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Motivation 

• Many aspects of modern life are dependent 
upon software 

• Correctness of software is often highly critical 

– Flight control, Bank records, Medical Devices, … 

• Growing need for automated reasoning 

– For software verification and other applications 



Approaches to Automated Reasoning 

•  Boolean Satisfiability Solvers 
– Fast, Handle Decidable Logic 

– Cons : May be difficult to encode problem into SAT 

•  Automated First-Order Theorem Provers 
– Handle problems in an expressive natural encoding 

– Cons : Logic can be Undecidable 

•  Alternative : Satisfiability Modulo Theories (SMT) 
– Incorporate specialized procedures for theories 

• Arithmetic, bitvectors, arrays, datatypes, … 

– Many problems can be expressed as SMT problems 



SMT Solvers 

•  SMT solvers are powerful tools that 
– Are used in many formal methods applications 

– Have optimized performance due to combination of: 
• Off-the-shelf SAT solver 

• Fast decision procedures for (ground) constraints 

– May generate: 
•  Proofs 

– Theorem proving, software/hardware verification 

•  Models 
– Failing instances of aforementioned applications 

– Invariant synthesis, scheduling, test case generation 

 



SMT: Limitations 

• Ongoing challenge: quantified formulas 
– Are useful for: 

• Frame axioms in software verification 

• Universal safety properties 

• Axiomatization of unsupported theories 

• … 

– Needed by a growing number of SMT-based applications 

• Current methods for handling quantifiers in SMT: 
–  Heuristic methods for answering “UNSAT” 

–  Limited capability of answering “SAT” 
• Often will return “UNKNOWN” after some effort 



Contributions 

•  Finite Model Finding in SMT 

–New approach for handling quantifiers in SMT 

–Different from ATP finite model finders: 

• Native support for background theories 

–Different from SMT solvers: 

• Increased ability to answer “satisfiable” 



Outline 

•  Intro to Satisfiability Modulo Theories (SMT) 

•  Finite Model Finding in SMT 

–  Details of Approach 

–  Theoretical Properties 

–  Experimental Results 

•  Extension to Bounded Integer Quantification 



Satisfiability Modulo Theories 

( f(a) = b  f(a) = c )  c+1 = b       f(c) = g(c) 

 



Satisfiability Modulo Theories 

( f(a) = b  f(a) = c )  c+1 = b       f(c) = g(c) 

 

(      A            B      )        C                   D 

   Abstract to propositional logic 



Satisfiability Modulo Theories 

true true true 

( f(a) = b  f(a) = c )  c+1 = b       f(c) = g(c) 

 

(      A            B      )        C                   D 

 

Find satisfying assignment:  A  ,   C  ,   D  

 



Satisfiability Modulo Theories 

true true true 

( f(a) = b  f(a) = c )  c+1 = b       f(c) = g(c) 

 

(      A            B      )        C                   D 

 

Find satisfying assignment:  A  ,   C  ,   D  

 

Check T-consistency: f(a) = b , c+1 = b , f(c) = g(c) 

  This can be done with ground theory solver 



SMT with Quantified Formulas 

true true true 

( f(a) = b  f(a) = c )  c+1 = b    x. f(x) = g(x) 

 

(      A            B      )        C                   D 

 

Find satisfying assignment:  A  ,   C  ,   D  

   

Check T-consistency: f(a) = b , c+1 = b , x. f(x) = g(x) 

• Satisfying assignment contains quantified formulas 

  Challenge: This is generally undecidable 



DPLL(T) Architecture 

SAT 
Solver 

Theory 
Solvers 

Satisfying assignment A for F 

Clauses to add to F 

UNSAT, 
proof 

SAT, 
model 

A is T-Consistent 

A is T-Inconsistent 

F is sat 

Formula 
F 

F is unsat 



DPLL(T) Architecture : Challenge 

SAT 
Solver 

Theory 
Solvers 

Clauses to add to F 

A is T-Consistent 

A is T-Inconsistent 

F is sat 

Formula 
F 

F is unsat 

• Challenge: What if determining the consistency of A is difficult? 
• For quantified formulas, determining T-consistency is undecidable 

UNSAT, 
proof 

SAT, 
model 

Satisfying assignment A for F 



• If sat assignment contains quantified formula Q, 
–  Heuristically add instances of Q to F [Detlefs et al 2003] 

•  Typically based on pattern matching 
•  May discover refutation, if right instances are added 
•  No way to answer SAT 

Heuristic Instantiation 

SAT 
Solver 

Theory 
Solvers 

Instances of Q 
to add to F 

Consistency of A is 
unknown 

F is sat 

Formula 
F 

F is unsat 

UNSAT, 
proof 

Satisfying assignment A for F 

SAT, 
model 

(containing Q) 



Why Models are Important 

SMT 
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UNSAT 
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for P 
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Manual 
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Property P is  
verified 

(with quantifiers) 



Why Models are Important 

SMT 
solver 

UNSAT 

Verification 
Condition 

for P 

Unknown 

Manual 
Inspection 

Candidate 
Model 

Property P is  
verified 

(with quantifiers) 

Concrete 
counterexample 
for Property P 

SAT 



Model-Based Approach for Quantifiers 

• Given: 

– Set of ground formulas F 

– Set of universally quantified formulas Q 

• To determine the satisfiability of F  Q, 
– Construct candidate models for Q, based on satisfying 

assignments for F 

• Model-Based Quantifier Instantiation (MBQI)  
– [Ge/deMoura 2009] 



DPLL(T) Architecture (Extended) 

SAT 
Solver 

Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

A is  
T-Consistent F is sat 

Ground 
Formulas 

F 
Candidate  
model M 

Model 
Verifier 

M is a model 
for Q 

Quantified 
Formulas 

Q 

SAT, 
model M 

else 

else 

else 



When can we represent/check models for Q? 

•  Focus of thesis: Finite Model Finding 

– Limited to quantifiers over: 

•  Uninterpreted sorts 

– Can represent memory addresses, values, sets, etc. 

•  Other finite sorts 

– Fixed width bitvectors, datatypes, …  

• Useful in applications: 

– Software verification, automated theorem proving 

 



Running Example 

distinct(NewYork, Boston, Seattle)  

travels(person1, Boston) 

salesman(person2) 

salesman(person3) 

person1, person2, person3 : Person 

NewYork, Boston, Seattle : City 

salesman: Person  Bool 

travels : Person  City  Bool 

 x : Person, y : City. 

 salesman(x)  travels(x,y) 

F 
Q 



Running Example 

F 

Q 

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

distinct(NewYork, Boston, Seattle)  

travels(person1, Boston) 

salesman(person2) 

salesman(person3) 

 x y . salesman(x)  travels(x,y) 

 



Find Satisfying Assignment A for F 

distinct(NewYork, Boston, Seattle)  

travels(person1, Boston) 

salesman(person2) 

salesman(person3) 

 x y . salesman(x)  travels(x,y) 

 

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

true 

true 

true 

true 

•  A is Theory-Consistent according to the theory of equality 



M :=  
 travels : 

  person1, Boston  true 

  …  false 

 salesman : 

  person3  true 

  …  false 

A :=  
{ distinct(NewYork, Boston, Seattle), 

  travels(person1, Boston), 

  salesman(person2), 

  salesman(person3) } 

 

Construct Candidate Model M from A 

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

 



Determine if M satisfies Q 

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

M :=  
 travels : 

  person1, Boston  true 

  …  false 

 salesman : 

  person3  true 

  …  false 

Q : xy. salesman(x)  travels(x,y) 

 



Add Clauses back to F 

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

M :=  
 travels : 

  person1, Boston  true 

  …  false 

 salesman : 

  person3  true 

  …  false 

Q : xy. salesman(x)  travels(x,y) 

 

• Y is false for person3, NewYork   
•  Add Y[ person3, NewYork ] to F 
•  Will rule out M on next iteration 

- Model “refinement” process 

Y[x, y] 



• Naïvely, to determine whether M is model for Q: 

– Check if M satisfies all instances S of Q 

•  Challenge: S can be very large 

– For Q with n vars, domain size d, |S| can be O( dn )  

• In example, 3 * 3 = 9 

•  Solution: 

– Search for candidate models with small domain sizes 
• Use finite cardinality constraints [CAV 2013] 

Finding Small Models : Motivation 

Q : x : Person, y : City. 
salesman(x)  travels(x,y) 

 

M := 
 Person : { person1, person2, person3 }  

 City : { NewYork, Boston, Seattle } 

 … 



Outline of Approach 

SAT 
Solver 

Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
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UNSAT, 
proof 
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F 
Candidate  
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Verifier 
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for Q 

Quantified 
Formulas 

Q 

SAT, 
model M 

else 

else 

else 

1 2 

3 

• Require methods for: 
1. Finding satisfying assignments 

• Esp. ones that induce models with small domain sizes 

2. Building candidate models 
3. Checking candidate models 



SAT 
Solver 

Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

A is  
T-Consistent F is sat 

Candidate  
model M 

Model 
Verifier 

M is a model 
for Q 

SAT, 
model M 

else 

else 

else 

1 2 

3 

1. Finding satisfying assignments 

2. Building candidate models 

3. Checking candidate models 

Ground 
Formulas 

F 

Quantified 
Formulas 

Q 



•  Idea: fix domain sizes incrementally 1,2,3,…. 

   Fixed-Cardinality DPLL(T) 

Finding Minimal Models in DPLL(T) 

|Person|≤1 |Person|≤1 

Search for  
models  
of size=1 

If none exist, 
search for  

models  
of size=2 

etc. 

|Person|≤2 |Person|≤2 

|Person|≤3 |Person|≤3 

distinct(NewYork, Boston, Seattle)  

travels(person1, Boston) 

 salesman(person2) 

salesman(person3) 



Fails: 
person2  person3 

Success: 
Can identify 

person1 = person2 

Finding Minimal Models in DPLL(T) 

|Person|≤1 |Person|≤1 

|Person|≤2 

•  Requires: method to find cardinality conflicts 

– E.g. determine when > 1,2,3,… “Person” must exist 

distinct(NewYork, Boston, Seattle)  

travels(person1, Boston) 

 salesman(person2) 

salesman(person3) 



Finding Minimal Models in DPLL(T) 

SAT 
Solver 

Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

A is  
T-Consistent F is sat 

Ground 
Formulas 

F 
Candidate  
model M 

Model 
Verifier 

M is a model 
for Q 

Quantified 
Formulas 

Q 

SAT, 
model M 

else 

else 

else 

• Extend SMT solver with theory solver for: 
   Theory of EUF + finite cardinality constraints (EFCC) 

EFCC  
Solver 

+ 



Theory Solver for EFCC 
• Interested in models M where: 

– Domain elements of M are equivalence classes of terms 

• Thus, signature of EFCC has predicates of form |S|≤ k 
– Satisfied iff ≤ k equivalence classes of terms of sort S exist 

• To check if cardinality constraints are satisfied: 
– Based on disequality graph (V, E) 

• Vertices V are equivalence classes of sort S 
• Edges E are disequalities between terms of sort S 

– So, f( a )  a, f( a )  c, f( c ) = c becomes: 
 

f( a ) 

a 

f( c ), c 



Theory of EFCC and k-Colorability 

• Assume a single sort S with cardinality k 

– Check if corresponding (V,E) is k-colorable 

• If no, then report a cardinality conflict (C  |S|≤k) 
– where C is an explanation of subgraph that is not k-colorable 

• If yes, we cannot be sure that a model of size k exists 

– Due to theory reasoning: 

 

 

 f( a ) 

a 

f( c ), c 

|S|≤2 
 Must explicitly merge equivalence classes 



Theory of EFCC : Challenges 

• Why finite cardinality constraints are challenging: 

–  Interaction with theory reasoning 

–  k-colorability is NP-complete 

–  Analysis must be incremental 

• Solution:  

– Explicitly merge equivalence classes 

– Use heuristic region-based approach which: 

• May quickly detect when disequality graph is not k-colorable 

• Suggests pairs of equivalence classes to merge 



• Partition the graph (V, E) into regions with high edge density 
 
 
 
 
 
 
 
 

• For |S|≤ k we maintain the invariant: 
– No clique of size k+1 exists having nodes from multiple regions 

• Thus, we only need to search for cliques local to regions 
– Region can be ignored if it has ≤ k nodes 

Region-Based Approach 

|S|≤2 



•  Challenge:  

– Fair Strategy for enumerating cardinalities 

•  Example: 

 

 

 

– Formula has model with 2 persons, 1 city 

– But we may search for models where 
• # persons, cities : (1, 1), (1, 2), …., (1,1000) 

•  With quantified formulas, this leads to incompleteness 

– May imply no finite models exist in a branch 

person1  person2 V (city1city2…city1city1000…city999 city1000) 

Extension to Multiple Sorts 



Fixed-Cardinality DPLL(T) for Multiple Sorts 

• Uses extended signature containing: 
– Boolean predicates of form |S|≤ k 

• Satisfied if and only if ≤ k equivalence classes for all sorts exist 

|S|≤ 2 |S|≤ 2 

Search for models  
# persons, cities : (1,1) 

Search for models 
# persons, cities : (1,2) or (2,1)  

|S|≤ 3 |S|≤ 3 

|S|≤ 4 |S|≤ 4 

Search for models 
# persons, cities : (1,3), (2,2), or (3,1)  

 Gives a fair strategy 



Properties : Ground Solver 

• For ground inputs F,  

– Fixed-cardinality DPLL(T), using Theory EFCC: 

•  Sound, terminating, and complete 

– Eventually either: 

» Determines F is unsatisfiable 

» Constructs candidate model M of finite (minimal) size 

SAT 
Solver 

Theory 
Solvers 
+ EFCC 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F 
Q 

Sound, 
Terminating, 

Complete 



SAT 
Solver 

Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

A is  
T-Consistent F is sat 

Candidate  
model M 

Model 
Verifier 

M is a model 
for Q 

SAT, 
model M 

else 

else 

else 

1 2 

3 

1. Finding satisfying assignments 

2. Building candidate models 

3. Checking candidate models 

Ground 
Formulas 

F 

Quantified 
Formulas 

Q 



• Represent a function/predicate as a list of entries: 

C1  v1, …, Cn  vn 

– Where 
• C1, …, Cn are “conditions” 

• v1, …, vn are “values” 

• E.g. unary predicate “P” true only for v represented as: 

( v )  T, ( * )   

– Interpreted as an if-then-else: 

 x. ite( x = v, T,  ) 

Model Representation 



• Candidate models M: 
– Domain elements are equivalence classes [t1], [t2], … 

– Are constructed from sat assignment A for F 

– Consist of definitions Df for each f  S, where each Df: 

• Is partially determined by ground equalities from A 

– For each equality f( t1, …, tn ) = t in A, 

» Entry ( [t1], …, [tn] )  [t]  Df 

• Has default value 

– Determined by distinguished f-application e 

» Entry ( *, …, * )  [e]  Df 

Model Construction 



Constructing Models : Example 

distinct(NewYork, Boston, Seattle)  

travels(person1, Boston) 

salesman(person2) 

salesman(person3) 

person1, person2, person3 : Person 

NewYork, Boston, Seattle : City 

salesman: Person  Bool 

travels : Person  City  Bool 
F 

• Guide choice of default values based on : 
–  person1 for Person 

–  NewYork for City 

• Assume Q has been instantiated with these terms 

salesman(person1)  travels(person1, NewYork) 

 x y . salesman(x)  travels(x,y) 

Q 



• Choose default based on value of travels( person1, NewYork) 

Dtravels: 

  (person1, NewYork)  T, 

  (person1, Boston)  , 

 ( *, * )  T  

distinct(NewYork, Boston, Seattle)  

travels(person1, Boston) 

salesman(person2) 

salesman(person3) 

Constructing Models : Example 
person1, person2, person3 : Person 

NewYork, Boston, Seattle : City 

salesman: Person  Bool 

travels : Person  City  Bool 

 x y . salesman(x)  travels(x,y) 

Q 

F 

salesman(person1)  travels(person1, NewYork) true 

true 

true 

true 

true 

A :=  
{ …, 

  travels(person1, Boston) = T, 

 travels(person1, NewYork) = T } 



SAT 
Solver 

Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
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UNSAT, 
proof 

A is  
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else 

else 

1 2 

3 

1. Finding satisfying assignments 

2. Building candidate models 

3. Checking candidate models 

Ground 
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F 
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Formulas 

Q 



• To check if M is a model for Q: 
–  Naïvely, test if every instance of Q is true in M 
–  Or, choose a representative set of instances of Q  

• Only add instances that are false in M 
• Identify sets of instances of Q that are equisatisfiable 

Checking Candidate Models 

SAT 
Solver 

Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

A is  
T-Consistent F is sat 

F 
Candidate  
model M 

Model 
Verifier 

M is a 
model for Q 

Q 

SAT, 
model M 

else 

else 



Checking Candidate Models 

distinct(NewYork, Boston, Seattle)  

travels(person1, Boston) 

salesman(person2) 

salesman(person3) 

person1, person2, person3 : Person 

NewYork, Boston, Seattle : City 

salesman: Person  Bool 

travels : Person  City  Bool 

Q F 

salesman(person1)  travels(person1, NewYork) 

Dsalesman: 

 (person2)  , 

 (person3)  T, 

  ( * )  T 

Dtravels: 

 (person1, NewYork)  T 

 (person1, Boston)  , 

 ( *, * )  T   } 

Q[person1, NewYork] 
Q[person1, Boston] 
Q[person1, Seattle] 
Q[person2, NewYork] 
Q[person2, Boston] 
Q[person2, Seattle] 
Q[person3, NewYork] 
Q[person3, Boston] 
Q[person3, Seattle] 
 

 x y . salesman(x)  travels(x,y) 



Q[person1, NewYork] 
Q[person1, Boston] 
Q[person1, Seattle] 
Q[person2, NewYork] 
Q[person2, Boston] 
Q[person2, Seattle] 
Q[person3, NewYork] 
Q[person3, Boston] 
Q[person3, Seattle] 
 

distinct(NewYork, Boston, Seattle)  

travels(person1, Boston) 

salesman(person2) 

salesman(person3) 

person1, person2, person3 : Person 

NewYork, Boston, Seattle : City 

salesman: Person  Bool 

travels : Person  City  Bool 

Q F 

salesman(person1)  travels(person1, NewYork) 

true 
false 

true 

true 

true 

Dsalesman: 

 (person2)  , 

 (person3)  T, 

  ( * )  T 

Dtravels: 

 (person1, NewYork)  T 

 (person1, Boston)  , 

 ( *, * )  T   } 

Checking Candidate Models 

 x y . salesman(x)  travels(x,y) 



Checking Candidate Model M 

•  To check if M satisfies quantified formula Q: 
– Choose representative set of instances S of Q 

 This is somewhat heuristic 

– For each Y in S, 
• If  M( Y ) = false, add Y to F  

– If no instances added, then M satisfies Q 

 

•  Alternate, improved approach :  
– Directly compute the interpretation of Q in M  

• Using same data structure that represents functions in M 



Computing Interpretations of Terms 
Q :  x y . salesman(x)  travels(x,y) 

Dsalesman(x): 

 (person2, *)  , 

 (person3, *)  T, 

  ( *, * )  T 

Dtravels(x,y): 

 (person1, NewYork)  T 

 (person1, Boston)  , 

 ( *, * )  T   } 



Computing Interpretations of Terms 

Dsalesman(x): 

 (person2, *)  , 

 (person3, *)  T, 

  ( *, * )  T 

Dtravels(x,y): 

 (person1, NewYork)  T 

 (person1, Boston)  , 

 ( *, * )  T   } 

x 

Dsalesman(x) x Dtravels(x,y): 

 (person2, *)  (, T), 

 (person3, *)  (T, T), 

 (person1, NewYork)  (T, T) 

 (person1, Boston)  (T, ), 

  ( *, * )  (T, T) 

= 

( 

( 
Compute product 

Q :  x y . salesman(x)  travels(x,y) 



Computing Interpretations of Terms 

Dsalesman(x): 

 (person2, *)  , 

 (person3, *)  T, 

  ( *, * )  T 

Dtravels(x,y): 

 (person1, NewYork)  T 

 (person1, Boston)  , 

 ( *, * )  T   } 

x 

Dsalesman(x) x Dtravels(x,y): 

 (person2, *)  (, T), 

 (person3, *)  (T, T), 

 (person1, NewYork)  (T, T) 

 (person1, Boston)  (T, ), 

  ( *, * )  (T, T) 

Dsalesman(x)travels(x,y) : 

 (person2, *)  (  T), 

 (person3, *)  (T  T), 

 (person1, NewYork)  (T  T), 

 (person1, Boston)  (T  ), 

  ( *, * )  (T  T) 

= 

=  ( 

( 

( 

( 

Apply interpreted predicate 

Q :  x y . salesman(x)  travels(x,y) 



Dsalesman(x)travels(x,y) : 

 (person2, *)  T, 

 (person3, *)  T, 

 (person1, NewYork)  T, 

 (person1, Boston)  , 

  ( *, * )  T 

Computing Interpretations of Terms 

Dsalesman(x): 

 (person2, *)  , 

 (person3, *)  T, 

  ( *, * )  T 

Dtravels(x,y): 

 (person1, NewYork)  T 

 (person1, Boston)  , 

 ( *, * )  T   } 

x 

Dsalesman(x) x Dtravels(x,y): 

 (person2, *)  (, T), 

 (person3, *)  (T, T), 

 (person1, NewYork)  (T, T) 

 (person1, Boston)  (T, ), 

  ( *, * )  (T, T) 

= 

=  ( 

( 

( 

( 

• Add Q[ person1/x, Boston/y ] to F 

Q :  x y . salesman(x)  travels(x,y) 



Finite Model Finding: Summary 

SAT 
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Theory 
Solvers 

Satisfying  
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 A for F 
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add to F 

UNSAT, 
proof 

A is  
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Ground 
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F 
Candidate  
model M 

Model 
Verifier 

M is a model 
for Q 

Quantified 
Formulas 

Q 

SAT, 
model M 

else 

else 

else 

1 2 

3 

1. Find Satisfying Assignment 
– Use EFCC Solver to find Small Candidate Models 

2. Construct Candidate Models 
3. Model-Based Quantifier Instantiation 

– Two methods: Generalizing Evaluations, Constructing Interpretations 



Properties : Finite Model Finding 

• For inputs (F, Q), quantifiers in Q over free sorts 
– Fixed-cardinality DPLL(T) + quantifier instantiation: 

•  Sound 

•  Finite Model Complete 
– If (F, Q) has a finite model, we will eventually answer “SAT” 

•  Refutationally Complete (when containing no theory symbols) 
– If (F, Q) is unsatisfiable, we will eventually answer “UNSAT” 

SAT 
Solver 

Theory 
Solvers 
+ EFCC 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q Sound, 
Finite-Model  

Complete, 
Refutationally 

Complete* 

* - under certain restrictions 



Finite Model Finding: Properties 

• For unsatisfiable (F, Q), quant. of Q over free sorts 

– When (F, Q) contain theory symbols 

• Approach has weaker completeness property: 
– If there exists a set I of instances of Q where: 

» I is finite 

» F  I is UNSAT 

– Then,  

» Fixed-cardinality DPLL(T)+QI terminates, answering UNSAT 

• Thus, approach is only non-terminating when: 
– (F, Q) is SAT, but only has infinite models 

– (F, Q) is UNSAT, but all finite subsets are SAT 



Enhancements 

•  Heuristic Instantiation 
–  First see if instantiations based on heuristics exist 

• If not, resort to model-based instantiation 

–  May lead to: 
• Discovering easy conflicts, if they exist 

• Arriving at model faster 
– Instantiations rule out spurious models 

•  Sort Inference  
– Reduce symmetries in problem 

•  Relevancy 
– Reduce the size of satisfying assignments 



Experiments 
• Implemented state of the art SMT solver CVC4 

• Experiments on: 
–  DVF Benchmarks 

• Taken from verification tool DVF used by Intel 

• Both SAT/UNSAT benchmarks 
– SAT benchmarks generated by removing necessary pf assumptions 

• Many theories:  UF, arithmetic, arrays, datatypes 

• Quantifiers only over free sorts 
– Memory addresses, Values, Sets, … 

–  TPTP Benchmarks 
• Automated theorem proving community 

• No theory reasoning 

–  Isabelle Benchmarks 
• Provable and unprovable goals, contains some arithmetic 



Results: DVF 

cvc4 : 

• f : finite model 

• i : heuristic 

• m : model-based  

SAT german refcount agree apg bmk Total Time 
# 45 6 42 19 37 149   
z3 45 1 0 0 0 46 8.1 

cvc4+i 2 0 0 0 0 2 0.0 
cvc4+f 45 6 42 18 36 147 1413.1 
cvc4+fi 45 6 42 19 36 148 1333.9 

cvc4+fm 45 6 42 19 37 149 605.4 
cvc4+fmi 45 6 42 19 37 149 409.8 

UNSAT german refcount agree apg bmk Total Time 
# 145 40 488 304 244 1221   
z3 145 40 488 304 244 1221 31.0 

cvc4+i 145 40 484 304 244 1217 21.3 
cvc4+f 145 40 476 298 242 1201 7512.2 
cvc4+fi 145 40 488 302 244 1219 1181.4 

cvc4+fm 145 40 471 300 242 1198 6949.7 
cvc4+fmi 145 40 488 302 244 1219 1185.0 

• CVC4 with finite model finding (cvc4+f)  
• Effective for answering SAT 
• Using heuristic instantiation, solves 4 UNSAT that cvc4 cannot 

600 second timeout 



Results: TPTP 

• CVC4 Placed 3rd in FNT (non-theorem) division of CASC 24 

  SAT UNSAT 

  EPR NEQ SEQ PEQ Total EPR NEQ SEQ PEQ Total 

  (392) (639) (340) (624) (1995) (1114) (1594) (7875) (2003) (12586) 

z3 320 155 164 249 888 989 412 3310 1320 6031 

cvc3 27 0 0 0 27 787 381 3019 883 5070 

iprover 363 128 107 396 994 835 105 2690 1523 5153 

iprover+f 362 226 178 468 1234 213 1 121 48 383 

paradox 340 304 185 526 1355 723 17 339 186 1265 

cvc4+i 32 0 0 0 32 821 383 3152 1045 5401 

cvc4+f 295 178 143 375 991 759 247 887 651 2544 

cvc4+fm 298 221 178 391 1088 759 169 1010 703 2641 

cvc4+fM 301 235 200 395 1131 759 198 1073 733 2763 

cvc4+fMi 292 207 153 385 1037 762 236 1281 746 3025 

cvc4 : 

• f : finite model 

• i : heuristic 

• m : model-based 

• M : model-based 
 (version 2)   

10 second timeout 



Results : TPTP 

• Model-Based Instantiation is often essential 
– Solves when naïve approach requires ~775 billion instances 

cvc4 : 

• f : finite model 

• m : model-based 

• M : model-based 
 (version 2)   



Results: Isabelle 

• For UNSAT, cvc4 with finite model finding is orthogonal : 

– Solves 170 unsat that cvc3 cannot, 365 z3 cannot, 229 that cvc4+i cannot 

cvc4 : 

• f : finite model 

• i : heuristic 

• m : model-based 

• M : model-based 
 (version 2)   

UNSAT ArrowOrder FFT FTA Hoare NS_Shared QEpres StrongNorm TwoSquares TypeSafe Total 
cvc3 287 250 877 577 102 291 206 552 216 3358 

z3 254 230 797 507 135 242 240 491 329 3225 
cvc4+i 253 233 749 476 99 265 234 523 267 3099 

cvc4+f 123 94 350 209 41 99 83 361 127 1487 

cvc4+fi 155 164 509 374 37 168 100 452 195 2154 

cvc4+fm 112 86 357 212 26 119 82 349 120 1463 
cvc4+fM 88 92 381 202 29 109 93 365 149 1508 

cvc4+fMi 154 164 515 371 37 167 100 452 195 2155 

SAT ArrowOrder FFT FTA Hoare NS_Shared QEpres StrongNorm TwoSquares TypeSafe Total 

cvc3 0 9 0 0 0 0 0 8 0 17 
z3 1 19 24 46 10 47 1 17 12 177 

cvc4+i 0 9 0 0 0 0 0 8 0 17 

cvc4+f 26 123 163 149 56 75 12 50 84 738 
cvc4+fi 26 133 158 155 61 80 12 44 87 756 

cvc4+fm 22 120 152 147 36 75 12 46 87 697 
cvc4+fM 28 126 163 151 44 94 12 43 87 748 
cvc4+fMi 31 136 161 154 61 101 12 44 85 785 

10 second timeout 



Extension to (Bounded) Integers 
• A formula of the form 

 

x1…xn : Int. L1 ≤ x1 ≤ U1  …  Ln ≤ xn ≤ Un    Y 

 Where xi FV( Lj, Uj ), for i < j 

 

has Bounded Integer Quantification 
 

• Example : xy. 0 ≤ x ≤ 20  0 ≤ y ≤ f(x)  P(x, y) 

• Can be handled similar as before 
– Minimize bounds, (naïvely) instantiate exhaustively  



•  Idea: Fix values of bound c 
 
 
 
 
 
 
 

 
 
• Approach is sound, and model complete 

– When input has model, it eventually terminates with “SAT” 

Bounded Integer Quantification 

c<0 c<0 

c≤0 c≤0 

c≤1 c≤1 

Q :  x : Int. 0 ≤ x ≤ c  P(x)  

Consider Q[0/x] 

Consider Q[0/x], Q[1/x] 

Domain of Q is 
empty 



Results 

• Set of verification benchmarks from Intel 

–  Arrays, datatypes, integer arithmetic 

–  Symbolic bounds for integer quantification, e.g. 

x : Int. 0 ≤ x ≤ c  P(x), where c is free constant 

• CVC4 (with fmf) finds small models M, i.e. 

– Value of M[c] is 2 to 3, at most 10 

  SAT (263) UNSAT (843) 
  solved time solved time 

z3 257 957.9 843 20.3 
cvc4+i 0 0 843 17.4 
cvc4+fi 263 90.8 843 308.7 

cvc4 : 

• f : bounded integer techniques  

• i : heuristic 

600 second timeout 



Summary 
• CVC4 with finite model finding: 

– Incorporates various instantiation strategies: 
•  Model-based quantifier instantiation 

•  Heuristic instantiation (E-matching)  

– Has important properties: 
•  Finite-Model Completeness 

•  Refutational Completeness (under certain conditions) 

– Approach can be extended to integers, theory of strings 

– Improves the state-of-the-art, over: 
• SMT solvers 

– Increased ability to answer “satisfiable” 

• Automated Theorem Provers 
– Efficient reasoning about background theories at QF level 
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