Design of Theory Solvers in CVC4

Andrew Reynolds
8 April 2014

Satisfiability Modulo Theories

* SMT solvers used for :
—Software/hardware verification
—Automated Theorem Proving
—Scheduling and Planning

SMT Solver : CVC4

Joint project between NYU and U of lowa
State of the art successor of CVC3

Based on DPLL(T) framework
Supports wide range of theories

Theories supported by CVC4

* From SMT Lib:

— Uninterpreted functions
— Linear Integer and Real Arithmetic
— Arrays
— BitVectors
e Others:
— Inductive Datatypes
— Strings
— Sets
— Floating Points (coming soon)

SMT Example

X+5=read(A,5)A(A#Bvread(B,5)<f(x))

- =

Arithmetic Arrays UF

SMT Example

Xx+5=read(A,5)A(A%#Bvread(B,5)<f(x))
U Abstract to Propositional Logic

P Al Q Vv R)

SMT Example

Xx+5=read(A,5)A(A%#Bvread(B,5)<f(x))
U Abstract to Propositional Logic

P Al Q Vv R)

SMT Example

Xx+5=read(A,5)A(A%#Bvread(B,5)<f(x))
U Abstract to Propositional Logic

P Al Q Vv R)

U Find satisfying assignment

X+5=read(A,5) , A#B

—> Determine if consistent according to theory

DPLL(T) Framework

Input :
Clause set F| Fis sat

F is unsat

Satisfying Assignment M

Clauses toadd to F

M is T-consistent

Theory
Solvers

M is T-inconsistent

Architecture of CVC4

* CVC4 combines :
—Off-the-shelf SAT solver (MiniSAT)

—Multiple theory solvers
* Managed by Theory Engine

CVC4 : Theory Engine

Clause set F

Satisfying Assignment M

Theory Engine

* Distribute literals from M to theory solver(s

SAT
Solver

Theory Theory Theory
UF Arith Arrays

CVC4 : Theory Engine

Satisfying Assignment M

Clause set F

Theory Engine

* Distribute literals from M to theory solver(s)
* Ask theory solvers whether their subset of M

SAT Is T-consistent
Solver

Theory Theory Theory
UF Arith Arrays

Clausesto add to F

CVC4 : Theory Solvers

Conflict : C < M,

Assertion Queue il 'S T-inconsistent,
“M,” add —Cto F

>

Assertions

Ask if M,
IS consistent

Theory X Lemma(s) : Add

aclauseDtoF
>

Handling Equality

* Challenge : Equality reasoning is common to
all theories, e.g.

—Xx+1=y
—read(A, i)#read(A,j)
—1,=cons(e, 1,)
* /dea : Theory solvers use Equality Engine data
structure

Equality Engine Data Structure

a=c, Equality Engine

f(b)=a,

fla)#c Conflict?
* Takes input a set of equalities and disequalities

>

— Performs Congruence Closure
— Maintains equivalence classes
— Explains/reports conflicts

Theory Solver : Equality Engine

Input
Assertions

Equality
Engine

Conflict

Is M,
consistent?

Theory
Reasoning

Theory X

Case : Inductive Datatypes

cons(e, 1,)= : .
cons(e, 1,), Equality Engine
L= 1y cons(e, 1,),
Ly # 1 cons(e, 15)

@ O

A

\ 4

Theory
Reasoning

Case : Inductive Datatypes

cons(e, 1,)=
cons(e, 15),

Li=1, cons(e, 1,),
1,# 13 cons(e, 1,)

Equality Engine

From cons(e, 1,)=cons(e, 15),
we caninfer 1, =1,

Theory
Reasoning

Case : Inductive Datatypes

cons(e, 1,)=

cons(e, 15),
1,=1,
1,# 15

From cons(e, 1,)=cons(e, 15),
we caninfer 1, =1,

Equality Engine

From
1,=1,
1,# 15

[
\

cons(e, 1,),
cons(e, 1,)) -~~~
A
\\ //

~ -

.‘.~= ==

Y

Theory
Reasoning

—>

We have
conflict :
cons(e, 1,)=
cons(e, 13),
1,=1,
1,# 15

Theory Solver (summary)

* Most theory solvers rely on Equality Engine for:
— Computing equivalence classes of current terms
— Reporting most conflicts
— Performing (eager) T-propagation

* Supplement with Theory Reasoning :
— Adds assertions inferred from current state
— May add other lemmas to system when necessary

Theory Interface (extended)

* |In addition to check if assertions T-consistent,
— propagate, T-propagate literals
— explain, explain why literals were T-propagated
—collectModelInfo, get model for curr assertions
— Others:

* getNextDeclsion

* staticlLearn
* preSolve

Support for Theory Development

* Equality Engine data structure
* Associated “kinds” file

— Contains specifications for:
 Signature Definition (symbols in the theory)
e Term normalization
* Type checking
* Properties of the theory

— Interaction when performing theory combination

— Auto-generates necessary code for each of these

* Automatic Integration into Theory Engine

Questions?

DPLL(T) Search : Incremental Checking
- |

Pn
Decide : Add literaldtoM d _d

Propagate : Literals p,,...,p,
must be added to M

DPLL(T) Search : Incremental Checking
- |

Pn
Decide : Add literaldtoM d _d Weak Effort Check

Propagate : Literals p,,...,p,
must be added to M

* Check if p; ... p,, are already T-inconsistent
* Should be efficient
* Can be incomplete

DPLL(T) Search : Incremental Checking
- |

Pn
Decide : Add literaldtoM d _d Weak Effort Check

M is a complete ‘l’ . . _ . .
assignment * Determine if M is T-inconsistent

* Must be complete

Propagate : Literals p,,...,p,
must be added to M

Strong Effort Check

