Model Finding for Recursive Functions in SMT

Andrew Reynolds
Jasmin Christian Blanchette
Cesare Tinelli
SMT July 18, 2015

Recursive Functions

- Recursive function definitions:

$$
f(x: \text { Int }):=\text { if } x \leq 0 \text { then } 0 \text { else } f(x-1)+x
$$

- Are useful in applications:
- Software verification
- Theorem Proving
- Often, interested in finding models for
- Conjectures ($\exists \mathrm{x}) .\mathrm{P}(\mathrm{f}, \mathrm{x})$ in the presence of recursive functions f
- This poses a challenge to current SMT solvers

Recursive Functions

- Recursive function definitions:

$$
f(x: \text { Int }):=\text { if } x \leq 0 \text { then } 0 \text { else } f(x-1)+x
$$

- Can be expressed in SMT as quantified formulas:

$$
\forall x: \operatorname{Int} . f(x)=\operatorname{ite}(x \leq 0,0, f(x-1)+x)
$$

- SMT solver must handle inputs of the form:

$$
\forall \mathbf{x} \cdot \mathrm{f}_{1}(\mathbf{x})=\mathrm{t}_{1}
$$

$$
\forall \mathbf{x} \cdot \mathrm{f}_{\mathrm{n}}(\mathbf{x})=\mathrm{t}_{\mathrm{n}}
$$

Recursive Functions

- In this talk:
- Existing techniques for quantified formulas in SMT
- Limited in their ability to find models when recursive functions are present
- A satisfiability-preserving translation A for function definitions
- Allows us to use existing techniques for model finding
- Evaluation of translation A on benchmarks from theorem proving/verification

Existing Techniques for Quantified Formulas in SMT

- Heuristic Techniques for UNSAT:
- E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]
- Limited Techniques for SAT:
- Local theory extensions [Sofronie-Stokkermans 2005]
- Array fragments [Bradley et al 2006, Alberti et al 2014]
- Complete Instantiation [Ge/de Moura 2009]
- Implemented in Z3
- Finite Model Finding [Reynolds et al 2013]
- Implemented in CVC4

Existing Techniques for Quantified Formulas in SMT

- Heuristic Techniques for UNSAT:
- E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]
- Limited Techniques for SAT:
- Local theory extensions [Sofronie-Stokkermans 2005]
- Array fragments [Bradley et al 2006, Alberti et al 2014]
- Complete Instantiation [Ge/de Moura 2009]
- Implemented in Z3
- Finite Model Finding [Reynolds et al 2013]

Focus of next slides

- Implemented in CVC4

Complete Instantiation in Z3

- Complete method for \forall in essentially uninterpreted fragment
$\forall x: \operatorname{Int} .(\mathrm{f}(\mathbf{x})=\mathrm{g}(\mathbf{x})+5) \wedge \mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{b})$

All occurrences of x are children of UF

Complete Instantiation in Z3

$\forall x: \operatorname{Int} .(f(x)=g(x)+5) \wedge f(a)=g(b)$

$$
\begin{gathered}
R\left(f_{1}\right)=R\left(g_{1}\right)=R(x), a \in R\left(f_{1}\right), b \in R\left(g_{1}\right) \\
\therefore R(x)=\{a, b\}
\end{gathered}
$$

Relevant domain $R(x)$ of variable x is $\{a, b\}$

Complete Instantiation in Z3

Finite Model Finding in CVC4

- Finite Model-complete method for finite/uninterpreted \forall

$$
\forall x y: U \cdot(x \neq y \Rightarrow f(x) \neq f(y)) \wedge a \neq b
$$

All variables have finite/uninterpreted sort U

Finite Model Finding in CVC4

$$
\forall x y: U \cdot(x \neq y \Rightarrow f(x) \neq f(y)) \wedge a \neq b
$$

$$
M(U) \quad:=\{a, b\}
$$

Model interprets U as the $\operatorname{set} M(U)=\{a, b\}$

Finite Model Finding in CVC4

$$
\begin{aligned}
& \forall x y: U .(x \neq y \Rightarrow f(x) \neq f(y)) \wedge a \neq b \\
& \text { equisatisfiable to } \\
& a \neq a \Rightarrow f(a) \neq f(a) \\
& a \neq b \Rightarrow f(a) \neq f(b) \wedge a \neq b \\
& b \neq a \Rightarrow f(b) \neq f(a) \\
& b \neq b \Rightarrow f(b) \neq f(b)
\end{aligned}
$$

...Both fail on most Recursive Function Definitions!

- Example:

$$
\forall x: \text { Int. }(f(x)=i t e(x \leq 0,0, f(x-1)+x)) \wedge f(k)>100
$$

...Both fail on most Recursive Function Definitions!

- Example:

$$
\forall x: \text { Int. }(\mathrm{f}(\mathrm{x})=\text { ite }(\mathrm{x} \leq 0,0, \mathrm{f}(\mathrm{x}-1)+\mathrm{x})) \wedge \mathrm{f}(\mathrm{k})>100
$$

- Complete instantiation:
- Fails, since body has subterm $\mathrm{f}(\mathrm{x}-1)+\mathbf{x}$ with unshielded variable \mathbf{x}
- $R(x)=\{k, k-1, k-2, k-3, \ldots\}$

...Both fail on most Recursive Function Definitions!

- Example:

$$
\forall x: \text { Int. }(\mathrm{f}(\mathrm{x})=\text { ite }(\mathrm{x} \leq 0,0, \mathrm{f}(\mathrm{x}-1)+\mathbf{x})) \wedge \mathrm{f}(\mathrm{k})>100
$$

- Complete instantiation:
- Fails, since body has subterm $f(x-1)+x$ with unshielded variable x
- $R(x)=\{k, k-1, k-2, k-3, \ldots\}$
- Finite Model Finding:
- Fails, since quantification is over infinite type Int
- M (Int) $=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

Running example

$$
\begin{aligned}
\forall x: \operatorname{Int} .(f(x)= & i t e(x \leq 0,0, f(x-1)+x)) \wedge \\
& f(k)>100
\end{aligned}
$$

- Function f
- Returns the sum of all positive integers up to x , when x is non-negative
- Formula is satisfiable
- By models interpreting k as an integer ≥ 14

Can we make the problem easier?

$$
\begin{aligned}
\forall x: \operatorname{Int} .(f(x)= & i t e(x \leq 0,0, f(x-1)+x)) \wedge \\
& f(k)>100
\end{aligned}
$$

- What if we assume function definitions in Φ are well-behaved?
- E.g. we know that f is terminating
- Introduce translation A, which:
- Restricts quantification to subset of the domain of function definitions
- Under right assumptions, preserves satisfiability
- Use existing techniques for model finding in Z3, CVC4 on A (Φ)

Translation A

$\forall x:$ Int.ite $(x \leq 0$,

$$
\begin{aligned}
& f(x)=0, \\
& f(x)=f(x-1)+x)) \wedge
\end{aligned}
$$

f(k) >100

Translation A: Part 1

```
\(\forall x: \alpha\).ite \((\gamma(x) \leq 0\),
    \(\mathrm{f}(\gamma(\mathrm{x}))=0\),
    \(f(\gamma(x))=f(\gamma(x)-1)+\gamma(x)) \wedge\)
```

$\mathrm{f}(\mathrm{k})>100$

- Introduce uninterpreted sort α
- Conceptually, α represents the set of relevant arguments of f
- Restrict the domain of function definition quantification to α
- Introduce uninterpreted function $\gamma: \alpha \rightarrow$ Int
- Maps between abstract and concrete domains

Translation A: Part 2

```
\(\forall x: \alpha\).ite \((\gamma(x) \leq 0\),
    \(f(\gamma(x))=0\),
    \(\mathrm{f}(\gamma(\mathrm{x}))=\mathrm{f}(\gamma(\mathrm{x})-1)+\gamma(\mathrm{x}) \wedge(\exists \mathrm{z}: \alpha \cdot \gamma(\mathrm{z})=\gamma(\mathrm{x})-1)) \wedge\)
\(\mathrm{f}(\mathrm{k})>100 \wedge(\exists \mathrm{z}: \alpha \cdot \gamma(\mathrm{z})=\mathrm{k})\)
```

- Add appropriate constraints regarding α, γ
- Each relevant concrete value must be mapped to by some abstract value

Translation A

$$
\begin{aligned}
& \forall x: \alpha . \text { ite }(\gamma(x) \leq 0, \\
& f(\gamma(\mathbf{x}))=0, \\
&f(\gamma(\mathbf{x}))=f(\gamma(\mathbf{x})-1)+\gamma(\mathbf{x}) \wedge(\exists \mathrm{z}: \alpha \cdot \gamma(\mathrm{z})=\gamma(\mathbf{x})-1)) \wedge \\
& \mathrm{f}(\mathrm{k})>100 \wedge(\exists \mathrm{z}: \alpha \cdot \gamma(\mathrm{z})=\mathrm{k})
\end{aligned}
$$

- \forall is essentially uninterpreted

Translation A

$$
\begin{aligned}
& \forall x: \alpha . \operatorname{ite}(\gamma(x) \leq 0, \\
& f(\gamma(x))=0, \\
&f(\gamma(x))=f(\gamma(x)-1)+\gamma(x) \wedge(\exists z: \alpha \cdot \gamma(z)=\gamma(x)-1)) \wedge \\
& f(k)>100 \wedge(\exists z: \alpha \cdot \gamma(z)=k)
\end{aligned}
$$

- \forall is essentially uninterpreted, and over finite/uninterpreted sorts

Translation A

```
\(\forall x: \alpha\).ite \((\gamma(x) \leq 0\),
    \(\mathrm{f}(\gamma(\mathbf{x}))=0\),
    \(f(\gamma(\mathbf{x}))=f(\gamma(\mathbf{x})-1)+\gamma(\mathbf{x}) \wedge(\exists z: \alpha \cdot \gamma(z)=\gamma(\mathbf{x})-1)) \wedge\)
\(f(k)>100 \wedge(\exists z: \alpha \cdot \gamma(z)=k)\)
```

- \forall is essentially uninterpreted, and over finite/uninterpreted sorts
\Rightarrow Both Z3 (complete instantiation) and CVC4 (finite model finding) find model for this benchmark in $<.1$ second

Translation A

$$
\begin{aligned}
& \forall x: \alpha . \operatorname{ite}(\gamma(x) \leq 0, \\
& f(\gamma(x))=0, \\
&f(\gamma(x))=f(\gamma(x)-1)+\gamma(x) \wedge(\exists z: \alpha \cdot \gamma(z)=\gamma(x)-1)) \wedge \\
& f(k)>100 \wedge(\exists z: \alpha \cdot \gamma(z)=k)
\end{aligned}
$$

- Formula is satisfied by a model M where:
- $M(k):=14, M(f):=\lambda x . i t e(x=14,105$, ite $(x=13,91, \ldots$ ite $(x=1,1,0) \ldots))$
$\Rightarrow M$ is correct only for relevant inputs of original formula, and not e.g. $f(15)=0$
- Nevertheless, A is satisfiability-preserving under right assumptions

Translation A : Properties

- Translation A is:
- Refutation sound
- When $A(\Phi)$ is unsatisfiable, Φ is unsatisfiable
- Model sound, when function definitions are admissible
- When $A(\Phi)$ is satisfiable, Φ is satisfiable

Translation A : Properties

- Translation A is:
- Refutation sound
- When $A(\Phi)$ is unsatisfiable, Φ is unsatisfiable
- Model sound, when function definitions are admissible
- When A (Φ) is satisfiable, Φ is satisfiable

Admissible Function Definitions

- Given a function definition:

$$
\forall x \cdot f(x)=t[x]
$$

- A set of ground formulas G is closed under function expansion wrt f if:
$G \quad=\{f(k)=t[k] \quad \mid f(k) \in \operatorname{terms}(G)\}$
- A function definition $\forall \mathrm{x} . \mathrm{f}(\mathrm{x})=\mathrm{t}$ is admissible if:
- For all G that is closed under function expansion wrt f :
G is sat $\Rightarrow G \wedge \forall x . f(x)=t[x]$ is also sat

Admissible Function Definitions

- Examples of admissible definitions:
- Terminating functions: $\forall \mathrm{x} . \mathrm{f}(\mathrm{x})=$ ite $(\mathrm{x} \leq 0,0, \mathrm{f}(\mathrm{x}-1)+\mathrm{x})$
- f is well-founded (terminating)
- Consistent definitions: $\forall \mathrm{x} . \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})$
- f is essentially unconstrained
- ...even: $\forall x . f(x)=f(x-1)+1$

Inadmissible Function Definitions

- Examples of inadmissible definitions:
- Inconsistent definitions: $\forall \mathrm{x} . \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})+1$
- T is closed under function expansion wrt f
- But no model for $T \wedge \forall x . f(x)=f(x)+1$
- Others: $\{\forall x . f(x)=f(x)+g(x), \forall x . g(x)=g(x)\}$
- Although has model where f and g are $\lambda \mathrm{x} .0$,
- $g(0)=1$ is closed under function expansion wrt f, g
- But no model for $\mathrm{g}(0)=1 \wedge \forall \mathrm{x} . \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \wedge \forall \mathrm{x} . \mathrm{g}(\mathrm{x})=\mathrm{g}(\mathrm{x})$

Evaluation

- Considered two sets of benchmarks:
- Isa
- Challenge problems for inductive theorem provers
- Purely datatypes + recursive functions
- Leon
- Taken from Leon verification tool (EPFL)
- Many theories: datatypes + recursive functions + bitvectors + arrays + sets + arithmetic
- Consider mutated forms of these benchmarks (Isa-mut, Leon-mut)
- Obtained by swapping subterms in conjectures
- High likelihood to have models
- All benchmarks considered with/without translation A

Evaluation : solved SAT benchmarks

	Z3		CVC4f		
	φ	$\mathcal{A}(\varphi)$	φ	$\mathcal{A}(\varphi)$	Total
	0	0	0	79	
Isa	0	0	0	$\mathbf{9}$	166
Leon	0	2			
Isa-Mut	0	35	0	$\mathbf{1 5 3}$	213
Leon-Mut	11	75	6	$\mathbf{1 6 9}$	427
Total	11	112	6	$\mathbf{3 3 1}$	885

- Translation increases ability of SMT solvers for finding models:
- Z3: 11 -> 112
- CVC4: 6 -> 331
- Finds counterexamples to verification conditions of interest in Leon

Evaluation : solved UNSAT benchmarks

	Z3		CVC4f			
	φ	$\mathcal{A}(\varphi)$		φ	$\mathcal{A}(\varphi)$	Total
	14	15	$\mathbf{1 5}$	15	79	
Isa	73	78	$\mathbf{8 0}$	76	166	
Leon	17	18	$\mathbf{1 8}$	18	213	
Isa-Mut	83	98	$\mathbf{1 0 4}$	95	427	
Leon-Mut	187	209	$\mathbf{2 1 7}$	204	885	

- Translation has mixed impact on UNSAT benchmarks:
- Z3 : 187 -> 209
- CVC4 : 217 -> 204

Translation as Preprocessor in CVC4

- CVC4 supports SMT LIB version 2.5 command:
(define-fun-rec $\mathrm{f}(\mathrm{x}$ Int)) Int
(ite (<= x 0) 0 (+ (f (- x 1)) x)))
(assert (> (f k) 100))
(check-sat)

Translation as Preprocessor in CVC4

- Input (without A) is equivalent to:
(assert (forall ((x Int))

$$
(=(f x) \quad(\text { ite }(<=x 0) 0(+(f(-x 1)) x))))
$$

(assert (> (f k) 100))
(check-sat)

Translation as Preprocessor in CVC4

- Input (with A) is equivalent to:

```
(declare-sort a 0)
(declare-fun g (a) Int)
(assert (forall ((x a))
    (ite (<= (g x) 0)
        (= (f (g x)) 0)
        (and (= (f (g x)) (+ (f (- (g x) 1)) (g x))
            (exists ((z a)) (= (g z) (- (g x) 1)))))))
(assert (and (> (f k) 100) (exists ((z a)) (= (g z) k)))
(check-sat)
```

\Rightarrow Enabled as preprocessor by command line parameter "--fmf-fun"

Translation as Preprocessor in CVC4

- Model (with A) outputted is:

```
(model
(define-fun f (($x1 Int)) Int
    (ite (= $x1 14) 105 (ite (= $x1 13) 91 (ite (= $x1 12) 78
    (ite (= $x1 11) 66 (ite (= $x1 10) 55 (ite (= $x1 4) 10
    (ite (= $x1 9) 45 (ite (= $x1 8) 36 (ite (= $x1 7) 28
    (ite (= $x1 6) 21 (ite (= $x1 3) 6 (ite (= $x1 5) 15
    (ite (= $x1 2) 3 (ite (= $x1 1) 1 0)))))))))))))))
(define-fun k () Int 14))
```

- Gives model that is correct for relevant inputs of function f

Summary

- Translation A:
- Increases ability of SMT solvers for model finding recursive functions
- Complete instantiation in Z3
- Finite Model Finding in CVC4
- Is model-sound for admissible function definitions
- Implemented as a preprocessor in CVC4 "--fmf-fun"
- Responsibility on user to show function definitions are admissible

Future Work

- Increase scope of evaluation
- Comparison against existing counterexample generators (Leon, Nitpick, ...)
- Use of CVC4 as backend
- To Leon verification system
- To Isabelle proof assistant
- Identify additional sufficient conditions for admissibility
- E.g. productive corecursive functions

Thanks!

- CVC4:
- Available at http://cvc4.cs.nyu.edu/downloads/
- To use translation A as a preprocessor:
- Use command line option "--fmf-fun"

