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Satisfiability Modulo Theories 

• SMT solvers used for : 

–Software/hardware verification 

–Automated Theorem Proving 

–Scheduling and Planning 

 



SMT Solver : CVC4 

• Joint project between NYU and U of Iowa 

• State of the art successor of CVC3 

• Based on DPLL(T) framework 

• Supports wide range of theories 



Theories supported by CVC4 

• From SMT Lib : 

– Uninterpreted functions 

– Linear Integer and Real Arithmetic 

– Arrays 

– BitVectors 

• Others : 

– Inductive Datatypes 

– Strings 

– Sets 

– Floating Points (coming soon) 



SMT Example 

x + 5 = read( A, 5 )  ( A  B  read( B, 5 ) ≤ f(x) ) 

Arithmetic Arrays UF 
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SMT Example 

x + 5 = read( A, 5 )  ( A  B  read( B, 5 ) ≤ f(x) ) 

              P                  (    Q                   R              ) 

  Abstract to Propositional Logic 

  Find satisfying assignment 

x + 5 = read( A, 5 )   ,  A  B  

 Determine if consistent according to theory 



UNSAT SAT 

DPLL(T) Framework 

SAT  

Solver 

Theory 

Solvers 

Satisfying Assignment M 

Clauses to add to F 

F is sat 

F is unsat M is T-consistent 

M is T-inconsistent 

Input :  

Clause set F 



Architecture of CVC4 

• CVC4 combines : 

–Off-the-shelf SAT solver (MiniSAT) 

–Multiple theory solvers 

•Managed by Theory Engine 



CVC4 : Theory Engine 

SAT  

Solver 

Theory Engine 
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• Distribute literals from M to theory solver(s) 



CVC4 : Theory Engine 
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Solver 

Theory Engine 

Satisfying Assignment M 
Clause set F 

Theory  

Arith 

Theory  

UF 

Theory  
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Clauses to add to F 

• Distribute literals from M to theory solver(s) 

• Ask theory solvers whether their subset of M 

is T-consistent 



CVC4 : Theory Solvers 

Theory X  

Ask if MX  

is consistent 

…
 Assertion Queue 

͞MX͟ 

Conflict : C  MX 

is T-inconsistent, 

add C to F 

Lemma(s) : Add 

a clause D to F 

Assertions 



Handling Equality 

• Challenge : Equality reasoning is common to 

all theories, e.g. 

– x + 1 = y 

– read( A, i )  read( A, j ) 

– l1 = cons( e, l2 )  

• Idea : Theory solvers use Equality Engine data 

structure 



Equality Engine Data Structure 

• Takes input a set of equalities and disequalities 

– Performs Congruence Closure 

– Maintains equivalence classes 

– Explains/reports conflicts 

Equality Engine 

a, c, f(b) b f( a ) 
 

a = c, 

f( b ) = a, 

f( a )  c 
Conflict? 



Theory Solver : Equality Engine 

Theory X  

Is MX  

consistent? 

…
 

MX 

Conflict 

Lemma(s) 
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Engine 

Input 

Assertions 

Theory 

Reasoning 

Inferred 

Assertions 



Case : Inductive Datatypes 

Equality Engine 
cons( e, l1 ) =  

cons( e, l3 ), 

l1 = l2, 

l2  l3 

Theory  

Reasoning 

l1, l2 

cons( e, l1 ), 

cons( e, l3) 

l3 

 

e 
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From cons( e, l1 ) = cons( e, l3 ), 

we can infer l1 = l3 



Case : Inductive Datatypes 

Equality Engine 
cons( e, l1 ) =  

cons( e, l3 ), 

l1 = l2, 

l2  l3 

Theory  

Reasoning 

l1, l2 

cons( e, l1 ), 

cons( e, l3) 

l3 

 

e 

From cons( e, l1 ) = cons( e, l3 ), 

we can infer l1 = l3 

From 

l1 = l3, 

l1  l3 

We have 

conflict : 

cons( e, l1 ) =  

cons( e, l3 ), 

l1 = l2, 

l2  l3 



Theory Solver (summary) 

• Most theory solvers rely on Equality Engine for: 

– Computing equivalence classes of current terms 

– Reporting most conflicts 

– Performing (eager) T-propagation 

• Supplement with Theory Reasoning : 

– Adds assertions inferred from current state 

– May add other lemmas to system when necessary 

 



Theory Interface (extended) 

• In addition to check if assertions T-consistent, 

– propagate, T-propagate literals 

– explain, explain why literals were T-propagated 

– collectModelInfo, get model for curr assertions 

– Others: 

• getNextDecision 
• staticLearn 
• preSolve 

• … 

Theory X  

…
 



Support for Theory Development 

• Equality Engine data structure 

• Associated ͞kinds͟ file 

– Contains specifications for: 

• Signature Definition (symbols in the theory) 

• Term normalization 

• Type checking 

• Properties of the theory 

– Interaction when performing theory combination 

– Auto-generates necessary code for each of these 

• Automatic Integration into Theory Engine 



Questions? 



DPLL(T) Search : Incremental Checking 

Propagate : Literals p1,…,pn 

must be added to M 

…
 

Decide : Add literal d to M d d 

p1 

pn 
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Propagate : Literals p1,…,pn 

must be added to M 
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Decide : Add literal d to M d d 

p1 

pn 

Weak Effort Check 

• Check if p1 … pn are already T-inconsistent 

• Should be efficient 

• Can be incomplete 



DPLL(T) Search : Incremental Checking 

Propagate : Literals p1,…,pn 

must be added to M 

…
 

Decide : Add literal d to M d d 

p1 

pn 

…
 

Weak Effort Check 

M is a complete 

assignment 

Strong Effort Check 

• Determine if M is T-inconsistent  

• Must be complete 


