A DPLL(T) Theory Solver for Strings and Regular Expressions

Tianyi Liang
Andrew Reynolds
Cesare Tinelli
Morgan Deters
Clark Barrett

Motivation : Security Applications

```
char buff[15];
char pass;
std::cout << "Enter the password :";
gets(buff);
if (std::regex_match(
            buff,
            std::regex("([A-Z]+)") )) {
    if(strcmp(buff, "PASSWORD")) {
        std::cout << "Wrong Password";
    }
    else {
        std::cout << "Correct Password";
        pass = 'Y';
    }
}
if(pass == 'Y') {
    /* Grant the root permission*/
}
(set-logic QF_S)
(declare-const input String)
(declare-const buff String)
(declare-const pass0 String)
(declare-const rest String)
(declare-const pass1 String)
(assert (= (str.len buff) 15))
(assert (= (str.len pass1) 1))
(assert (= input (str.++ buff pass0 rest)))
(assert (str.in.re buff (re.+ (re.range "A" "Z"))))
(assert (ite (= buff "PASSWORD")
(= pass1 "Y")
(= pass1 pass0)))
(assert (not (= buff "PASSWORD")))
(assert (= pass1 "Y"))
```

```
tiliang@milner:~/workspace/security/benchmarks/homemade$ ~/CVC4/bin/pt-cvc4 propsalex.smt2
```

tiliang@milner:~/workspace/security/benchmarks/homemade\$ ~/CVC4/bin/pt-cvc4 propsalex.smt2
sat
sat
(model

```
(model
```



```
(define-fun buff () String "A,A,A,A,A,A,A,A,A,A"")
```

(define-fun buff () String "A,A,A,A,A,A,A,A,A,A"")
(define-fun pass0 () String "Y")
(define-fun pass0 () String "Y")
(define-fun rest () String "")
(define-fun rest () String "")
(define-fun pass1 () String "Y")

```
(define-fun pass1 () String "Y")
```


Objectives

- Want solver to handle:
- (Unbounded) string constraints
- Length constraints
- Regular language memberships, ...
- Theoretical complexity of:
- Word equation problem is in PSPACE
- ...with length constraints is OPEN
- ...with extended functions (e.g. replace) is UNDECIDABLE
- Instead, focus on:
- Solver that is efficient in practice
- Tightly integrated into SMT solver architecture
- Conflict analysis, T-propagation, lemma learning, ...

Core Language for Theory of Strings

- Terms are:
- Constants from a fixed finite alphabet $\Sigma^{*}(\mathrm{a}, \mathrm{ab}, \mathrm{cbc} . .$.
- Free constants or "variables" ($\mathrm{x}, \mathrm{y}, \mathrm{z} . .$.)
- String concatenation
${ }_{-}$_ : String \timesString \rightarrow String
- Length terms
len (_) : String \rightarrow Int
- Example input:

$$
\begin{gathered}
\operatorname{len}(x) \quad>\operatorname{len}(y) \\
x \cdot z=y \cdot a b
\end{gathered}
$$

Cooperating Theory Solvers

$$
\begin{gathered}
\operatorname{len}(x)>\operatorname{len}(y) \\
x \cdot z=y \cdot a b
\end{gathered}
$$

```
len(x) > len(y)
```

- Distribute constraints to corresponding theory solvers

Theory
 Strings

$\operatorname{len}(x) \quad>\operatorname{len}(y)$

$$
\mathrm{x} \cdot \mathrm{z}=\mathrm{y} \cdot \mathrm{ab}
$$

Cooperating Theory Solvers

$$
\begin{gathered}
\operatorname{len}(x)>\operatorname{len}(y) \\
x \cdot z=y \cdot a b
\end{gathered}
$$

- Communicate
(dis)equalities over
shared terms

Theory

 LIA
Theory

 Strings$x \cdot z=y \cdot a b$

$$
\operatorname{len}(x) \neq \operatorname{len}(y)
$$

Summary of Approach

- Determines satisfiability of $A \cup S$, where
$-A$ is a set of linear arithmetic constraints
$-S$ is a set of (dis)equalities over:
- String terms
- Length terms

$$
\begin{gathered}
x \cdot z=y \cdot a b \\
\operatorname{len}(x) \neq \operatorname{len}(y)
\end{gathered}
$$

- Uses procedure consisting of four steps:

1. Check length constraints A
2. Normalize equalities in S
3. Normalize disequalities in S
4. Check cardinality of Σ

Check Length Constraints

2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

- Add equalities to A regarding the length of (non-variable) terms from S

$$
\operatorname{len}(x)>\operatorname{len}(y)
$$

1. Check length constraints

Check Length Constraints

2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

$A-\begin{gathered}\operatorname{len}(x)>\operatorname{len}(y) \\ \operatorname{len}(x)+\operatorname{len}(z)=\operatorname{len}(y)+2\end{gathered}$

Theory Strings

$S\left\{\begin{array}{c}\operatorname{len}(x) \neq \operatorname{len}(y) \\ x \cdot z=y \cdot a b\end{array}\right.$
\Rightarrow Check if A is satisfiable

Normalize Equalities

- To show: satisfiability of (dis)equalities S between string terms

$$
\begin{gathered}
\text { Theory } \\
\text { Strings } \\
\begin{array}{l}
\operatorname{len}(x) \neq \operatorname{len}(y) \\
x \cdot z=y \cdot a b
\end{array}
\end{gathered}
$$

- To ensure equality $t=s$ has model:
- If t and s are non-variable,
- Must be equivalent to flat forms F [t], F [s]
- $\mathrm{F}[\mathrm{t}$] and $\mathrm{F}[\mathrm{s}$] are syntactically equivalent
- Flat form F [t] computed by expanding/flattening t

Normalize Equalities

- Modified example:

$$
\begin{gathered}
\operatorname{len}(x)=\operatorname{len}(y) \\
z \cdot w=y \cdot a b \\
z=x \cdot a
\end{gathered}
$$

- Flat form of terms from first equality are not the same:
- $\mathrm{F}[\mathrm{z} \cdot \mathrm{w}]$ is: $\mathrm{x} \cdot \mathrm{a} \cdot \mathrm{w}$
- $F[y \cdot a b]$ is: $y \cdot a b$
- Procedure continues based on three cases:
- We know the length of x and y are equal : conclude $x=y$
- We know the length of x and y are disequal : conclude

$$
\exists k .((x=y \cdot k \vee y=x \cdot k) \wedge \text { len }(k)>0)
$$

- We know neither : guess their lengths are equal, restart

Normalize Equalities

- After concluding $x=y$,

$$
\begin{gathered}
\operatorname{len}(x)=\operatorname{len}(y) \\
z \cdot w=y \cdot a b \\
z=x \cdot a \\
x=y
\end{gathered}
$$

- Flat form of terms from first equality are now, e.g.:
- F[z•w] is: y•a•w
- $F[y \cdot a b]$ is: $y \cdot a b$
- Will conclude $\mathrm{w}=\mathrm{b}$, after which $\mathrm{F}[\mathrm{z} \cdot \mathrm{w}]=\mathrm{F}[\mathrm{y} \cdot \mathrm{ab}]$

Normalize Equalities

- For $t=s$, procedure makes progress* towards: - Towards forcing flat forms F [t] and F [s] equal, or - Discovering conflicts
- If $E\left[t_{1}\right]=\ldots=F\left[t_{n}\right]$ for an eq class $E=\left\{t_{1} \ldots t_{n}\right\}$: - We refer to $F\left[t_{1}\right]$ as the normal form $N\left[t_{1}\right]$ of E
- If normal form exists for each eq class, - Then a model exists for all equalities from S
- Constructed trivially, given normal form

Normalize Disequalities

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

- For disequalities in S
- A disequality $t \neq s$ is normalized if:
- len (t) \neq len (s), or
- $N[t]=t_{1} \cdot u \cdot t_{2}$ and $N[s]=s_{1} \cdot v \cdot s_{2}$, where:
- len $\left(t_{1}\right)=\operatorname{len}\left(t_{2}\right)$,
$-\operatorname{len}(u)=\operatorname{len}(v)$, and
$-u \neq V$
- For example:

$$
\begin{aligned}
\operatorname{len}(z) & \neq l e n(y) \\
z & \neq y \\
x \cdot a \cdot z & \neq x \cdot b \cdot z \\
x \cdot w & \neq y \cdot b
\end{aligned}
$$

Normalize Disequalities

2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

- To normalize disequalities,
- Proceed by cases, similar to Step 2
- In example, we would succeed, for example if:

$$
\begin{aligned}
& \text { - len }(x \cdot w) \neq \operatorname{len}(y \cdot b), \text { or } \\
& -\operatorname{len}(x)=\operatorname{len}(y) \text { and } x \neq y, \\
& -\ldots
\end{aligned}
$$

- Continue until all disequalities are normalized

$$
\begin{aligned}
\operatorname{len}(z) & \neq \operatorname{len}(y) \\
z & \neq y \\
x \cdot a \cdot z & \neq x \cdot b \cdot z \\
x \cdot w & \\
& \neq y \cdot b
\end{aligned}
$$

Check Cardinality of Σ

- S may be unsatisfiable since Σ is finite
- For instance,

If

- Σ is a finite alphabet of 256 characters, and
- S entails that 257 distinct strings of length 1 exist

Then

- S is unsatisfiable
- Performed as a last step of our procedure

Challenge: Looping Word Equations

- Say we are given: $\mathrm{x} \cdot \mathrm{a}=\mathrm{b} \cdot \mathrm{x}$

Challenge: Looping Word Equations

- Say we are given: $\mathrm{x} \cdot \mathrm{a}=\mathrm{b} \cdot \mathrm{x}$
- Flat forms are:

$$
\begin{aligned}
& \mathrm{F}[\mathrm{x} \cdot \mathrm{a}]=\mathrm{x} \cdot \mathrm{a} \\
& \mathrm{~F}[\mathrm{~b} \cdot \mathrm{x}]=\mathrm{b} \cdot \mathrm{x}
\end{aligned}
$$

- Compare len (x) and len (b), i.e. 1
- If len $(x)=1$, then $x=a$ and $x=b \Rightarrow$ conflict
- If len (x) $\neq 1$
- If x is a prefix of b (i.e. it is empty), then $a=b \Rightarrow$ conflict
- If b is a prefix of x, then $x=b \cdot k$ for some k

Challenge: Looping Word Equations

- Now we have:

$$
\begin{gathered}
\mathrm{x} \cdot \mathrm{a}=\mathrm{b} \cdot \mathrm{x} \\
\mathrm{x}=\mathrm{b} \cdot \mathrm{k}
\end{gathered}
$$

- Flat forms of first equation are:

$$
\begin{aligned}
& \mathrm{F}[\mathrm{x} \cdot \mathrm{a}]=\mathrm{b} \cdot \mathrm{k} \cdot \mathrm{a} \\
& \mathrm{~F}[\mathrm{~b} \cdot \mathrm{x}]=\mathrm{b} \cdot \mathrm{~b} \cdot \mathrm{k} \Rightarrow \text { Problem: looping! }
\end{aligned}
$$

- Solution:
- Recognize when these cases occur
- Reduce to regular language membership:
$x \cdot a=b \cdot x \Leftrightarrow \exists y z \cdot(a=y \cdot z \wedge b=z \cdot y \wedge x \in(z \cdot y) * z)$

Experimental Results

	CVC4	Z3-STR		Kaluza	
Result		Incorrect 3		Incorrect 3	
unsat	$11,625^{1}$	317	$11,769^{2}$	7,154	$13,435^{2}$
sat	33,271	1,583	31,372	$\mathrm{n} / \mathrm{a}^{4}$	$25,468^{4}$
unknown	0		0		3
timeout	2,388		2,123		84
error	0		120^{5}		1,140

1. For the problems where CVC4 answers UNSAT, neither Z3-STR nor Kaluza answer SAT
2. We cannot verify the problems where CVC4 does not answer UNSAT
3. We verified these errors by asserting a model back as assertions to the tool
4. We cannot verify these answers due to bugs in Kaluza's model generation
5. One is because of non-trivial regular expression, and 119 are because of escaped characters

Experimental Results

Theoretical Results

- Our approach is:
- Refutation sound
- When it answer "UNSAT", it can be trusted
- Even for strings of unbounded length
- Solution sound
- When it answers "SAT", it can be trusted
- (A version of) our approach is:
- Solution complete
- When it is "SAT", it will eventually get a model
- Somewhat trivially, by finite model finding
- Our approach is not:
- Refutation complete
- When it is "UNSAT", it is not guaranteed to derive refutation
- Would like to identify fragments (i.e. non-cyclical) where it is

Further Work

- Handling regular language membership $t \in R^{\star}$
- Currently handled, but naively (unrolling)
- Handling extended functions
- substr, contains, replace, prefixOf, suffixOf, str.indexOf, str.to.int, int.to.str
- Many are challenging, for instance:

$$
\neg \text { contains }(x, y)
$$

- Intuitively, requires (universal) quantification over the positions of x

Questions?

- For more details, see CAV 2014 paper
- CVC4 is publicly available at: http: / /cvc4.cs.nyu.edu/web/

