
Finite Model Finding in
Satisfiability Modulo Theories

Andrew Reynolds

December 3, 2013

University of Iowa

Motivation

• Many aspects of modern life are dependent
upon software

• Correctness of software is often highly critical

– Flight control, Bank records, Medical Devices, …

• Growing need for automated reasoning

– For software verification and other applications

Approaches to Automated Reasoning

• Boolean Satisfiability Solvers
– Fast, Handle Decidable Logic

– Cons : May be difficult to encode problem into SAT

• Automated First-Order Theorem Provers
– Handle problems in an expressive natural encoding

– Cons : Logic can be Undecidable

• Alternative : Satisfiability Modulo Theories (SMT)
– Incorporate specialized procedures for theories

• Arithmetic, bitvectors, arrays, datatypes, …

– Many problems can be expressed as SMT problems

SMT Solvers

• SMT solvers are powerful tools that
– Are used in many formal methods applications

– Have optimized performance due to combination of:
• Off-the-shelf SAT solver

• Fast decision procedures for (ground) constraints

– May generate:
• Proofs

– Theorem proving, software/hardware verification

• Models
– Failing instances of aforementioned applications

– Invariant synthesis, scheduling, test case generation

SMT: Limitations

• Ongoing challenge: quantified formulas
– Are useful for:

• Frame axioms in software verification

• Universal safety properties

• Axiomatization of unsupported theories

• …

– Needed by a growing number of SMT-based applications

• Current methods for handling quantifiers in SMT:
– Heuristic methods for answering “UNSAT”

– Limited capability of answering “SAT”
• Often will return “UNKNOWN” after some effort

Contributions

• Finite Model Finding in SMT

–New approach for handling quantifiers in SMT

–Different from ATP finite model finders:

• Native support for background theories

–Different from SMT solvers:

• Increased ability to answer “satisfiable”

Outline

• Intro to Satisfiability Modulo Theories (SMT)

• Finite Model Finding in SMT

– Details of Approach

– Theoretical Properties

– Experimental Results

• Extension to Bounded Integer Quantification

Satisfiability Modulo Theories

(f(a) = b f(a) = c) c+1 = b f(c) = g(c)

Satisfiability Modulo Theories

(f(a) = b f(a) = c) c+1 = b f(c) = g(c)

(A B) C D

 Abstract to propositional logic

Satisfiability Modulo Theories

true true true

(f(a) = b f(a) = c) c+1 = b f(c) = g(c)

(A B) C D

Find satisfying assignment: A , C , D

Satisfiability Modulo Theories

true true true

(f(a) = b f(a) = c) c+1 = b f(c) = g(c)

(A B) C D

Find satisfying assignment: A , C , D

Check T-consistency: f(a) = b , c+1 = b , f(c) = g(c)

 This can be done with ground theory solver

SMT with Quantified Formulas

true true true

(f(a) = b f(a) = c) c+1 = b x. f(x) = g(x)

(A B) C D

Find satisfying assignment: A , C , D

Check T-consistency: f(a) = b , c+1 = b , x. f(x) = g(x)

• Satisfying assignment contains quantified formulas

 Challenge: This is generally undecidable

DPLL(T) Architecture

SAT
Solver

Theory
Solvers

Satisfying assignment A for F

Clauses to add to F

UNSAT,
proof

SAT,
model

A is T-Consistent

A is T-Inconsistent

F is sat

Formula
F

F is unsat

DPLL(T) Architecture : Challenge

SAT
Solver

Theory
Solvers

Clauses to add to F

A is T-Consistent

A is T-Inconsistent

F is sat

Formula
F

F is unsat

• Challenge: What if determining the consistency of A is difficult?
• For quantified formulas, determining T-consistency is undecidable

UNSAT,
proof

SAT,
model

Satisfying assignment A for F

• If sat assignment contains quantified formula Q,
– Heuristically add instances of Q to F [Detlefs et al 2003]

• Typically based on pattern matching
• May discover refutation, if right instances are added
• No way to answer SAT

Heuristic Instantiation

SAT
Solver

Theory
Solvers

Instances of Q
to add to F

Consistency of A is
unknown

F is sat

Formula
F

F is unsat

UNSAT,
proof

Satisfying assignment A for F

SAT,
model

(containing Q)

Why Models are Important

SMT
solver

UNSAT

Verification
Condition

for P

Unknown

Manual
Inspection

Candidate
Model

Property P is
verified

(with quantifiers)

Why Models are Important

SMT
solver

UNSAT

Verification
Condition

for P

Unknown

Manual
Inspection

Candidate
Model

Property P is
verified

(with quantifiers)

Concrete
counterexample
for Property P

SAT

Model-Based Approach for Quantifiers

• Given:

– Set of ground formulas F

– Set of universally quantified formulas Q

• To determine the satisfiability of F Q,
– Construct candidate models for Q, based on satisfying

assignments for F

• Model-Based Quantifier Instantiation (MBQI)
– [Ge/deMoura 2009]

DPLL(T) Architecture (Extended)

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

Ground
Formulas

F
Candidate
model M

Model
Verifier

M is a model
for Q

Quantified
Formulas

Q

SAT,
model M

else

else

else

When can we represent/check models for Q?

• Focus of thesis: Finite Model Finding

– Limited to quantifiers over:

• Uninterpreted sorts

– Can represent memory addresses, values, sets, etc.

• Other finite sorts

– Fixed width bitvectors, datatypes, …

• Useful in applications:

– Software verification, automated theorem proving

Running Example

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person Bool

travels : Person City Bool

 x : Person, y : City.

 salesman(x) travels(x,y)

F
Q

Running Example

F

Q

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

 x y . salesman(x) travels(x,y)

Find Satisfying Assignment A for F

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

 x y . salesman(x) travels(x,y)

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

true

true

true

true

• A is Theory-Consistent according to the theory of equality

M :=
 travels :

 person1, Boston true

 … false

 salesman :

 person3 true

 … false

A :=
{ distinct(NewYork, Boston, Seattle),

 travels(person1, Boston),

 salesman(person2),

 salesman(person3) }

Construct Candidate Model M from A

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

Determine if M satisfies Q

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

M :=
 travels :

 person1, Boston true

 … false

 salesman :

 person3 true

 … false

Q : xy. salesman(x) travels(x,y)

Add Clauses back to F

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

M :=
 travels :

 person1, Boston true

 … false

 salesman :

 person3 true

 … false

Q : xy. salesman(x) travels(x,y)

• Y is false for person3, NewYork
• Add Y[person3, NewYork] to F
• Will rule out M on next iteration

- Model “refinement” process

Y[x, y]

• Naïvely, to determine whether M is model for Q:

– Check if M satisfies all instances S of Q

• Challenge: S can be very large

– For Q with n vars, domain size d, |S| can be O(dn)

• In example, 3 * 3 = 9

• Solution:

– Search for candidate models with small domain sizes
• Use finite cardinality constraints [CAV 2013]

Finding Small Models : Motivation

Q : x : Person, y : City.
salesman(x) travels(x,y)

M :=
 Person : { person1, person2, person3 }

 City : { NewYork, Boston, Seattle }

 …

Outline of Approach

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

Ground
Formulas

F
Candidate
model M

Model
Verifier

M is a model
for Q

Quantified
Formulas

Q

SAT,
model M

else

else

else

1 2

3

• Require methods for:
1. Finding satisfying assignments

• Esp. ones that induce models with small domain sizes

2. Building candidate models
3. Checking candidate models

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

Candidate
model M

Model
Verifier

M is a model
for Q

SAT,
model M

else

else

else

1 2

3

1. Finding satisfying assignments

2. Building candidate models

3. Checking candidate models

Ground
Formulas

F

Quantified
Formulas

Q

• Idea: fix domain sizes incrementally 1,2,3,….

 Fixed-Cardinality DPLL(T)

Finding Minimal Models in DPLL(T)

|Person|≤1 |Person|≤1

Search for
models
of size=1

If none exist,
search for

models
of size=2

etc.

|Person|≤2 |Person|≤2

|Person|≤3 |Person|≤3

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

 salesman(person2)

salesman(person3)

Fails:
person2 person3

Success:
Can identify

person1 = person2

Finding Minimal Models in DPLL(T)

|Person|≤1 |Person|≤1

|Person|≤2

• Requires: method to find cardinality conflicts

– E.g. determine when > 1,2,3,… “Person” must exist

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

 salesman(person2)

salesman(person3)

Finding Minimal Models in DPLL(T)

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

Ground
Formulas

F
Candidate
model M

Model
Verifier

M is a model
for Q

Quantified
Formulas

Q

SAT,
model M

else

else

else

• Extend SMT solver with theory solver for:
 Theory of EUF + finite cardinality constraints (EFCC)

EFCC
Solver

+

Theory Solver for EFCC
• Interested in models M where:

– Domain elements of M are equivalence classes of terms

• Thus, signature of EFCC has predicates of form |S|≤ k
– Satisfied iff ≤ k equivalence classes of terms of sort S exist

• To check if cardinality constraints are satisfied:
– Based on disequality graph (V, E)

• Vertices V are equivalence classes of sort S
• Edges E are disequalities between terms of sort S

– So, f(a) a, f(a) c, f(c) = c becomes:

f(a)

a

f(c), c

Theory of EFCC and k-Colorability

• Assume a single sort S with cardinality k

– Check if corresponding (V,E) is k-colorable

• If no, then report a cardinality conflict (C |S|≤k)
– where C is an explanation of subgraph that is not k-colorable

• If yes, we cannot be sure that a model of size k exists

– Due to theory reasoning:

 f(a)

a

f(c), c

|S|≤2
 Must explicitly merge equivalence classes

Theory of EFCC : Challenges

• Why finite cardinality constraints are challenging:

– Interaction with theory reasoning

– k-colorability is NP-complete

– Analysis must be incremental

• Solution:

– Explicitly merge equivalence classes

– Use heuristic region-based approach which:

• May quickly detect when disequality graph is not k-colorable

• Suggests pairs of equivalence classes to merge

• Partition the graph (V, E) into regions with high edge density

• For |S|≤ k we maintain the invariant:
– No clique of size k+1 exists having nodes from multiple regions

• Thus, we only need to search for cliques local to regions
– Region can be ignored if it has ≤ k nodes

Region-Based Approach

|S|≤2

• Challenge:

– Fair Strategy for enumerating cardinalities

• Example:

– Formula has model with 2 persons, 1 city

– But we may search for models where
• # persons, cities : (1, 1), (1, 2), …., (1,1000)

• With quantified formulas, this leads to incompleteness

– May imply no finite models exist in a branch

person1 person2 V (city1city2…city1city1000…city999 city1000)

Extension to Multiple Sorts

Fixed-Cardinality DPLL(T) for Multiple Sorts

• Uses extended signature containing:
– Boolean predicates of form |S|≤ k

• Satisfied if and only if ≤ k equivalence classes for all sorts exist

|S|≤ 2 |S|≤ 2

Search for models
persons, cities : (1,1)

Search for models
persons, cities : (1,2) or (2,1)

|S|≤ 3 |S|≤ 3

|S|≤ 4 |S|≤ 4

Search for models
persons, cities : (1,3), (2,2), or (3,1)

 Gives a fair strategy

Properties : Ground Solver

• For ground inputs F,

– Fixed-cardinality DPLL(T), using Theory EFCC:

• Sound, terminating, and complete

– Eventually either:

» Determines F is unsatisfiable

» Constructs candidate model M of finite (minimal) size

SAT
Solver

Theory
Solvers
+ EFCC

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F
Q

Sound,
Terminating,

Complete

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

Candidate
model M

Model
Verifier

M is a model
for Q

SAT,
model M

else

else

else

1 2

3

1. Finding satisfying assignments

2. Building candidate models

3. Checking candidate models

Ground
Formulas

F

Quantified
Formulas

Q

• Represent a function/predicate as a list of entries:

C1 v1, …, Cn vn

– Where
• C1, …, Cn are “conditions”

• v1, …, vn are “values”

• E.g. unary predicate “P” true only for v represented as:

(v) T, (*)

– Interpreted as an if-then-else:

 x. ite(x = v, T,)

Model Representation

• Candidate models M:
– Domain elements are equivalence classes [t1], [t2], …

– Are constructed from sat assignment A for F

– Consist of definitions Df for each f S, where each Df:

• Is partially determined by ground equalities from A

– For each equality f(t1, …, tn) = t in A,

» Entry ([t1], …, [tn]) [t] Df

• Has default value

– Determined by distinguished f-application e

» Entry (*, …, *) [e] Df

Model Construction

Constructing Models : Example

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person Bool

travels : Person City Bool
F

• Guide choice of default values based on :
– person1 for Person

– NewYork for City

• Assume Q has been instantiated with these terms

salesman(person1) travels(person1, NewYork)

 x y . salesman(x) travels(x,y)

Q

• Choose default based on value of travels(person1, NewYork)

Dtravels:

 (person1, NewYork) T,

 (person1, Boston) ,

 (*, *) T

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

Constructing Models : Example
person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person Bool

travels : Person City Bool

 x y . salesman(x) travels(x,y)

Q

F

salesman(person1) travels(person1, NewYork) true

true

true

true

true

A :=
{ …,

 travels(person1, Boston) = T,

 travels(person1, NewYork) = T }

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

Candidate
model M

Model
Verifier

M is a model
for Q

SAT,
model M

else

else

else

1 2

3

1. Finding satisfying assignments

2. Building candidate models

3. Checking candidate models

Ground
Formulas

F

Quantified
Formulas

Q

• To check if M is a model for Q:
– Naïvely, test if every instance of Q is true in M
– Or, choose a representative set of instances of Q

• Only add instances that are false in M
• Identify sets of instances of Q that are equisatisfiable

Checking Candidate Models

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

F
Candidate
model M

Model
Verifier

M is a
model for Q

Q

SAT,
model M

else

else

Checking Candidate Models

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person Bool

travels : Person City Bool

Q F

salesman(person1) travels(person1, NewYork)

Dsalesman:

 (person2) ,

 (person3) T,

 (*) T

Dtravels:

 (person1, NewYork) T

 (person1, Boston) ,

 (*, *) T }

Q[person1, NewYork]
Q[person1, Boston]
Q[person1, Seattle]
Q[person2, NewYork]
Q[person2, Boston]
Q[person2, Seattle]
Q[person3, NewYork]
Q[person3, Boston]
Q[person3, Seattle]

 x y . salesman(x) travels(x,y)

Q[person1, NewYork]
Q[person1, Boston]
Q[person1, Seattle]
Q[person2, NewYork]
Q[person2, Boston]
Q[person2, Seattle]
Q[person3, NewYork]
Q[person3, Boston]
Q[person3, Seattle]

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person Bool

travels : Person City Bool

Q F

salesman(person1) travels(person1, NewYork)

true
false

true

true

true

Dsalesman:

 (person2) ,

 (person3) T,

 (*) T

Dtravels:

 (person1, NewYork) T

 (person1, Boston) ,

 (*, *) T }

Checking Candidate Models

 x y . salesman(x) travels(x,y)

Checking Candidate Model M

• To check if M satisfies quantified formula Q:
– Choose representative set of instances S of Q

 This is somewhat heuristic

– For each Y in S,
• If M(Y) = false, add Y to F

– If no instances added, then M satisfies Q

• Alternate, improved approach :
– Directly compute the interpretation of Q in M

• Using same data structure that represents functions in M

Computing Interpretations of Terms
Q : x y . salesman(x) travels(x,y)

Dsalesman(x):

 (person2, *) ,

 (person3, *) T,

 (*, *) T

Dtravels(x,y):

 (person1, NewYork) T

 (person1, Boston) ,

 (*, *) T }

Computing Interpretations of Terms

Dsalesman(x):

 (person2, *) ,

 (person3, *) T,

 (*, *) T

Dtravels(x,y):

 (person1, NewYork) T

 (person1, Boston) ,

 (*, *) T }

x

Dsalesman(x) x Dtravels(x,y):

 (person2, *) (, T),

 (person3, *) (T, T),

 (person1, NewYork) (T, T)

 (person1, Boston) (T,),

 (*, *) (T, T)

=

(

(
Compute product

Q : x y . salesman(x) travels(x,y)

Computing Interpretations of Terms

Dsalesman(x):

 (person2, *) ,

 (person3, *) T,

 (*, *) T

Dtravels(x,y):

 (person1, NewYork) T

 (person1, Boston) ,

 (*, *) T }

x

Dsalesman(x) x Dtravels(x,y):

 (person2, *) (, T),

 (person3, *) (T, T),

 (person1, NewYork) (T, T)

 (person1, Boston) (T,),

 (*, *) (T, T)

Dsalesman(x)travels(x,y) :

 (person2, *) (T),

 (person3, *) (T T),

 (person1, NewYork) (T T),

 (person1, Boston) (T),

 (*, *) (T T)

=

= (

(

(

(

Apply interpreted predicate

Q : x y . salesman(x) travels(x,y)

Dsalesman(x)travels(x,y) :

 (person2, *) T,

 (person3, *) T,

 (person1, NewYork) T,

 (person1, Boston) ,

 (*, *) T

Computing Interpretations of Terms

Dsalesman(x):

 (person2, *) ,

 (person3, *) T,

 (*, *) T

Dtravels(x,y):

 (person1, NewYork) T

 (person1, Boston) ,

 (*, *) T }

x

Dsalesman(x) x Dtravels(x,y):

 (person2, *) (, T),

 (person3, *) (T, T),

 (person1, NewYork) (T, T)

 (person1, Boston) (T,),

 (*, *) (T, T)

=

= (

(

(

(

• Add Q[person1/x, Boston/y] to F

Q : x y . salesman(x) travels(x,y)

Finite Model Finding: Summary

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

Ground
Formulas

F
Candidate
model M

Model
Verifier

M is a model
for Q

Quantified
Formulas

Q

SAT,
model M

else

else

else

1 2

3

1. Find Satisfying Assignment
– Use EFCC Solver to find Small Candidate Models

2. Construct Candidate Models
3. Model-Based Quantifier Instantiation

– Two methods: Generalizing Evaluations, Constructing Interpretations

Properties : Finite Model Finding

• For inputs (F, Q), quantifiers in Q over free sorts
– Fixed-cardinality DPLL(T) + quantifier instantiation:

• Sound

• Finite Model Complete
– If (F, Q) has a finite model, we will eventually answer “SAT”

• Refutationally Complete (when containing no theory symbols)
– If (F, Q) is unsatisfiable, we will eventually answer “UNSAT”

SAT
Solver

Theory
Solvers
+ EFCC

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q Sound,
Finite-Model

Complete,
Refutationally

Complete*

* - under certain restrictions

Finite Model Finding: Properties

• For unsatisfiable (F, Q), quant. of Q over free sorts

– When (F, Q) contain theory symbols

• Approach has weaker completeness property:
– If there exists a set I of instances of Q where:

» I is finite

» F I is UNSAT

– Then,

» Fixed-cardinality DPLL(T)+QI terminates, answering UNSAT

• Thus, approach is only non-terminating when:
– (F, Q) is SAT, but only has infinite models

– (F, Q) is UNSAT, but all finite subsets are SAT

Enhancements

• Heuristic Instantiation
– First see if instantiations based on heuristics exist

• If not, resort to model-based instantiation

– May lead to:
• Discovering easy conflicts, if they exist

• Arriving at model faster
– Instantiations rule out spurious models

• Sort Inference
– Reduce symmetries in problem

• Relevancy
– Reduce the size of satisfying assignments

Experiments
• Implemented state of the art SMT solver CVC4

• Experiments on:
– DVF Benchmarks

• Taken from verification tool DVF used by Intel

• Both SAT/UNSAT benchmarks
– SAT benchmarks generated by removing necessary pf assumptions

• Many theories: UF, arithmetic, arrays, datatypes

• Quantifiers only over free sorts
– Memory addresses, Values, Sets, …

– TPTP Benchmarks
• Automated theorem proving community

• No theory reasoning

– Isabelle Benchmarks
• Provable and unprovable goals, contains some arithmetic

Results: DVF

cvc4 :

• f : finite model

• i : heuristic

• m : model-based

SAT german refcount agree apg bmk Total Time
45 6 42 19 37 149
z3 45 1 0 0 0 46 8.1

cvc4+i 2 0 0 0 0 2 0.0
cvc4+f 45 6 42 18 36 147 1413.1
cvc4+fi 45 6 42 19 36 148 1333.9

cvc4+fm 45 6 42 19 37 149 605.4
cvc4+fmi 45 6 42 19 37 149 409.8

UNSAT german refcount agree apg bmk Total Time
145 40 488 304 244 1221
z3 145 40 488 304 244 1221 31.0

cvc4+i 145 40 484 304 244 1217 21.3
cvc4+f 145 40 476 298 242 1201 7512.2
cvc4+fi 145 40 488 302 244 1219 1181.4

cvc4+fm 145 40 471 300 242 1198 6949.7
cvc4+fmi 145 40 488 302 244 1219 1185.0

• CVC4 with finite model finding (cvc4+f)
• Effective for answering SAT
• Using heuristic instantiation, solves 4 UNSAT that cvc4 cannot

600 second timeout

Results: TPTP

• CVC4 Placed 3rd in FNT (non-theorem) division of CASC 24

 SAT UNSAT

 EPR NEQ SEQ PEQ Total EPR NEQ SEQ PEQ Total

 (392) (639) (340) (624) (1995) (1114) (1594) (7875) (2003) (12586)

z3 320 155 164 249 888 989 412 3310 1320 6031

cvc3 27 0 0 0 27 787 381 3019 883 5070

iprover 363 128 107 396 994 835 105 2690 1523 5153

iprover+f 362 226 178 468 1234 213 1 121 48 383

paradox 340 304 185 526 1355 723 17 339 186 1265

cvc4+i 32 0 0 0 32 821 383 3152 1045 5401

cvc4+f 295 178 143 375 991 759 247 887 651 2544

cvc4+fm 298 221 178 391 1088 759 169 1010 703 2641

cvc4+fM 301 235 200 395 1131 759 198 1073 733 2763

cvc4+fMi 292 207 153 385 1037 762 236 1281 746 3025

cvc4 :

• f : finite model

• i : heuristic

• m : model-based

• M : model-based
 (version 2)

10 second timeout

Results : TPTP

• Model-Based Instantiation is often essential
– Solves when naïve approach requires ~775 billion instances

cvc4 :

• f : finite model

• m : model-based

• M : model-based
 (version 2)

Results: Isabelle

• For UNSAT, cvc4 with finite model finding is orthogonal :

– Solves 170 unsat that cvc3 cannot, 365 z3 cannot, 229 that cvc4+i cannot

cvc4 :

• f : finite model

• i : heuristic

• m : model-based

• M : model-based
 (version 2)

UNSAT ArrowOrder FFT FTA Hoare NS_Shared QEpres StrongNorm TwoSquares TypeSafe Total
cvc3 287 250 877 577 102 291 206 552 216 3358

z3 254 230 797 507 135 242 240 491 329 3225
cvc4+i 253 233 749 476 99 265 234 523 267 3099

cvc4+f 123 94 350 209 41 99 83 361 127 1487

cvc4+fi 155 164 509 374 37 168 100 452 195 2154

cvc4+fm 112 86 357 212 26 119 82 349 120 1463
cvc4+fM 88 92 381 202 29 109 93 365 149 1508

cvc4+fMi 154 164 515 371 37 167 100 452 195 2155

SAT ArrowOrder FFT FTA Hoare NS_Shared QEpres StrongNorm TwoSquares TypeSafe Total

cvc3 0 9 0 0 0 0 0 8 0 17
z3 1 19 24 46 10 47 1 17 12 177

cvc4+i 0 9 0 0 0 0 0 8 0 17

cvc4+f 26 123 163 149 56 75 12 50 84 738
cvc4+fi 26 133 158 155 61 80 12 44 87 756

cvc4+fm 22 120 152 147 36 75 12 46 87 697
cvc4+fM 28 126 163 151 44 94 12 43 87 748
cvc4+fMi 31 136 161 154 61 101 12 44 85 785

10 second timeout

Extension to (Bounded) Integers
• A formula of the form

x1…xn : Int. L1 ≤ x1 ≤ U1 … Ln ≤ xn ≤ Un Y

 Where xi FV(Lj, Uj), for i < j

has Bounded Integer Quantification

• Example : xy. 0 ≤ x ≤ 20 0 ≤ y ≤ f(x) P(x, y)

• Can be handled similar as before
– Minimize bounds, (naïvely) instantiate exhaustively

• Idea: Fix values of bound c

• Approach is sound, and model complete

– When input has model, it eventually terminates with “SAT”

Bounded Integer Quantification

c<0 c<0

c≤0 c≤0

c≤1 c≤1

Q : x : Int. 0 ≤ x ≤ c P(x)

Consider Q[0/x]

Consider Q[0/x], Q[1/x]

Domain of Q is
empty

Results

• Set of verification benchmarks from Intel

– Arrays, datatypes, integer arithmetic

– Symbolic bounds for integer quantification, e.g.

x : Int. 0 ≤ x ≤ c P(x), where c is free constant

• CVC4 (with fmf) finds small models M, i.e.

– Value of M[c] is 2 to 3, at most 10

 SAT (263) UNSAT (843)
 solved time solved time

z3 257 957.9 843 20.3
cvc4+i 0 0 843 17.4
cvc4+fi 263 90.8 843 308.7

cvc4 :

• f : bounded integer techniques

• i : heuristic

600 second timeout

Summary
• CVC4 with finite model finding:

– Incorporates various instantiation strategies:
• Model-based quantifier instantiation

• Heuristic instantiation (E-matching)

– Has important properties:
• Finite-Model Completeness

• Refutational Completeness (under certain conditions)

– Approach can be extended to integers, theory of strings

– Improves the state-of-the-art, over:
• SMT solvers

– Increased ability to answer “satisfiable”

• Automated Theorem Provers
– Efficient reasoning about background theories at QF level

Thank you

• Acknowledgements:
– Collaborators: Cesare Tinelli, Amit Goel, Sava Krstíc, Clark

Barrett, Morgan Deters, Leonardo de Moura

– Dissertation Committee: Aaron Stump, Hantao Zhang,
Sriram Pemmaraju

• Questions?

