
An Overview of Quantifier
Instantiation in Modern SMT

Solvers
Andrew Reynolds

May 28, 2021

Satisfiability Modulo Theories (SMT) Solvers

• SMT solvers are:
• Fully automated reasoners

• Widely used in applications

Software
Verification

Tools

Interactive
Proof

Assistants

Symbolic
Execution
Engines

SMT
Solvers

Verification
Conditions

Conjectures Path Constraints

Synthesis
Tools,

Planners

Specifications

unsat sat

SMT Solvers

• Traditionally:
• Efficient decision procedures for quantifier-free constraints over theories:

• Arithmetic

• Uninterpreted functions (UF)

• Bitvectors

• Arrays

• Datatypes

• More recently: strings, floating points, sets, relations, …

• In the past decade:
• Efficient (heuristic) techniques for quantified formulas as well

 Focus of this talk

Applications of  in SMT

• Are used for:
• Automated theorem proving:

• Background axioms {x.g(e,x)=g(x,e)=x, x.g(x,g(y,z))=g(g(x,y),x),x.g(x,i(x))=e}

• Software verification:
• Unfolding x.foo(x)=bar(x+1), code contracts x.pre(x)post(f(x))

• Frame axioms x.x≠t  A’(x)=A(x)

• Function Synthesis:
• Synthesis conjectures i:input.o:output.R[o,i]

• Planning:
• Specifications p:plan.t:time.F[P,t]

SMT Solvers for  using Quantifier Instantiation

• Traditionally: Implemented in

• E-matching [Detlefs et al 2005, Bjorner et al 2007, Ge et al 2007]

• More recently:
• Model-Based Instantiation [Ge et al 2009, Reynolds et al 2013] z3, cvc4

• Conflict-Based Instantiation [Reynolds et al 2014, Barbosa et al 2017] cvc4, veriT

• Theory-specific Approaches z3, cvc4, yices,

• Linear arithmetic [Bjorner 2012, Reynolds et al 2015, Janota et al 2015] veriT+redlog

• Bit-Vectors [Wintersteiger et al 2013, Dutertre 2015]

simplify, z3, FX7,
Alt-Ergo, Princess,
cvc5, veriT, SMTInterpol

SMT Solvers for  using Quantifier Instantiation

• Traditionally: Implemented in

• E-matching [Detlefs et al 2005, Bjorner et al 2007, Ge et al 2007]

• More recently:
• Conflict-Based Instantiation [Reynolds et al 2014, Barbosa et al 2017] cvc5, veriT, SMTInterpol

• Model-Based Instantiation [Ge et al 2009, Reynolds et al 2013] z3, cvc5

• Enumerative Instantiation [Reynolds et al 2018] cvc5, veriT

• Counterexample-Guided / QE [Reynolds et al 2015, Janota et al 2015] z3, cvc5, yices

• Syntax-Guided [Preiner et al 2017, Niemetz et al 2021] boolector, cvc5

simplify, z3, FX7,
Alt-Ergo, Princess,
cvc5, veriT, SMTInterpol

DPLL(T)-Based SMT Solvers (quantifier-free)

QF Solver

SAT
Solver

Theory
solver(s)

T-Clauses F

DPLL(T)-Based SMT Solvers

QF Solver

Context M

SAT
Solver

Theory
solver(s)

T-Clauses F

…when
F is unsatisfiable

unsat

…where M ╞p F

DPLL(T)-Based SMT Solvers

QF Solver

Context M

SAT
Solver

Theory
solver(s)

T-Clauses F

…when
M is T-satisfiable

sat

F1 … Fn
conflicts,
lemmas

DPLL(T)-Based SMT Solvers

QF Solver

Context M

SAT
Solver

Theory
solver(s)

T-Clauses F

…when
M is T-satisfiable

…when
F is unsatisfiable

satunsat

F1 … Fn

QF Solver

DPLL(T)-Based SMT Solvers +  Instantiation

SAT
Solver

Theory
solver(s)

T-Clauses F

…when
M is T-satisfiable

…when
F is unsatisfiable

unsat sat

Context M

QF Solver

DPLL(T)-Based SMT Solvers +  Instantiation

SAT
Solver

Theory
solver(s)

T-Clauses F

…when
M is T-satisfiable

…when
F is unsatisfiable

unsat sat

When M contains

quantified formulas …
Context M

QF Solver

DPLL(T)-Based SMT Solvers +  Instantiation

SAT
Solver

Theory
solver(s)

T-Clauses F

…when
M is T-satisfiable

…when
F is unsatisfiable

unsat sat?
Undecidability!

…cannot always
establish M is sat

Context M

QF Solver

Context M

DPLL(T)-Based SMT Solvers +  Instantiation

SAT
Solver

Theory
solver(s)

T-Clauses F

…when
F is unsatisfiable

unsat

QF Solver

DPLL(T)-Based SMT Solvers +  Instantiation

SAT
Solver

Theory
solver(s)

T-Clauses F

Q

E

…when
F is unsatisfiable

unsat

partition

Set of ground formulas
• {f(a)=b, P(a), ...}

Set of quantified formulas
• {x.P(x), …}

Context M

QF Solver

DPLL(T)-Based SMT Solvers +  Instantiation

SAT
Solver

Theory
solver(s)

T-Clauses F



Solver
Q

E

…when
F is unsatisfiable

unsat

Context M

QF Solver

DPLL(T)-Based SMT Solvers +  Instantiation

SAT
Solver

Theory
solver(s)

T-Clauses F



Solver
Q

E

…when
F is unsatisfiable

unsat

Context M F1 … Fn

Instantiation
lemmas

Given x.P(x) in Q, instantiation lemma Fi is a valid formula:
x.P(x)P(t)

for some ground term t

QF Solver

DPLL(T)-Based SMT Solvers +  Instantiation

SAT
Solver

Theory
solver(s)

T-Clauses F



Solver
Q

E

…when
E,Q is T-satisfiable

…when
F is unsatisfiable

unsat sat

Context M F1 … Fn

(Instantiation)
lemmas

QF Solver

DPLL(T)-Based SMT Solvers +  Instantiation

SAT
Solver

Theory
solver(s)

T-Clauses F



Solver
Q

E

…when
E,Q is T-satisfiable

…when
F is unsatisfiable

unsat sat

Context M F1 … Fn

(Instantiation)
lemmas

• Which lemmas are likely lead to “unsat”?

• When can we answer “sat”?

Techniques for Quantifier Instantiation

 Solver

E-matching

Model-Based

Conflict-Based

EQ is T-satisfiable

Instances of  in Q

CEX-Guided

Q

E

Syntax-Guided
Enumerative

sat

 Solver

E-matching

Model-Based

Conflict-Based
CEX-Guided

Syntax-Guided
Enumerative

E-matching

• Idea: Instantiations found by pattern matching Q to terms from E

• Implemented in early SMT solvers (e.g. simplify) as well as z3, cvc5
• [Detlefs et al 2005, Bjorner et al CADE 2007, Ge et al CAV 2007]

• Key applications: Software verification
• Example: Dafny/Boogie

E-matching

x.P(x)R(x)

P(a)

P(b)

P(c)

E

Q

E-matching

E-matching

P(a)

P(b)

P(c)

E

Q

E-matching
x.P(x)P(a)

x.P(x)P(b)

x.P(x)P(c)

x.P(x)R(x)

Pattern

E-matching: Impact

• Highly effective for quantifiers with UF
• Widely used as backend for many software verification applications

• Challenges:
• Pattern selection, multi-patterns

• Too many instances produced, non-termination (matching loops)
• …solver times out

• Incomplete
• …solver answers “unknown”

 Solver

E-matching

Model-Based

Conflict-Based
CEX-Guided

Syntax-Guided
Enumerative

Conflict-Based Instantiation

• Idea: Find instantiation that is in conflict with E, if it exists

• A conflicting instance forces the solver to backtrack
• Improves ability to answer “unsat”

• Implemented in cvc5, veriT
• [Reynolds et al FMCAD 2014, Barbosa et al TACAS 2017]

• Key applications: Automated Theorem Proving
• Example: Isabelle/Sledgehammer

Conflict-Based Instantiation

x.P(x)

P(a)

P(b)

P(c)

E

Q

Conflict-
Based

Conflict-Based Instantiation

x.P(x)

P(a)

P(b)

P(c)

E

Q

Conflict-
Based

x.P(x)P(a)

x.P(x)P(b)

x.P(x)P(c)

If no conflicting instance exists,
resort to E-matching

 P(b),P(b)╞⊥

Conflicting instance

Conflict-Based Instantiation: Impact

• Using conflict-based
instantiation (cvc4+ci),
require an order of magnitude
fewer instances for showing
“UNSAT” wrt E-matching alone

(taken from [Reynolds et al FMCAD14], evaluation
On SMTLIB, TPTP, Isabelle benchmarks)

• CVC4 with conflicting instances cvc4+ci
• Solves the most benchmarks for TPTP and Isabelle

• Requires almost an order of magnitude fewer instantiations

Conflict-Based Instantiation: Impact

 A number of hard benchmarks can be solved without resorting to E-matching at all

 Solver

E-matching

Model-Based

Conflict-Based
CEX-Guided

Syntax-Guided
Enumerative

Model-Based Instantiation

• Idea: Instantiate quantifiers based on (complete) models for E

• Complete for certain fragments, e.g. EPR, essentially uninterpreted
• Can be useful for answering “sat”

• Implemented in z3, finite model finding in cvc4
• [Ge et al 2009, Reynolds et al 2013]

• Key applications: Software Design, Planning
• Example: Alloy Analyzer

Model-Based Instantiation

x.P(x)

E

Q

Model-
Based

R(a)

R(b)

Model-Based Instantiation

x.P(x)

R(a)

R(b)E

Q

Model-
Based

satnone,

R = lx.false

P = lx.true

Model

Resort to model-based only when
E-matching saturates

Model-based Instantiation: Impact

• CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]

• Approach can scale to domains of >2 billion, only adds fraction of possible instances

 Solver

E-matching

Model-Based

Conflict-Based
CEX-Guided

Syntax-Guided
Enumerative

Enumerative Instantiation

• Idea: Instantiate based on (fair) enumeration of terms from E

• Effective alternative to model-based, better performance for “unsat”

• Complete for limited fragments

• Implemented in cvc5, veriT
• [Reynolds et al TACAS 2018, Janota et al 2021]

• Key applications: Automated theorem proving
• Example: Isabelle/Sledgehammer, TPTP

Enumerative Instantiation

f(a)=b

P(h(b))E

Q

Enumerative

x.P(f(x))

Enumerative Instantiation

x.P(f(x))

f(a)=b

P(h(b))E

Q

Enumerative

a < b < f(a) < h(b) < …

Ordering over terms from E

x.P(f(x))P(f(a))

x.P(f(x))P(f(b))

x.P(f(x))P(f(f(a)))

x.P(f(x))P(f(h(b)))

…

 Finds instances that E-matching
may miss, more lightweight than MBQI

 Solver

E-matching

Model-Based

Conflict-Based
CEX-Guided

Syntax-Guided
Enumerative

Generally,
used for  with UF logics

Generally,
used for  in pure theories

Counterexample-Guided Instantiation

• Idea: Instantiate based on T-solving for counterexamples QE

• Can be seen as a lazy quantifier elimination algorithm in SMT loop

• Complete for quantified linear integer/real arithmetic, finite domains

• Variants of idea implemented in cvc5, (extensions of) z3, yices
• [Bjorner 2012, Komuravelli et al 2014, Dutertre 2015,

Reynolds 2015, Bjorner/Janota 2016, Fedyukovich et al 2016]

• Key applications: Synthesis, Hardware Verification, Compiler Optimization

Counterexample-guided Instantiation

E

Q

Counterexample-
Guided Instantiation

x.x+b>a

a>b

Counterexample-guided Instantiation

E

Q

Counterexample-
Guided Instantiation

x.x+b>a

a>b

x+ba

x=a-b

Solve for x

x.x+b>a(a-b)+b>a

where:
(a-b)+b>a 

a>a 

⊥

Can simulate e.g. Cooper, Loos-Weispfenning,
Ferrante-Rackoff algorithms for QE

 Solver

E-matching

Model-Based

Conflict-Based
CEX-Guided

Syntax-Guided
Enumerative

Syntax-Guided Instantiation

• Idea: Instantiate based on enumerating terms from T-specific grammar

• Leverages advances in syntax-guided synthesis (SyGuS) [Alur et al 2013]

• Implemented:
• For bitvector theory in Boolector [Preiner et al TACAS 2017]
• For all supported theories in cvc5 [Niemetz et al TACAS 2021]

• Key applications: Synthesis and Verification for emerging theories
• E.g. quantifiers over floating points

Syntax-Guided Instantiation

E

Q

Syntax-Guided
Instantiation

x.x2a2+b2+2*a*b

none

Syntax-Guided Instantiation

E

Q

Syntax-Guided
Instantiation

x.x2a2+b2+2*a*b

none

G→a|b|0|1|G+G|G*G|-G

Construct grammar generating terms of integer type

Q 02=a2+b2+2*a*b

Q 12=a2+b2+2*a*b

Q a2=a2+b2+2*a*b

…

Q (a+b)2=a2+b2+2*a*b

Best known approach for
theories where QE is unknown

Summary

• SMT solvers handle diverse set of inputs (with quantifiers)

• Best instantiation technique depends on the logic
• When UF is present:

 E-matching, conflict-based, model-based, enumerative

• For traditional theories (e.g. LIA, BV) which emit quantifier elimination:
 Counterexample-guided

• For other theories (e.g. floating points, strings, non-linear arithmetic):
 Syntax-guided

• Techniques in this talk implemented in SMT solver cvc5
• Open source

• Available at : https://github.com/cvc5

• …Thanks for listening!

