9K

 cvc4+cp 21756 22.4% 28.2M 64.0% 13.9K 13.6% 130.1K

Details on Solved Problems

• For the 30,081 benchmarks we considered:

– cvc4+ci solves more (14,445) than any other

– 359 are solved uniquely by cvc4+c or cvc4+ci

• Techniques increase precision of SMT solver

– cvc4+ci does not rely on E-matching for 21% of

benchmarks

• 94 of these not solved by any E-matching implementation

• Techniques reduce dependency on heuristic instantiation

Comparison with ATP

• Modern ATP use strategy scheduling

– Using scheduling strategy from CASC 24:

• E solves 9,751 unsatisfiable TPTP benchmarks

• iProver solves 6,508

– Using scheduling with techniques from paper:

• CVC4 solves 7,227

Fairly competitive with modern ATP systems

• For more comparison, see CVC4 in CASC J7 FOF

Summary and Future Work

• Conflict-based method for quantifiers in SMT

– Supplements existing techniques

– Improves performance, both in:

• Number of instantiations required for UNSAT

• Number of UNSAT benchmarks solved

• Future work:

– More incremental instantiation strategies

– Specialize techniques to other theories

• Handle quantified formulas containing (e.g.) linear arithmetic

– Completeness

• Identify criteria for saturation

Thank You

• Solver is publicly available:

 http://cvc4.cs.nyu.edu/

• Techniques enabled by option:

͞cvc4 --quant-cf …͟

