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Overview

e Satisfiability Modulo Theories and DPLL(T)

* Finite Model Finding in SMT
* Branch and bound for finding small models
e Variants of the approach
e Relationship to Optimization

e Recent trends, future work



Satisfiability Modulo Theories (SMT)

(Vx.P(x) vi(b)=b+l) Ady. (=P (y) AT (y)<Vy)

* We are often interested in establishing T-satisfiability of formulas with:
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Satisfiability Modulo Theories (SMT)

Mx.P (x) vE(®B)=b+1) ABv. ( v) AE(¥)<Y)

* We are often interested in establishing T-satisfiability of formulas with:
 Boolean structure
e Constraints in a background theory T, e.g. UFLIA

e ..even existential and universal-




DPLL(T): Basics
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* Consider the propositional abstraction of the formula
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* Consider the propositional abstraction of the formula
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* Find propositional satisfying assignment via off-the-shelf SAT solver



DPLL(T): Basics

—> True —> True

—> false
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* Find propositional satisfying assignment via off-the-shelf SAT solver



DPLL(T): Basics

—> True
—> True

~ P(a)
E(b)>atl
P (b)

—> false

* Consider the original atoms



DPLL(T): Basics

= Propositional assignment can be seen as a set of T-literals M
* Must check if M is T-satisfiable




DPLL(T): Basics

—

—P (b)

UF-Solver

(P (a) v ENDYSEHT)
(—P (b) v ¥x.P(x))
P(a))

(f (b)=a-5v —

ST Solver
e

LIA-Solver Quantifiers Module

—> Distribute ground literals to T-solvers,V literals to quantifiers module




DPLL(T): Basics

—P (b)

UF-Solver

f (b)=a-5 -7

LIA-Solver TSI Quantifiers Module

—> These solvers may choose to add conflicts/lemmas to clause set




DPLL(T,+..+T.): Overview

T-Clauses F

A

SAT
Solver

..when Fis
propositionally
unsatisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

Satisfying
Assignment
M

v

Q

Conflicts, lemmas

Quantifiers Module = -

—> Each of these components may:
 Report Mis T-unsatisfiable by reporting conflict clauses

* Report lemmas if they are unsure




DPLL(T,+..+T.): Overview

T-Clauses F

Satisfying
Assignment

SAT .
Solver

T,-solver

..when Fis M, T -solver
propositionally

unsatisfiable OBl Quantifiers Module

..when Mis
T,+..+T -satisfiable

= If no component adds a lemma, then it must be the case
that M is T +...+T -satisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]



Common Theories Supported by SMT Solvers

* SMT solvers support:
* Arbitrary Boolean combinations of ground theory constraints

* Examples of supported theories:
e Uninterpreted functions: £ (a) =g (b, ¢)
* Linear real/integer arithmetic: a>b+2*c+3
* Arrays: select (A, 1)=select (store(A,1+1,3),1)
e BitVectors: bvule (x, #xFF)
* Algebraic Datatypes: x, y:List; tail (x)=cons (0, V)

e ¥ over each of these



Common Theories Supported by SMT Solvers

* SMT solvers support:
* Arbitrary Boolean combinations of ground theory constraints

* Examples of supported theories:
* Uninterpreted functions: = Congruence Closure [Nieuwenhuis/Oliveras 2005]
* Linear real/integer arithmetic: = Simplex [deMoura/Dutertre 2006]
* Arrays: = [deMoura/Bjorner 2009]
* BitVectors: = Bitblasting, lazy approaches [Bruttomesso et al 2007,Hadarean et al 2014]
* Algebraic Datatypes: = [Barrett et al 2007]

e ¥ over each of these



SMT Solvers have Partial Support for V

Vx:Int.P(x)

\ /
f

P is true for all integers x

e Satisfiability problem for V is generally undecidable

* Heuristic Techniques for “unsat”:
* E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

* Limited Techniques have completeness guarantees:
* Local theory extensions [Sofronie-Stokkermans 2005]
* Array fragments [Bradley et al 2006, Alberti et al 2014]
 Complete Instantiation [Ge/de Moura 2009]
* Finite Model Finding [Reynolds et al 2013]



SMT Solvers have Partial Support for V

Vx:Int.P(x)

\ /
f

P is true for all integers x

e Satisfiability problem for V is generally undecidable

* Heuristic Techniques for “unsat”:
* E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

* Limited Techniques have completeness guarantees:
* Local theory extensions [Sofronie-Stokkermans 2005]
* Array fragments [Bradley et al 2006, Alberti et al 2014]
 Complete Instantiation [Ge/de Moura 2009]
* Finite Model Finding [Reynolds et al 2013]

— Focus of next slides




Finite Model Finding : Motivation

List := cons( head : Int, tail : List ) | nil } Signature

Vx:L.length(x)=ite(is-cons (x),l+length(tail (x)),0)

Vxy:L.append(x)=ite (is-cons (x),cons (head(x),append(tail (x),vy)),Vy) Axi
Vx:L.rev (x)=ite (is-cons (x),append(rev(tail (x)),cons (head(x),nil),nil) 0 xioms

. | (Negated)
dxy:List.rev (append(x,vy))#append (rev (y),rev(x)) ~ conjecture




Finite Model Finding : Motivation

List := cons( head : Int, tail : List ) | nil } Signature

Vx:L.length(x)=ite(is-cons (x),l+length(tail (x)),0)

Vxy:L.append(x)=ite (is-cons (x), cons (head (x),append(tail(x),vy)),VY) Axi
Vx:L.rev (x)=ite (is-cons (x) ,append (rev (tail (x)),cons (head(x),nil),nil) [ Axioms

. A (Negated)
dxy:List.rev (append(x,y))#append(rev(y),rev(x)) ~ conjecture
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...but what if the conjecture does not hold?




Finite Model Finding : Motivation

Axioms A (with V),
negated conjecture P

Unknown
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CEX
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Finite Model Finding : Motivation

Axioms A (with V),
negated conjecture P

Candidat
Sy Concrete CEX for

—— conjecture P
. lanual
InspeL*ion
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Finite Model Finding in DPLL(T)
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Finite Model Finding in DPLL(T)

T-Clauses F
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* Given universally quantified formula Vxy :U. P (x, y)




Finite Model Finding in DPLL(T)

T-Clauses F

SAT > /‘ Ml T,-solver

Solver \ M, T -solver
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* Given universally quantified formula Vxy:U.P (x, V)
* If U can be interpreted as finite, e.g. {a,b,c,d,e}:




Finite Model Finding in DPLL(T)
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M, T,-solver

Vxy:U.P(x,y) NOUEINSIIScR\ i ele[VIlM- —~

* Given universally quantified formula Vxyv:U.P (x, V)

* If U can be interpreted as finite, e.g. {a, b, c,d, e}:
* Can be reduced to a finite set of instances



T-Clauses

* Can be very large

M, T,-solver

M, T, -solver

Solver \
Vxy:U.P(x,y) OUEINIIEFR\ I eIeIFIIE

* Given universally quantified formula Vxyv:U.P (x, V)

* If U can be interpreted as finite, e.g. {a, b, c,d, e}:
* Can be reduced to a finite set of instances




Finite Model Finding in SMT

* Address large # instantiations by:
1. Only add instantiations that refine model [Reynolds et al CADE13]
* Model-based quantifier instantiation [Ge/deMoura CAV 2009]

2. Minimizing model sizes [Reynolds et al CAV13]
* Find interpretation that minimizes the #elements in U



1. Model-Based Quantifier Instantiation



Model-Based Quantifier Instantiation

T-Clauses F

My T,-solver
M

\ M, T -solver
Vxy:U.P(x,v) OUEIIIEIER\[eIe[FIIE

* Basic idea:



Model-Based Quantifier Instantiation
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1. Build candidate interpretation M, compute PM (%, v)




Model-Based Quantifier Instantiation

T-Clauses F

* Basic idea:

P(e,e)
P(c,a)

Vxy:U.P(x,v) OUEIIIEIER\[eIe[FIIE

1. Build candidate interpretation M, compute PM (%, v)
2. Add instances (if any) that evaluate to false



Model-Based Quantifier Instantiation

T-Clauses F

* Basic idea:
e ...and repeat

T,-solver

T -solver

Quantifiers Module



Model-Based Quantifier Instantiation

T-Clauses F

* Basic idea:
e ...and repeat

o

/ -

Vxy:U.P(X,V)

Quantifiers Module




Model-Based Quantifier Instantiation

T-Clauses F
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* ...and repeat




Model-Based Quantifier Instantiation

T-Clauses F

PM'a b ¢ d e

Quantifiers Module

* Basic idea:
e ...and repeat

model M’



Model-based Instantiation: Impact
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e 1203 satisfiable benchmarks from the TPTP library

* Graph shows # instances required by exhaustive instantiation
e Eg. Vxyz:U.P(x,vy,z),if |U|=4, requires 43=64 instances



Model-based Instantiation: Impact
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* CVC4 Finite Model Finding + Exhaustive instantiation
* Scales only up to ~150k instances with a 30 sec timeout



Model-based Instantiation: Impact
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* CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]
» Scales to >2 billion instances with a 30 sec timeout, only adds fraction of possible instances



2. Minimizing Model Sizes



Minimizing Model Sizes

* Finding small models is important
(leads to exponentially fewer possible instances of V)

To establish T-satisfiability of:

GAVX:U.P(x)
...where G is a set of ground constraints, and U is an uninterpreted sort

First, find a model M of G such that |UM]| is minimized

* To minimize |UM|:
* Modifications to the DPLL search procedure in the SAT solver
» Additional theory solver for cardinality constraints




Minimizing Model Sizes

* Abstractly, organize DPLL search by fixing the cardinality of U

1. Search for models
where |U|=1

2. If none exist,
search for models
where |U|=2

3. etc.



Minimizing Model Sizes

* Abstractly, organize DPLL search by fixing the cardinality of U

1. Search for models
where |U|=1

2. If none exist,

Se"’\‘,\"’;z:grlrglo_dze's = Extend the SMT solver
,. with a theory solver for
3. etc. cardinality constraints




Theory of finite cardinality constraints

T-Clauses F

T,-solver

SAT
Solver

T -solver

FCC

g

Ol Quantifiers Module

* Theory solver for T,
* FCC = finite cardinality constraints



Theory of finite cardinality constraints

* Theory of finite cardinality constraints T,

* Sighature 2 .:
* Predicates |U|<k for each uninterpreted sort U and positive numeral k



Theory of finite cardinality constraints

* Theory of finite cardinality constraints T,

* Sighature 2 .:
* Predicates |U|<k for each uninterpreted sort U and positive numeral k

* Examples:

a,b,c:U
* azb A |U|L1 .. Trcc-unsatisfiable
* a#b A azc A |U|L2 ... T -satisfiable (where bM=cM)



Theory of finite cardinality constraints

* Decision procedure for Ty.:
* Given input G
..where G is a set of equalities and disequalities

e Consider the disequality graph (V,E) induced by G:

* Vertices V are equivalence classes
* Edges E are disequalities



Theory of finite cardinality constraints

* Decision procedure for Ty.:
* Given input G
..where G is a set of equalities and disequalities

e Consider the disequality graph (V,E) induced by G:

* Vertices V are equivalence classes
* Edges E are disequalities

azb, b#c, c#d, d#e, eFa
| U | <3




Theory of finite cardinality constraints
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Theory of finite cardinality constraints

azpb, b#c, c#d, dFe, eFa e e
——

| U | <3

@
* Decision procedure for Ty : e

Let k be the smallest k such that | U | <k

* If there is a (k+1)-clique, answer “unsat”

* |f there are k or fewer vertices, answer “sat”

* Otherwise, split the problem: t,=t, v t,#t, for some vertices t,, t,




Theory of finite cardinality constraints

x SN
azpb, b#c, c#d, dFe, eFa e e
X

<
| U | <3 N

0-0

Split: a=d v a#d



Theory of finite cardinality constraints

azpb, b#c, c#d, dFe, eFa
a=d
| U | <3

Split: a=d v a#d



Theory of finite cardinality constraints

azpb, b#c, c#d, dFe, eFa
a=d
| U | <3

Split: a=d v a#d
Split: e=c v e#c



Theory of finite cardinality constraints

azpb, b#c, c#d, dFe, eFa
a=d, e=c
| U | <3

Split: a=d v a#d
Split: e=c v e#c



Theory of finite cardinality constraints

azpb, b#c, c#d, dFe, eFa
a=d, e=c
| U | <3

Split: a=d v a#d
Split: e=c v e#c
3 equivalence classes ... answer “sat”



Theory of finite cardinality constraints

* Decision procedure for T
* Sound, complete and terminating for T.-satisfiability

e Fully integrated into DPLL(T) framework
* Incremental, generates conflict clauses

* Incorporates optimizations: [Reynolds et al CAV13]
* Finds k-cliques (an NP-hard problem) via a fast incomplete check
* Heuristics for which vertices to split



Minimizing Model Sizes with T,

* Theory solver for T, can be used in part for finding minimal models

Search for models
where |U|=1

If none exist,
search for models
where |U|=2

etc.



Minimizing Model Sizes with T,

* Theory solver for T, can be used in part for finding minimal models
* Introduce incremental bounds on cardinality in DPLL search

U <1 —|U| <1

Search for models
where |U|=1 |U| <2 —|U| <2

If none exist,

search for models 10| <3 —|U| <3

where |U|=2
—> DPLL solver chooses

etc. tightest bound as first
decision




Finding Minimal Counterexamples for ITP

List := cons( head : Int, 1list : Tail ) | nil ]
Signature

L: “subterm-closed structure” of List

Vx:L.length(x)=ite(is-cons (x),l+length(tail (x)),0)
Vxy:L.append(x,y)=ite (is-cons (x),cons (head(x),append(tail (x),vy)),Vy) Axioms
Vx:L.rev (x)=ite (is-cons (x),append(rev(tail (x)),cons (head(x),nil),nil)

(Negated)
dxy:L.rev (append (x,y) ) #append (rev (y) ,rev (x)) conjecture




Finding Minimal Counterexamples for ITP

List := cons( head Int, list Tail ) | nil
L: “subterm-closed structure” of List
Vx:L.length(x)=ite(is-cons(x),l+length(tail(x)),0)

Vxy:L.append(x,V)
Vx:L.rev (x

xX) ,append(tail (x
cons (head (x),

=ite (is-cons (x), cons (head(x

)=ite(is-cons (x),append(rev(tail (x)),

X)rY)),Y)

nil)

,nil)

dxy:L.rev (append(x,Vy) )#append (rev (y),

))

rev (x

Vxy:L.rev (append (x,V))

=append (rev (y)
holds

I
I
I

, rev (x

Signature

Axioms

(Negated)
conjecture

))



Finding Minimal Counterexamples for ITP

List := cons( head : Int, 1list : Tail ) | nil ]
Signature

L: “subterm-closed structure” of List

Vx:L.length(x)=ite(is-cons (x),l+length(tail (x)),0)
Vxy:L.append(x,y)=ite (is-cons (x),cons (head(x),append(tail (x),vy)),Vy) Axioms
Vx:L.rev (x)=ite (is-cons (x),append(rev(tail (x)),cons (head(x),nil),nil)

(Negated)
dxy:L.rev (append (x,y) ) #append (rev (x) ,rev(y)) conjecture

N




Finding Minimal Counterexamples for ITP

List := cons( head : Int, 1list : Tail ) | nil ]
Signature

L: “subterm-closed structure” of List

Vx:L.length(x)=ite(is-cons(x),l+length(tail(x)),0)
Vxy:L.append(x,y)=ite (is-cons (x),cons (head(x),append(tail (x),vy)),Vy) :% Axioms
)

Vx:L.rev (x)=ite (is-cons (x),append(rev(tail (x)),cons (head(x),nil),nil)

=— (Negated)

xy:L.rev (append(x,y) ) #append (rev (x) ,rev(y)) conjecture
Counterexample M: rev (append (cons (0,nil),cons(l,nil)) )=

_ : cons(l,cons (0,nil))#
. (X)—COHS(O,H:L]_) cons (0,cons(1,nil))=

M (y)=cons(1l,nil) append (rev (x) , rev (y))



Finding Minimal Counterexamples: Challenge

Tree := node( left : Tree, data : Int, right : Tree ) | leaf
T: “subterm-closed structure” of Tree

Vx:T.depth (x)=ite (is—-node (x), 1+max (depth (left (x)),depth(right (x))),0)

Jk:T.depth (k)24 * Find a tree with depth at least 4




Finding Minimal Counterexamples: Challenge

Tree := node( left : Tree, data : Int, right : Tree ) | leaf
T: “subterm-closed structure” of Tree

Vx:T.depth (x)=ite (is—-node (x), 1+max (depth (left (x)),depth(right (x))),0)

Jk:T.depth (k)24 * Find a tree with depth at least 4

Consider all k of depth O

Consider all k of depth 1
Consider all k of depth 2

Combinatorial explosion { Consider all k of depth 3
—>solver is slow!




Finding Counterexamples: Challenge

Tree := node( left : Tree, data : Int, right : Tree ) | leaf
T: “subterm-closed structure” of Tree

Vx:T.depth (x)=ite (is—-node (x), 1=max (depth (left (x)),depth(right (x))),0)

Jk:T.depth (k)24 * Find a tree with depth at least 4

is—-node (k)
is—-node (left (k)))

is—-node (left (left (k))))

is-node (left (left (left (k)) )V\

CEX



Finding (Non-Minimal) CEX: Challenge

List := cons( head : Int, list : Tail ) | nil
L: “subterm-closed structure” of List

Vx:L.all-pos(x)=ite(is-cons (x),head(x)>0Aall-pos(tail (x)),true)

Jk:L.is-cons (k) nall-pos (k) | * Find a non-empty list of positive integers




Finding (Non-Minimal) CEX: Challenge

List := cons( head : Int, list : Tail ) | nil
L: “subterm-closed structure” of List

Vx:L.all-pos(x)=ite(is-cons (x),head(x)>0Aall-pos(tail (x)),true)

Jk:L.is-cons (k) nall-pos (k) ¢ Find a non-empty list of positive integers

is—-cons (k)

is-cons(tail (k))

is-cons (tail (tail (k)))

is-cons(tail(tail(tail (k))))

\ J
|

Search is unfair = solver is non-terminating!



Branch and Bound: Hybrid Approach?

is—-cons (k)
is—-cons(tail (k))
is—-cons (tail(tail (k)))

rack

CEX

is-cons(tail (tail (k)

Backt

Backtrack Backtrack

* Guide search so that eventually it will consider small models
= In development



Branch and Bound: Use Cases

* Similar approach can be used for:
1. ¥V bounded by symbolic numeric (integer) range
2. YV bounded by set membership
3. Model finding for theory of strings + length
4. Syntax-Guided Synthesis



Use case #1: Bounded Integer V




Variant: Bounded Integer V

e Vx:Int. 0=Ix<t=P (X)

t<0 —t<0
Search for models
where t<0
t<0 —t<0
If none exist, <1 <
search for models L= —tsl
where t=0

etc.

= Incrementally bound
the value of term t




Use case #2: Sets + Cardinality




Theory of Finite Sets + Cardinality

* Parametric theory of finite sets of elements E

* Signature 2,
* Empty set I, Singleton {a}
* Membership €: Ex Set > Bool
e Subsetc: Set x Set - Bool
e Set connectives U, N,\ : Set x Set - Set

* Example input: xX=yNz Aatbex A ycw

* Applications in programming languages, e.g. Alloy



Theory of Finite Sets + Cardinality

* Recently:

* Extended sighature of theory to include:
e Cardinality |.| : Set > Int

* Extended decision procedure for cardinality constraints
* Fully integrated component in DPLL(T) [Bansal et al JCAR2016]

* Example input:  x=yUz A |x|=14 A|y|2]2z|+5



Theory of Finite Sets + Cardinality

* Decision procedure builds cardinality graph where
e Cardinality of leaves are disjoint sum of parents

lvIi=ly\z]|+]|yNz|
|z |=]z\y|+]|yNz|
lyUz |=|y\z|+t|lyNz|+]|z\Vy]

[Bansal/Reynolds/Barrett/Tinelli JCAR2016]



Theory of Finite Sets + Cardinality

* Decision procedure builds cardinality graph where

e Cardinality of leaves are disjoint sum of parents
* Equalities between sets

I .
- - =,
- o

P y  yJz  Z
X v\Z  yNz  zZ\Y

[Bansal/Reynolds/Barrett/Tinelli JCAR2016]



Theory of Finite Sets + Cardinality

* Decision procedure builds cardinality graph where

e Cardinality of leaves are disjoint sum of parents
* Equalities between sets — merge leaves

[ p—
- =,
- o

STy yuz oz
X vz vNz  z\y s
// ﬁ/ | x|=]xN(y\z) |+

XM (y\2Z) XMAYMZ xM (z\Vy) | xNyAz |+ xN (z\Y) |

[Bansal/Reynolds/Barrett/Tinelli JCAR2016]



Branch and Bound: Set Membership V

* Vx:Int.xeS=P (x)

[S1=0 —151<0

Search for models

where | S| =0 1S <1 1s)<1
If none exist, :
search for models | 5152 —|S1=2 = I\/Iakg Use of native set
where |S|=1 cardinality operator
| .| :Set—>Int

etc.



Set Membership V

* Increased power to encode:

Vx.xeS=P (x) A |S |2k P holds for at least k points
Vx.xeS=x<10 All elements of S are <10
Vxy.xeESAYET=xLY All elements of S are <those in T



Use case #3: Theory of Strings




Theory of Strings + Length

* Signature 2 :
* Constants from a fixed finite alphabet e.g. “a”, “ab”, ...
* String concatenation - :Str x Str — Str

e Length len( ): Str > Int

e Extended functions str.substr, str.contains,
str.to.1nt, int.to.str, str.replace, str.indexof

* Example input:

len(x)>1len(y) A str.contains (y,”ab”)



Theory of Strings + Length : Models

(set-logic QF_S)
char buff[15]; (declare-const input String)
char pass; (declare-const buff String)
cout << "Enter the password :"; SR e (declare-const pass0 String)
gets(buff); Encode (declare-const rest String)
if (regex_match(buff, std::regex("([A-Z]+)") )) { Eg:::aarﬁ-—c?:t?tlgrﬁs1ffSt1réng)
if(strcmp(buff, “PASSWORD")) { oot (atrlon poeat) D)
cout << "Wrong Password"; (assert (or (< (str.len input) 15)
} else { (= input (str.++ buff pass0 rest)))
cout << "Correct Password"; (assert (str.in.re buff
ass ='Y" ) C (re.+ (re.range "A" "Z"))))
} P A O/\‘:\A \\\O & (assert (ite (= buff "PASSWORD")
' =="Y" %) () (= pass1"Y")
|f(pflss =="Y"){ o '.’3) (= pass1 pass0)))
/* Grant the root permission*/ (assert (not (= buff "PASSWORD"))

} (assert (= pass1"Y"))

* Models may correspond to security vulnerabilities



Theory of Strings + Length

* Theoretical complexity of:
* Word equation problem is in PSPACE
e ...with length constraints is OPEN
e ...with extended functions is UNDECIDABLE

* |nstead, focus on:

* Solver that is efficient in practice
e Often, for applications like symbolic execution, able to find models




Theory of Strings + Length

= (w,u,u1) Ft=(w,v,v1) s=teC(S) SElenu=lenv

F
F-Unify —

S:=Su=wv

Fs=(w,u,u) Ft=(w,v,v1) s=teC(S) SElenuzlenv
uégd Vi) véViu)

S:=S,u=con(v,z) | S:=5,v=con(u,z)

F-Split

Fs=(w.z.u) Ft=(w,v,vi.2,v s=tclC(S) =&V((v,v1))
F-Loop ( 1, ( 1 2) (S, ¢ V((v,v1),

S:=S5, x = con(za,z), con(v, v1) = con(za, z1), con(w1) = con(zy, 22, v2)
R:= R,z instar(set con(z1, z2)) C:=C,t

* Rule-based algebraic calculus [Liang et al 2014]:

 Handled unbounded strings
* E.g. HAMPI [Kiezun et al 2009] reduces to fixed-width Bit Vectors
* Refutation-sound and model-sound, e.g. “unsat” and “sat” can be trusted
* Refutation-incomplete, not guaranteed to terminate for “unsat”
* Finite-model complete
e ..assuming a branch and bound strategy



Branch and Bound: Theory of Strings + Length

* GiveninputF¥[s,,..,s,] forstrings s;..s:

Zic1nlSi1<0 =2 o lSil <0
Search for models
where sum of i alsil <1 =2 sl <1

lengths=0

Search for models
— s.| <?2
where sum of z:i=1...n | Sil < 2 |—1...n| | | —

lengths=1
5 = Incrementally bound the

etc. .
sum of lengths of strings




Use case #4: Syntax-Guided Synthesis




Syntax-Guided Synthesis
df:Prog.Vi.S(f, 1)

* Interested in synthesis conjectures of the above form:

There exists a program £,
...such that for all inputs i,
...a (universal) specification S (£, 1) holds



Syntax-Guided Synthesis

df:Prog.Vi.S(f, 1)

 Problem is UNDECIDABLE

* Involves second-order ¥V on £, universal ¥V on 1



Syntax-Guided Synthesis

df:Prog.Vi.S(f, 1)

P = ite(C,P,P)|+(P,P)|-(P,P)|0|1]1i
C=2(pP,P)|=(P,P) |not(C)

 Problem is UNDECIDABLE

* Involves second-order ¥V on £, universal ¥V on 1

* A way to simplify the problem is to restrict the space of solutions
 Solutions belong to a grammar P specifying syntax for £



Syntax-Guided Synthesis

If:P.Vi.S,(f, 1)

P = ite(C,P,P) |+ (P,P)|-(P,P)|0|1]|1
C ==2(P,P)|=(P,P) [not(C)

 Problem is UNDECIDABLE

* Involves second-order ¥V on £, universal ¥V on 1

* A way to simplify the problem is to restrict the space of solutions
* Solutions belong to a grammar P specifying syntax for £

e Grammar P can be seen in SMT as an inductive datatype
* Use deep embedding into specification S, solve for £ as P [Reynolds et al CAV15]



Syntax-Guided Synthesis

df:P.V1.S,(f,1)

P = ite(C,P,P) |+(P,P)|-(P,P) 0|11
C =2(p,P)|=(P,P) [not (C)

e Consider solutions (naively) by enumeration:

M =9 check Vi.S, (0, 1)

M =1 check Vi.sS,(1,1)

M =

M = 1+1 check Vi.S, (1+1,1)

M = i1+1 check Vi.S,(i+1,1)

M =

fM = ite(>(1,0),1,0) CheckVi.SP(ite(Z(i,O),i,O),i)

* |[n practice, guided via CE-guided inductive synthesis loop [Solar-Lezama 2013]



Syntax-Guided Synthesis

df:P.V1.S,(f,1)

P = ite(C,P,P) |+(P,P)|-(P,P) 0|11
C =2(p,P)|=(P,P) [not (C)

e Consider solutions (naively) by enumeration:

M =9 check Vi.S, (0, 1)

M =1 check Vi.sS,(1,1)

M =

M = 1+1 check Vi.S, (1+1,1)

M= 147 check Vi.S,(i+1,1)

M =

fM = ite(>(1,0),1,0) CheCkVi.SP(ite(Z(i,O),i,O),i)

* |[n practice, guided via CE-guided inductive synthesis loop [Solar-Lezama 2013]
= Finite-model completeness if we consider smaller solutions before larger ones



Syntax-Guided Synthesis

* To enumerate smaller solutions before larger ones:
* Introduce notion of term size of datatype (# constructor applications), e.g.:
* size(1)=1
* size(1+1)=3
* size(ite (120,1,1+1))=8
* Extend theory of datatypes with size bound predicates:
e size(t)<k
..where t is a datatype term and numeral k
* Decision procedure extends to predicates of this form



Branch and Bound: Syntax-Guided Synthesis

edf:P.Vi.S(f, 1)

size (f)=<1 —size (f) <1

Search for

PrOgrams s ze (£)<2 —size (f)<2
of size 1

Searchfor 556 (£f)<3 —size (£f)=3
programs

of size 2 —> Use size bound predicate
" on inductive datatypes

etc.




Each of these variants:

* Modify DPLL search

e ..to minimize some (numeric) quantity:
* Finite model finding: cardinality of sorts
* Bounded integer V: value of numeric bounds
* Bounded set membership: cardinality of sets
 Strings: sum of lengths
* Syntax-guided synthesis: term size

* Have similar challenges/tradeoffs for strategies:
* Minimal = finite-model complete, slow
* Non-minimal = incomplete, can be fast



Current Trends in SMT

* Incorporation of many new theories:
* Strings and regular expressions
* Floating point
e Sets with cardinality constraints
* Finite Relations

* Increased support for V

* New solving algorithms
* Natural domain SMT, mcSat [Jovanovic/deMoura 2013]

* Some work on Optimization Modulo Theories



Optimization Modulo Theories

* Some SMT solvers support optimization queries:

* vZ (extension of Z3) [Bjorner/Phan 2014]
* OptiMathSAT (extension of MathSat) [Sebastiani/Tomasi 2014]



Optimization Modulo Theories

Flcost] U 1<costzu

* Given input F[cost] where 1<cost<uy,
* Find model that minimizes cost



Optimization Modulo Theories

Flcost] U lscostsu return cost=1
.Iif 1=u



Optimization Modulo Theories

Flcost] U 1<costzu

cost<pivot —cost<pivot

* Otherwise, split on pivot for some 1<pivot<u



Optimization Modulo Theories

Flcost] U 1<costzu
cost<pivot —cost<pivot
costM=vy

* If we find model where costM=v, update upper bound



Optimization Modulo Theories

Flcost] U 1<costzu

cost<pivot —cost<pivot

1<costv

costM=v

* If we find model where costM=v, update upper bound



Optimization Modulo Theories

Flcost] U 1<costzu

COSt<piZSE/////”\\\\\:i?St<inOt

|
|
|
|
|

4

* If no model found, update lower bound



Optimization Modulo Theories

Flcost] U 1<costzu

cost<pivot —cost<pivot

pivot<cost<u

* If no model found, update lower bound



Optimization Modulo Theories

e Similarly, uses branch and bound to minimize cost
* Modify the behavior of the DPLL search

* [mprovements:
* Use LP solvers to minimize size of cost in models
* Use conflict analysis to terminate when “unsat” does not depend on cost



Expressivity of Queries

Future Work

Satisfiability

Optimization
(LA)

Expressivity of Constraints

[ SMT]
p| LGDP

e.g. OptiMathSat



Expressivity of Queries

Future Work

Expressivity of Constraints

—

- LA constraints | SMT(LA) | SMT(LA+T)

Satisfiability || p————t—r——

Optimization
(LA)

—>Extensions of optimization queries for rich set of theories supported
by SMT solvers



summary

* SMT solvers + DPLL(T) used in many applications

* Can be modified to support model finding and optimization
* Extensions of theories, e.g. native support for cardinality
* Modifications to decision heuristics in SAT solver



Thanks for listening!

 SMT Solver CVC4:
* Open source, available at http://cvc4.cs.nyu.edu/downloads/

e Supports many theories:
* UF, Linear arithmetic, Arrays, Strings, Sets, ...
e and techniques mentioned in this talk:

* Finite model finding, syntax-guided synthesis, etc.



http://cvc4.cs.nyu.edu/downloads/
http://cvc4.cs.nyu.edu/downloads/

