An Overview of Quantifier
Instantiation in Modern SMT
Solvers

Andrew Reynolds
May 28, 2021

L
i
The UNIVERSITY
OF lowa

Satisfiability Modulo Theories (SMT) Solvers

Software Interactive Symbolic Synthesis
Verification Proof Execution Tools,
Tools Assistants Engines Planners
Verification : . o
o Conjectures Path Constraints Specifications
Conditions

/

* SMT solvers are:
* Fully automated reasoners
e Widely used in applications

SMT Solvers

* Traditionally:

* Efficient decision procedures for quantifier-free constraints over theories:
* Arithmetic
e Uninterpreted functions (UF)
* Bitvectors
* Arrays
* Datatypes
* More recently: strings, floating points, sets, relations, ...

* In the past decade:

 Efficient (heuristic) techniques for quantified formulas as well
= Focus of this talk

Applications of ¥V in SMT

e Are used for:

 Automated theorem proving:
* Background axioms {Vx.g (e, x)=g(x,e)=x, Vx.g(x,9(y,2))=9(g(x,y),x),Vx.g(x,1(x))=e}

e Software verification:

e Unfolding Vx.foo (x)=bar (x+1), code contracts Vx.pre (x)=post (f (x))
* Frame axioms Vx .x#t = A’ (x)=A(x)

* Function Synthesis:
e Synthesis conjectures Vi:input.do:output.R[o, 1]

* Planning:
e Specifications dp:plan.Vt:time.F[P, t]

SMT Solvers for V using Quantifier Instantiation

* Traditionally: Implemented in

e E-matchi NE [Detlefs et al 2005, Bjorner et al 2007, Ge et al 2007] simplify, z3, FX7,
Alt-Ergo, Princess,
cvch, veriT, SMTInterpol

SMT Solvers for V using Quantifier Instantiation

* Traditionally:

e E-matchi NE [Detlefs et al 2005, Bjorner et al 2007, Ge et al 2007]

* More recently:
e Conflict-Based Instantiation [Reynolds et al 2014, Barbosa et al 2017]
* Model-Based Instantiation [Ge et al 2009, Reynolds et al 2013]
* Enumerative Instantiation [reynolds et al 2018]
¢ Counterexample-Guided / QE [Reynolds et al 2015, Janota et al 2015]
¢ Syntax-Guided [Preiner et al 2017, Niemetz et al 2021]

Implemented in

simplify, z3, FX7,
Alt-Ergo, Princess,
cvch, veriT, SMTInterpol

cvcb, veriT, SMTInterpol
z3, cvchS

cve5, veriT

23, cvc5, yices

boolector, cvch

DPLL(T)-Based SMT Solvers (quantifier-free)

T-Clauses F

SAT
Solver

Theory
solver(s)

DPLL(T)-Based SMT Solvers

T-Clauses F

Context M

o

...where M |=p F

Theory

solver(s)

...when
F' is unsatisfiable

DPLL(T)-Based SMT Solvers

T-Clauses F

F.oo...

F

n

conflicts,

‘\Iemmas

Context M

Theory
solver(s)

...when

M is T-satisfiable

DPLL(T)-Based SMT Solvers

T-Clauses F' | F, .. F Context M

n

Theory
solver(s)

...when ...when
F' is unsatisfiable M is T-satisfiable

DPLL(T)-Based SMT Solvers + V Instantiation

T-Clauses F

SAT Theory
Solver solver(s)

Context M

...when ...when
F' is unsatisfiable M is T-satisfiable

DPLL(T)-Based SMT Solvers + V Instantiation

T-Clauses F

SAT Theory
Solver solver(s)

Context M When M contains
guantified formulas V...

...when ...when
F' is unsatisfiable M is T-satisfiable

DPLL(T)-Based SMT Solvers + V Instantiation

T-Clauses F

SAT Theory
Solver solver(s)

Context M

Undecidability!

...cannot always

..when establish M is sat

F' is unsatisfiable

DPLL(T)-Based SMT Solvers + V¥ Instantiation

T-Clauses F

SAT Theory
Solver solver(s)

+ Context M

...when
F' is unsatisfiable

DPLL(T)-Based SMT Solvers + V Instantiation

T-Clauses F

partition » B}
SAT Theory . Context M
Solver solver(s)

Q Set of quantified formulas
e {Vx.P(x), ..}

Set of ground formulas
* {f(a)=b,P(a),..}

...when
F' is unsatisfiable

DPLL(T)-Based SMT Solvers + V Instantiation

T-Clauses F

SAT Theory . Context M
Solver solver(s)

...when
F' is unsatisfiable

DPLL(T)-Based SMT Solvers + V Instantiation

T-Clauses F

Instantiation

lemmas
)\

F, .. F

n

B
SAT Theory . Context M
Solver solver(s) Q

Given Vx.P (x) in Q, instantiation lemma F'. is a valid formula:
..when Vx.P(x)=P(t)
F'is unsatisfiable for some ground term t

DPLL(T)-Based SMT Solvers + V Instantiation

_—————— -
- - ==a
- -
~

(Instantiation)
lemmas

\
J&

[\ |
1

\Fl L F

...when ...when
F is unsatisfiable E, Qis T-satisfiable

n

B
SAT Theory . Context M
Solver solver(s)

DPLL(T)-Based SMT Solvers + V Instantiation

T-Clauses

SAT Theory
Solver solver(s)

+ Context M

* Which lemmas are likely lead to “unsat”?

* When can we answer “sat”?

...when
E, Qis T-satisfiable

Technigues for Quantifier Instantiation

Y Solver

Conflict-Based

» Instances of V in Q

E-matching

CEX-Guided

Syntax-Guided

J EUQ is T-satisfiable

Conflict-Based
CEX-Guided
E-matching

Syntax-Guided

Model-Based Enumerative

E-matching
* ldea: Instantiations found by pattern matching O to terms from E

* Implemented in early SMT solvers (e.g. simplify) as well as z3, cvch
» [Detlefs et al 2005, Bjorner et al CADE 2007, Ge et al CAV 2007]

* Key applications: Software verification
* Example: Dafny/Boogie

E-matching

E-matching

Vx.P(x)=P

" Vx.P(X)=P

Vx.P(x)=P

DD

Vx.P(x)VR (x)

\ }
|

Pattern

E-matching: Impact

* Highly effective for quantifiers with UF
* Widely used as backend for many software verification applications

* Challenges:
* Pattern selection, multi-patterns

e Too many instances produced, non-termination (matching loops)
* ..solver times out

* Incomplete
e ..solver answers “unknown”

Conflict-Based
CEX-Guided
E-matching

Syntax-Guided

Model-Based Enumerative

Conflict-Based Instantiation

* Idea: Find instantiation that is in conflict with E, if it exists

* A conflicting instance forces the solver to backtrack
* Improves ability to answer “unsat”

* Implemented in cvc5, veriT
* [Reynolds et al FMCAD 2014, Barbosa et al TACAS 2017]

* Key applications: Automated Theorem Proving
e Example: Isabelle/Sledgehammer

Conflict-Based Instantiation

P(c) Conflict-

Based

Conflict-Based Instantiation

: s P s =P {a)
P(c) Conflict- IV P (x) =P (b)
s P sty =P {e)
Q { Vx.P(x)
— P(b),P(b) FL
\)
! =>If no conflicting instance exists,

Conflicting instance :
& resort to E-matching

Conflict-Based Instantiation: Impact

le+7 T 1 T T
le+6 |

le+5

e Using conflict-based
instantiation (cve4+ci),
require an order of magnitude
fewer instances for showing
“UNSAT” wrt E-matching alone

le+4d

1000

cvcd+ci

100 f

10 |

10 100 1000 1le+4 1le+5 le+6 le+7
cvcd

_ (taken from [Reynolds et al FMCAD14], evaluation
Reported number of instances. On SMTLIB, TPTP, Isabelle benchmarks)

Conflict-Based Instantiation: Impact

* CVC4 with conflicting instances cvc4d+ci
* Solves the most benchmarks for TPTP and Isabelle
* Requires almost an order of magnitude fewer instantiations

TPTP [sabelle SMT-LIB
Solved Inst Solved Inst Solved Inst
cvel3 5,245 627.0M 3,827 186.9M 3,407 42.3M
z3 6,269 613.5M 3,506 67.0M 3,983 6.4M
cved 6,100 879.0M 3,858 119.0M 3,680 60.7M
cved+ci 6,616 150.9M 4,082 28.2M 3,747 32.4M

= A number of hard benchmarks can be solved without resorting to E-matching at all

Conflict-Based
CEX-Guided
E-matching

Syntax-Guided

Model-Based Enumerative

Model-Based Instantiation

* ldea: Instantiate quantifiers based on (complete) models for E

 Complete for certain fragments, e.g. EPR, essentially uninterpreted
* Can be useful for answering “sat”

* Implemented in z3, finite model finding in cvcd
* [Ge et al 2009, Reynolds et al 2013]

* Key applications: Software Design, Planning
* Example: Alloy Analyzer

Model-Based Instantiation

Vx.P(x)

Model-Based Instantiation

none,

Q{VX.P(X)

R = Ax.false
= AX.true

\) —> Resort to model-based only when
MoYde| E-matching saturates

av)

Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200

* CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]
e Approach can scale to domains of >2 billion, only adds fraction of possible instances

Conflict-Based
CEX-Guided
E-matching

Syntax-Guided

Model-Based Enumerative

Enumerative Instantiation

Idea: Instantiate based on (fair) enumeration of terms from E
Effective alternative to model-based, better performance for “unsat”
Complete for limited fragments

Implemented in cvc5, veriT
* [Reynolds et al TACAS 2018, Janota et al 2021]

Key applications: Automated theorem proving
* Example: Isabelle/Sledgehammer, TPTP

Enumerative Instantiation

Vx.P(f(x))

Enumerative Instantiation

f (a)=b
E{ P(éa(‘}l)) Vx.P(f (x))=P(f (a))
Vx.P(f(x))=P(f (b))
DEMEENES— V. P (£ (x))=>P (£ (f(a)))
Vx.P(f(x))=P(f(h(b)))
Q{ Vx.P(f (x))

a < b < f(a) < h(b) < ..
\) —> Finds instances that E-matching

! may mi lightweight than MBQ
Ordering over terms from E y Miss, more fightwels an Q

Conflict-Based
CEX-Guided
E-matching

Syntax-Guided

Model-Based Enumerative

Counterexample-Guided |Instantiation

* Idea: Instantiate based on T-solving for counterexamples —QAE
* Can be seen as a lazy quantifier elimination algorithm in SMT loop
* Complete for quantified linear integer/real arithmetic, finite domains

 Variants of idea implemented in cvc5, (extensions of) z3, yices
e [Bjorner 2012, Komuravelli et al 2014, Dutertre 2015,
Reynolds 2015, Bjorner/Janota 2016, Fedyukovich et al 2016]

* Key applications: Synthesis, Hardware Verification, Compiler Optimization

Counterexample-guided Instantiation

a>b

Vx.x+b>a

Counterexample-

Guided Instantiation

Counterexample-guided Instantiation

a>p
i { x+b<a

X=a-b

\)
|

Solve for x

Q { Vx.x+b>a

Counterexample-

Guided Instantiation

Vx.x+b>a= (a-b) +b>a

where:

(a—b) +b>a <
a>a e
1

—> Can simulate e.g. Cooper, Loos-Weispfenning,

Ferrante-Rackoff algorithms for QE

Conflict-Based
CEX-Guided

E-matching

Syntax-Guided

Model-Based Enumerative

Syntax-Guided |Instantiation

* ldea: Instantiate based on enumerating terms from T-specific grammar
* Leverages advances in syntax-guided synthesis (SyGuS) [Alur et al 2013]

* Implemented:
* For bitvector theory in Boolector [Preiner et al TACAS 2017]
* For all supported theories in cvc5 [Niemetz et al TACAS 2021]

* Key applications: Synthesis and Verification for emerging theories
* E.g. quantifiers over floating points

Syntax-Guided |Instantiation

E { none

0

Vx.xX%#£a%+b?+2*a*b

Syntax-Guided
Instantiation

Syntax-Guided |Instantiation

E { none

Syntax-Guided

Instantiation

Q { Vx . x2#£324b2+2*a*b

G—a|b|0]1|G+G|G*G| -G

\)
|

Construct grammar generating terms of integer type

0= 02=a?+b?+2*a*b
0= 1%=a?+b?+2*a*b
0= a’=a?+b?+2*a*b

0= (a+b)?=a?+b?+2*a*b

—> Best known approach for
theories where QE is unknown

Ssummary

* SMT solvers handle diverse set of inputs (with quantifiers)

* Best instantiation technique depends on the logic
* When UF is present:
= E-matching, conflict-based, model-based, enumerative

e For traditional theories (e.g. LIA, BV) which emit quantifier elimination:
= Counterexample-guided

* For other theories (e.g. floating points, strings, non-linear arithmetic):
= Syntax-guided

* Techniques in this talk implemented in SMT solver cvc5

* Open source
* Available at : https://github.com/cvc5

e ...Thanks for listening!

