
Design of Theory Solvers in CVC4

Andrew Reynolds

8 April 2014

Satisfiability Modulo Theories

• SMT solvers used for :

–Software/hardware verification

–Automated Theorem Proving

–Scheduling and Planning

SMT Solver : CVC4

• Joint project between NYU and U of Iowa

• State of the art successor of CVC3

• Based on DPLL(T) framework

• Supports wide range of theories

Theories supported by CVC4

• From SMT Lib :

– Uninterpreted functions

– Linear Integer and Real Arithmetic

– Arrays

– BitVectors

• Others :

– Inductive Datatypes

– Strings

– Sets

– Floating Points (coming soon)

SMT Example

x + 5 = read(A, 5)  (A  B  read(B, 5) ≤ f(x))

Arithmetic Arrays UF

SMT Example

x + 5 = read(A, 5)  (A  B  read(B, 5) ≤ f(x))

 P  (Q  R)

 Abstract to Propositional Logic

SMT Example

x + 5 = read(A, 5)  (A  B  read(B, 5) ≤ f(x))

 P  (Q  R)

 Abstract to Propositional Logic

true true

SMT Example

x + 5 = read(A, 5)  (A  B  read(B, 5) ≤ f(x))

 P  (Q  R)

 Abstract to Propositional Logic

 Find satisfying assignment

x + 5 = read(A, 5) , A  B

 Determine if consistent according to theory

UNSAT SAT

DPLL(T) Framework

SAT

Solver

Theory

Solvers

Satisfying Assignment M

Clauses to add to F

F is sat

F is unsat M is T-consistent

M is T-inconsistent

Input :

Clause set F

Architecture of CVC4

• CVC4 combines :

–Off-the-shelf SAT solver (MiniSAT)

–Multiple theory solvers

•Managed by Theory Engine

CVC4 : Theory Engine

SAT

Solver

Theory Engine

Satisfying Assignment M
Clause set F

Theory

Arith

Theory

UF

Theory

Arrays
…

• Distribute literals from M to theory solver(s)

CVC4 : Theory Engine

SAT

Solver

Theory Engine

Satisfying Assignment M
Clause set F

Theory

Arith

Theory

UF

Theory

Arrays
…

Clauses to add to F

• Distribute literals from M to theory solver(s)

• Ask theory solvers whether their subset of M

is T-consistent

CVC4 : Theory Solvers

Theory X

Ask if MX

is consistent

…
 Assertion Queue

͞MX͟

Conflict : C  MX

is T-inconsistent,

add C to F

Lemma(s) : Add

a clause D to F

Assertions

Handling Equality

• Challenge : Equality reasoning is common to

all theories, e.g.

– x + 1 = y

– read(A, i)  read(A, j)

– l1 = cons(e, l2)

• Idea : Theory solvers use Equality Engine data

structure

Equality Engine Data Structure

• Takes input a set of equalities and disequalities

– Performs Congruence Closure

– Maintains equivalence classes

– Explains/reports conflicts

Equality Engine

a, c, f(b) b f(a)


a = c,

f(b) = a,

f(a)  c
Conflict?

Theory Solver : Equality Engine

Theory X

Is MX

consistent?

…

MX

Conflict

Lemma(s)

Equality

Engine

Input

Assertions

Theory

Reasoning

Inferred

Assertions

Case : Inductive Datatypes

Equality Engine
cons(e, l1) =

cons(e, l3),

l1 = l2,

l2  l3

Theory

Reasoning

l1, l2

cons(e, l1),

cons(e, l3)

l3



e

Case : Inductive Datatypes

Equality Engine
cons(e, l1) =

cons(e, l3),

l1 = l2,

l2  l3

Theory

Reasoning

l1, l2

cons(e, l1),

cons(e, l3)

l3



e

From cons(e, l1) = cons(e, l3),

we can infer l1 = l3

Case : Inductive Datatypes

Equality Engine
cons(e, l1) =

cons(e, l3),

l1 = l2,

l2  l3

Theory

Reasoning

l1, l2

cons(e, l1),

cons(e, l3)

l3



e

From cons(e, l1) = cons(e, l3),

we can infer l1 = l3

From

l1 = l3,

l1  l3

We have

conflict :

cons(e, l1) =

cons(e, l3),

l1 = l2,

l2  l3

Theory Solver (summary)

• Most theory solvers rely on Equality Engine for:

– Computing equivalence classes of current terms

– Reporting most conflicts

– Performing (eager) T-propagation

• Supplement with Theory Reasoning :

– Adds assertions inferred from current state

– May add other lemmas to system when necessary

Theory Interface (extended)

• In addition to check if assertions T-consistent,

– propagate, T-propagate literals

– explain, explain why literals were T-propagated

– collectModelInfo, get model for curr assertions

– Others:

• getNextDecision
• staticLearn
• preSolve

• …

Theory X

…

Support for Theory Development

• Equality Engine data structure

• Associated ͞kinds͟ file

– Contains specifications for:

• Signature Definition (symbols in the theory)

• Term normalization

• Type checking

• Properties of the theory

– Interaction when performing theory combination

– Auto-generates necessary code for each of these

• Automatic Integration into Theory Engine

Questions?

DPLL(T) Search : Incremental Checking

Propagate : Literals p1,…,pn

must be added to M

…

Decide : Add literal d to M d d

p1

pn

DPLL(T) Search : Incremental Checking

Propagate : Literals p1,…,pn

must be added to M

…

Decide : Add literal d to M d d

p1

pn

Weak Effort Check

• Check if p1 … pn are already T-inconsistent

• Should be efficient

• Can be incomplete

DPLL(T) Search : Incremental Checking

Propagate : Literals p1,…,pn

must be added to M

…

Decide : Add literal d to M d d

p1

pn

…

Weak Effort Check

M is a complete

assignment

Strong Effort Check

• Determine if M is T-inconsistent

• Must be complete

