Implementing Branch and Bound Algorithms in SMT

Andrew Reynolds

Two Sigma

July 12, 2016

Overview

- Satisfiability Modulo Theories and DPLL(T)
- Finite Model Finding in SMT
 - Branch and bound for finding small models
 - Variants of the approach
 - Relationship to Optimization
- Recent trends, future work

$$(\forall x.P(x) \lor f(b)=b+1) \land \exists y. (\neg P(y) \land f(y) < y)$$

• We are often interested in establishing *T-satisfiability* of formulas with:

$$(\forall x.P(x) \lor f(b) = b+1) \land \exists y. (\neg P(y) \land f(y) < y)$$

- We are often interested in establishing *T-satisfiability* of formulas with:
 - Boolean structure

$$(\forall x.P(x) \lor f(b) = b+1) \land \exists y. (\neg P(y) \land f(y) < y)$$

- We are often interested in establishing *T-satisfiability* of formulas with:
 - Boolean structure
 - Constraints in a background theory T, e.g. UFLIA

$$(\forall x.P(x) \lor f(b)=b+1) \land \exists y. (\neg P(y) \land f(y) < y)$$

- We are often interested in establishing *T-satisfiability* of formulas with:
 - Boolean structure
 - Constraints in a background theory T, e.g. UFLIA
 - ...even existential and universal quantifiers

```
(P(a) \lor f(b) > a+1)

(\neg P(b) \lor \forall x . P(x))

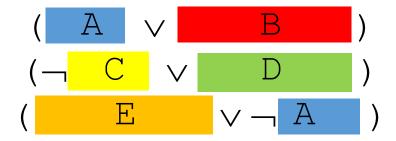
(f(b) = a-5 \lor \neg P(a))
```

```
(P(a) \lor f(b) > a+1)

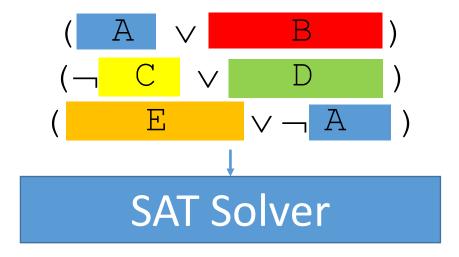
(\neg P(b) \lor \forall x.P(x))

(f(b) = a-5 \lor \neg P(a))
```

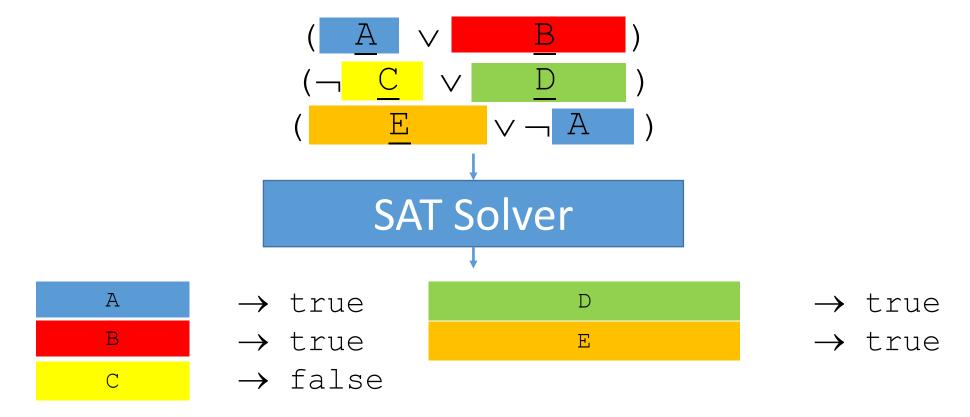
Consider the propositional abstraction of the formula



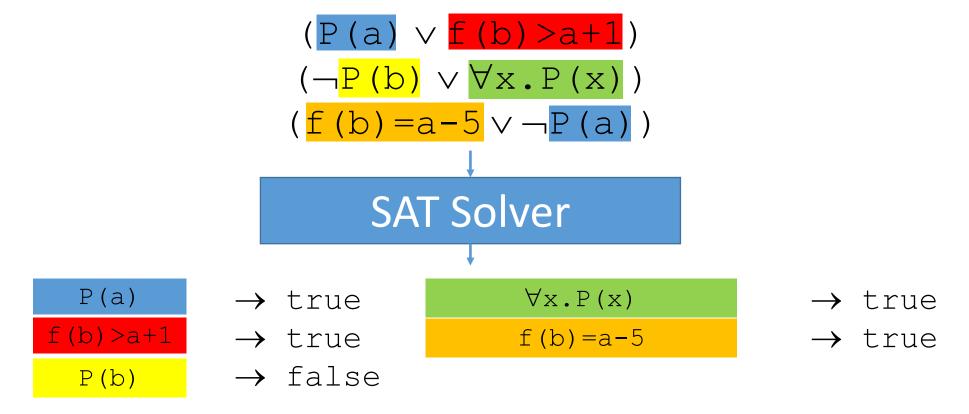
• Consider the propositional abstraction of the formula



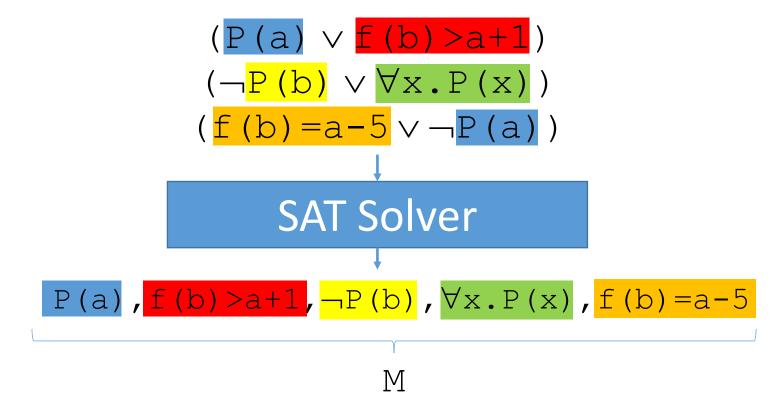
• Find propositional satisfying assignment via off-the-shelf SAT solver



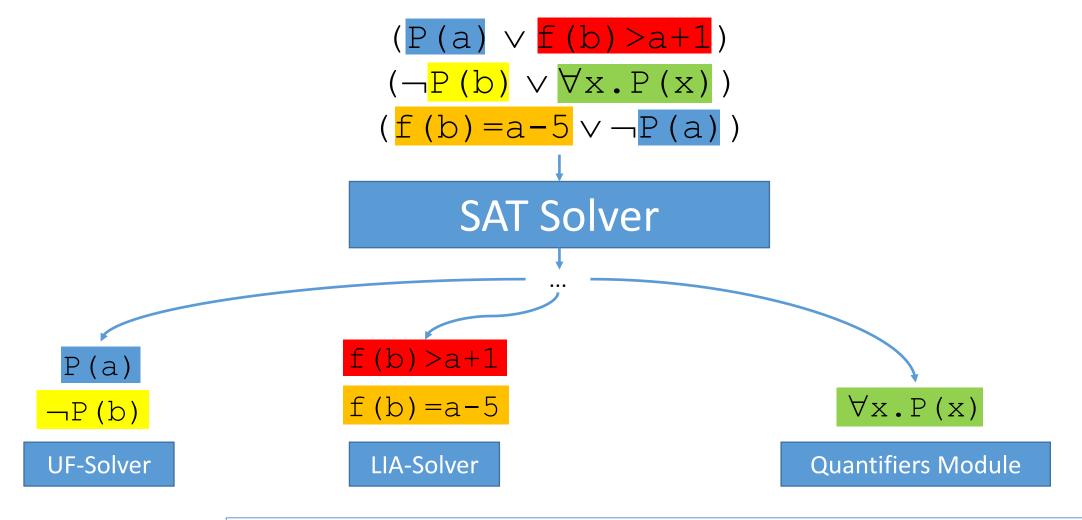
• Find propositional satisfying assignment via off-the-shelf SAT solver



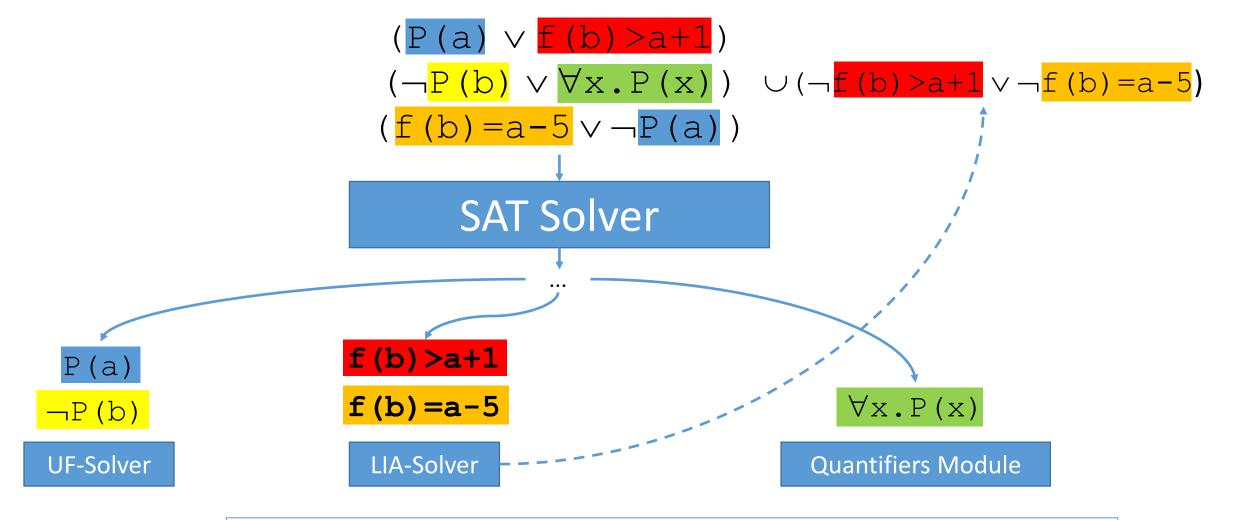
Consider the original atoms



- \Rightarrow Propositional assignment can be seen as a set of T-literals M
 - Must check if M is T-satisfiable

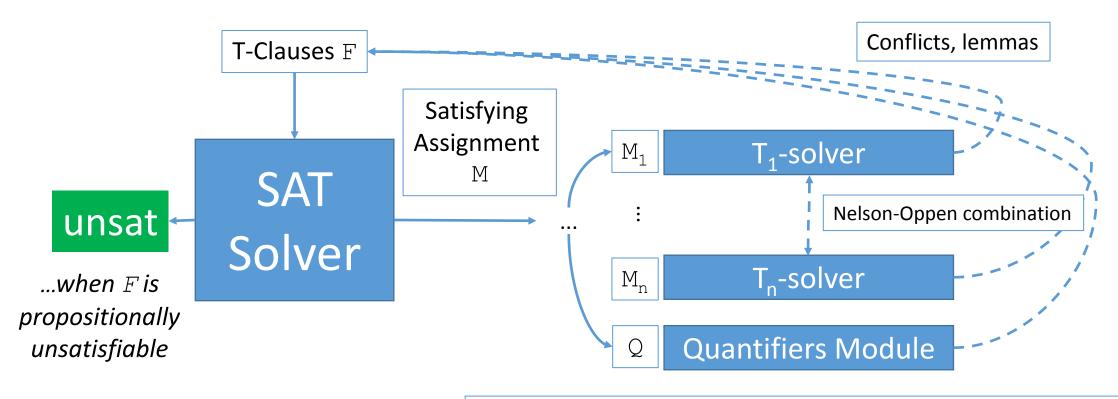


⇒ Distribute ground literals to T-solvers, ∀ literals to quantifiers module



⇒ These solvers may choose to add conflicts/lemmas to clause set

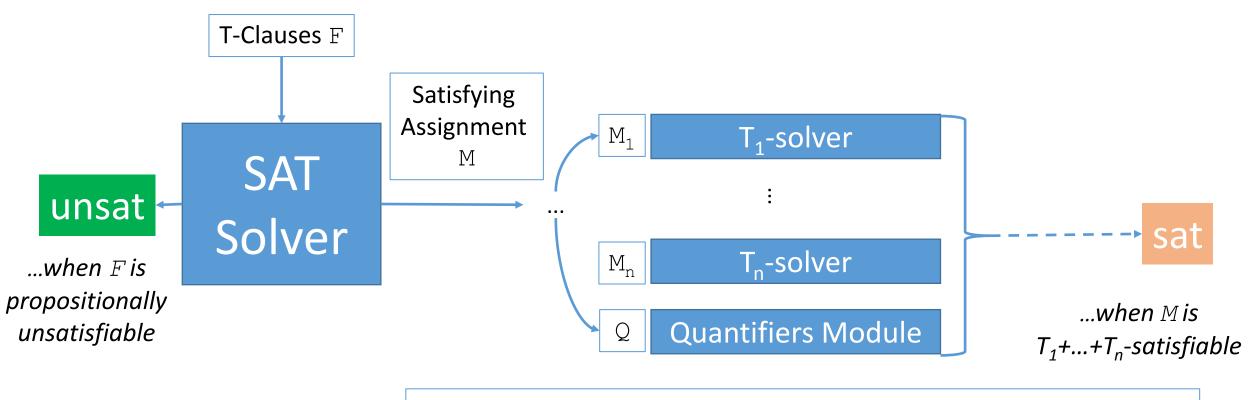
$DPLL(T_1+..+T_n)$: Overview



- \Rightarrow Each of these components may:
- Report M is T-unsatisfiable by reporting conflict clauses
- Report lemmas if they are unsure

[Nieuwenhuis/Oliveras/Tinelli 06]

$DPLL(T_1+..+T_n)$: Overview



 \Rightarrow If no component adds a lemma, then it must be the case that M is $T_1+...+T_n$ -satisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

Common Theories Supported by SMT Solvers

- SMT solvers support:
 - Arbitrary Boolean combinations of ground theory constraints
 - Examples of supported theories:
 - Uninterpreted functions: f (a) =g (b, c)
 - Linear real/integer arithmetic: a≥b+2*c+3
 - Arrays: select (A, i) = select (store (A, i+1, 3), i)
 - BitVectors: bvule(x, #xFF)
 - Algebraic Datatypes: x, y:List; tail(x) = cons(0, y)
 - •
 - ∀ over each of these

Common Theories Supported by SMT Solvers

- SMT solvers support:
 - Arbitrary Boolean combinations of ground theory constraints
 - Examples of supported theories:
 - Uninterpreted functions: ⇒ Congruence Closure [Nieuwenhuis/Oliveras 2005]
 - Linear real/integer arithmetic: ⇒ Simplex [deMoura/Dutertre 2006]
 - Arrays: ⇒ [deMoura/Bjorner 2009]
 - BitVectors: ⇒ Bitblasting, lazy approaches [Bruttomesso et al 2007, Hadarean et al 2014]
 - Algebraic Datatypes: ⇒ [Barrett et al 2007]
 - ...
 - ∀ over each of these

SMT Solvers have Partial Support for ∀

- Satisfiability problem for ∀ is generally undecidable
- Heuristic Techniques for "unsat":
 - E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]
- Limited Techniques have completeness guarantees:
 - Local theory extensions [Sofronie-Stokkermans 2005]
 - Array fragments [Bradley et al 2006, Alberti et al 2014]
 - Complete Instantiation [Ge/de Moura 2009]
 - Finite Model Finding [Reynolds et al 2013]

SMT Solvers have Partial Support for ∀

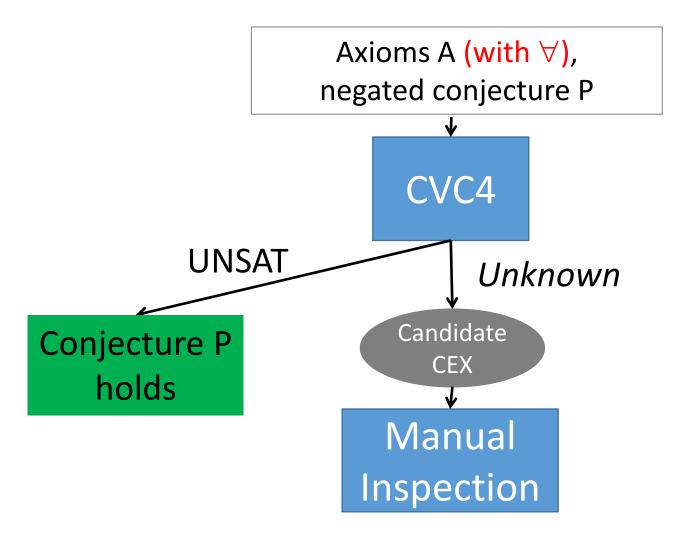
- Satisfiability problem for ∀ is generally undecidable
- Heuristic Techniques for "unsat":
 - E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]
- Limited Techniques have completeness guarantees:
 - Local theory extensions [Sofronie-Stokkermans 2005]
 - Array fragments [Bradley et al 2006, Alberti et al 2014]
 - Complete Instantiation [Ge/de Moura 2009]
 - Finite Model Finding [Reynolds et al 2013]

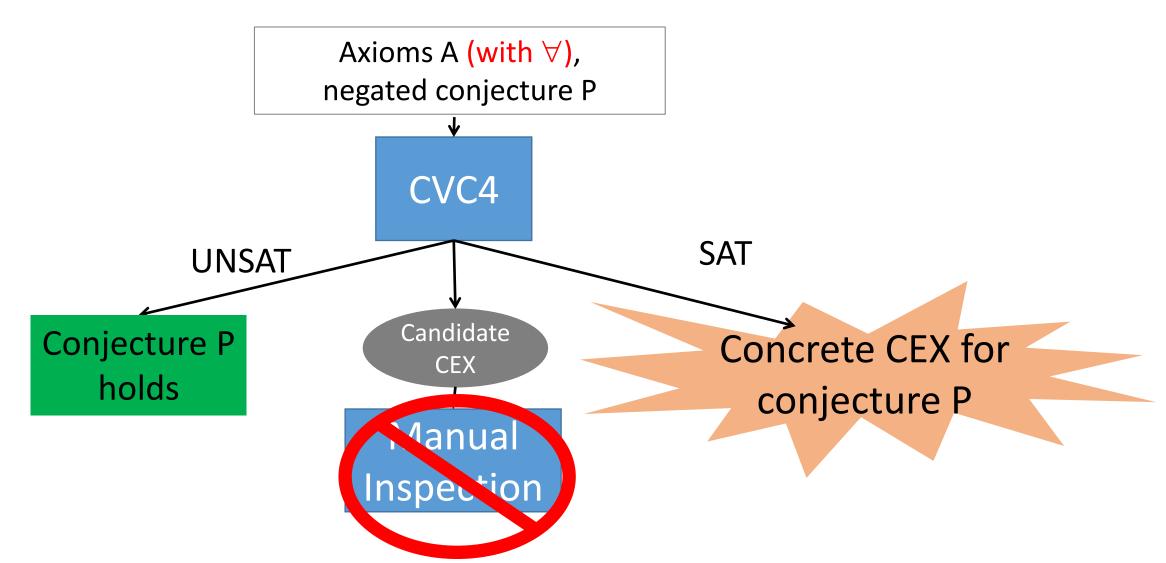
⇒ Focus of next slides

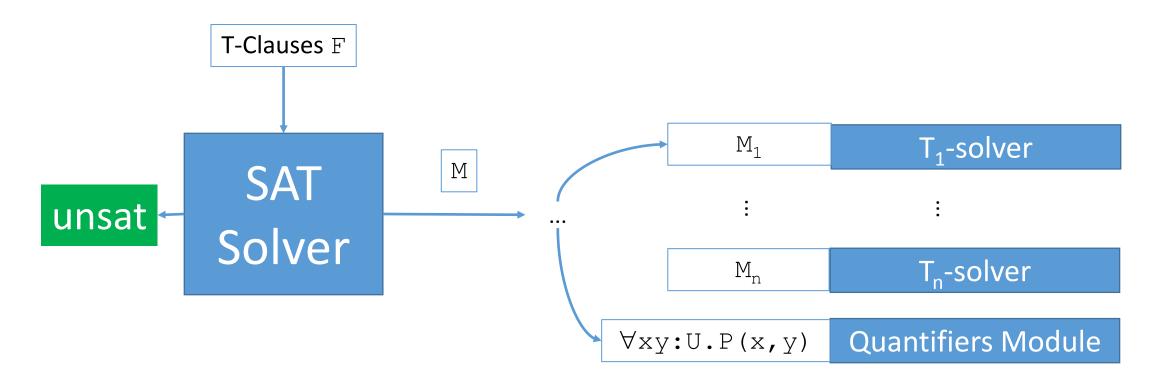
```
List := cons( head : Int, tail : List ) | nil
                                                                                     Signature
\forall x:L.length(x)=ite(is-cons(x),1+length(tail(x)),0)
\forall xy: L.append(x) = ite(is-cons(x), cons(head(x), append(tail(x), y)), y)
                                                                                      Axioms
\forall x: L.rev(x) = ite(is-cons(x), append(rev(tail(x)), cons(head(x), nil), nil)
                                                                                     (Negated)
\exists xy: List.rev(append(x,y)) \neq append(rev(y), rev(x))
                                                                                     conjecture
                                   CVC4
                                 Conjecture
```

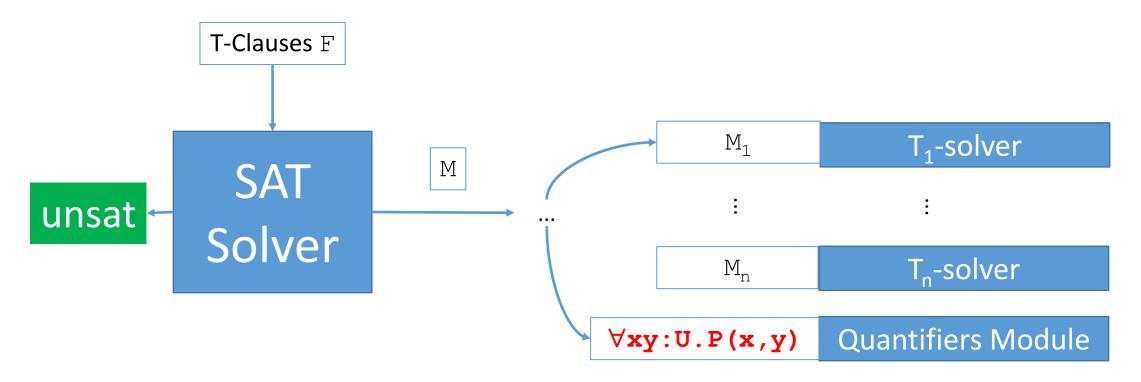
holds

```
List := cons ( head : Int, tail : List ) | nil
                                                                                       Signature
\forall x:L.length(x)=ite(is-cons(x),1+length(tail(x)),0)
\forall xy: L.append(x) = ite(is-cons(x), cons(head(x), append(tail(x), y)), y)
                                                                                        Axioms
\forall x: L.rev(x) = ite(is-cons(x), append(rev(tail(x)), cons(head(x), nil), nil)
                                                                                       (Negated)
\exists xy: List.rev(append(x,y)) \neq append(rev(y), rev(x))
                                                                                       conjecture
                                   CVC4
                                  Conjecture
                                                     ...but what if the conjecture does not hold?
                                     holds
```

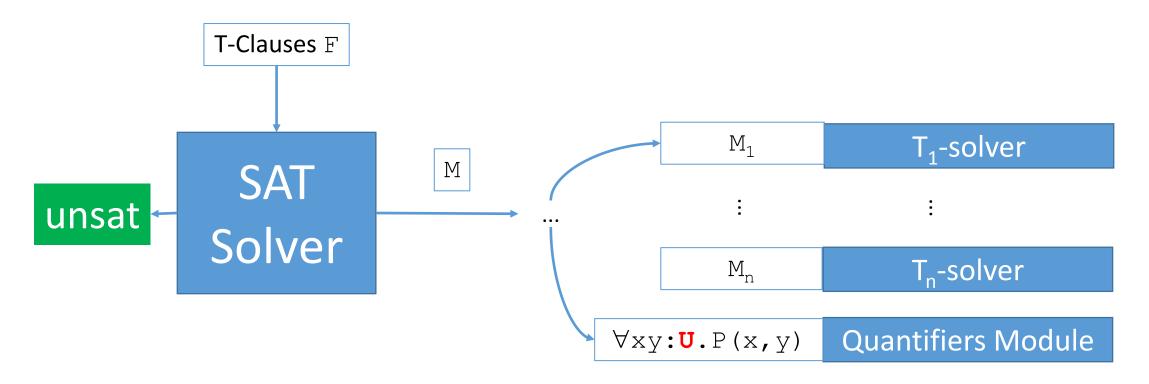




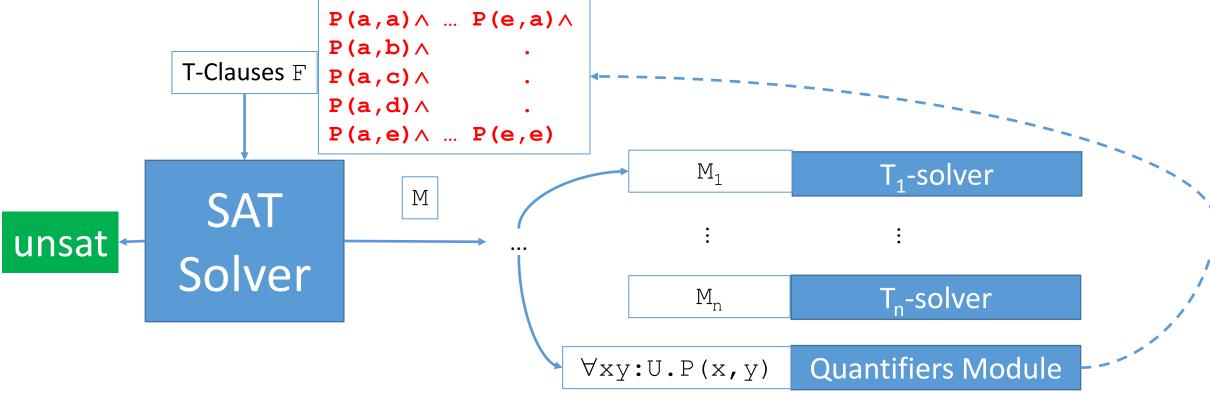




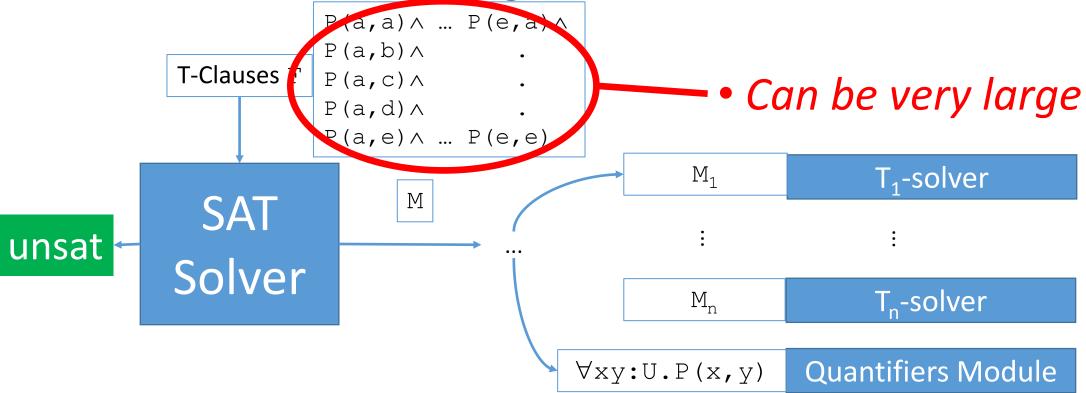
• Given universally quantified formula $\forall xy : U . P(x,y)$



- Given universally quantified formula $\forall xy : U \cdot P(x, y)$
 - If U can be interpreted as finite, e.g. {a,b,c,d,e}:



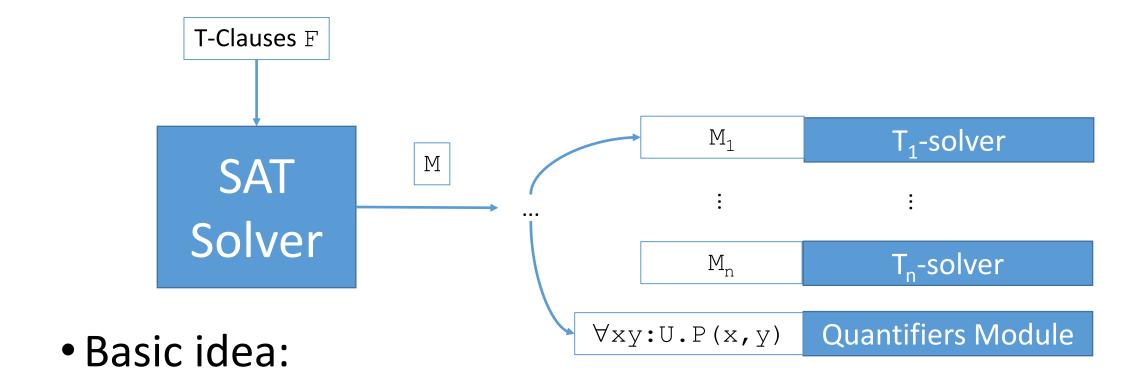
- Given universally quantified formula $\forall xy : U \cdot P(x, y)$
 - If U can be interpreted as finite, e.g. {a,b,c,d,e}:
 - Can be reduced to a finite set of instances

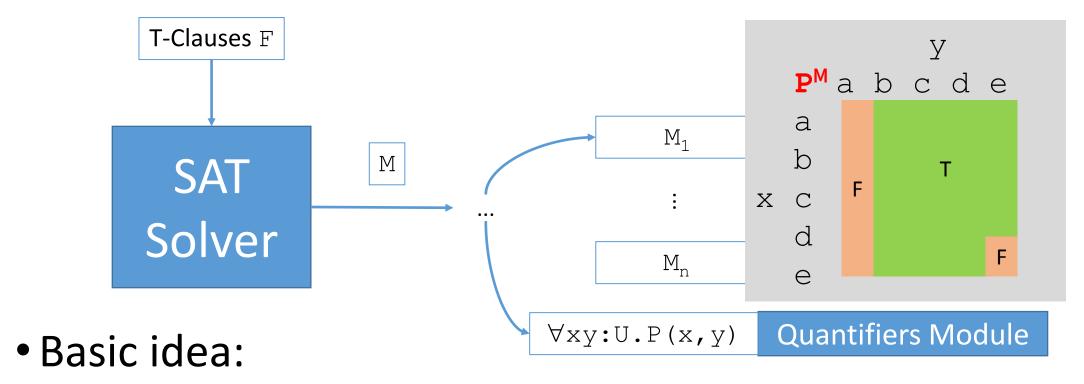


- Given universally quantified formula $\forall xy : U \cdot P(x, y)$
 - If U can be interpreted as finite, e.g. {a,b,c,d,e}:
 - Can be reduced to a finite set of instances

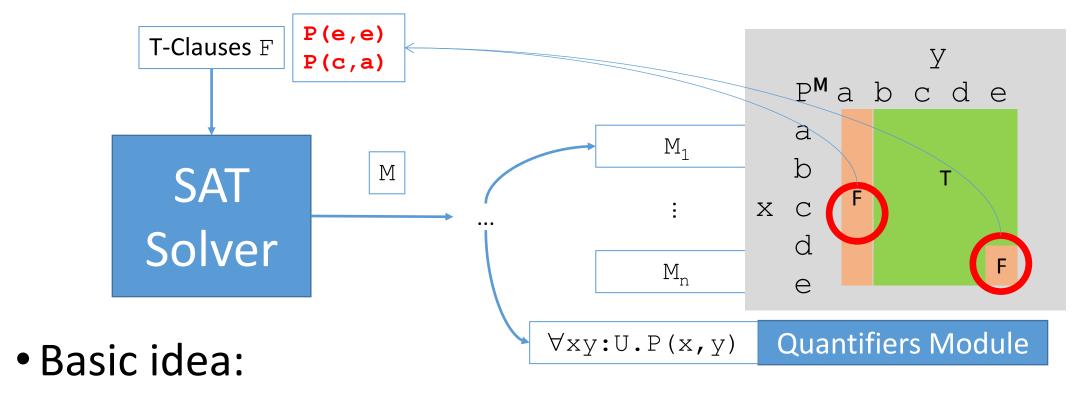
Finite Model Finding in SMT

- Address large # instantiations by:
 - 1. Only add instantiations that refine model [Reynolds et al CADE13]
 - Model-based quantifier instantiation [Ge/deMoura CAV 2009]
 - 2. Minimizing model sizes [Reynolds et al CAV13]
 - ullet Find interpretation that minimizes the #elements in ${\mathbb U}$

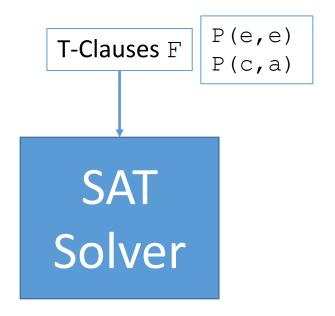




1. Build candidate interpretation M, compute $P^{M}(x, y)$



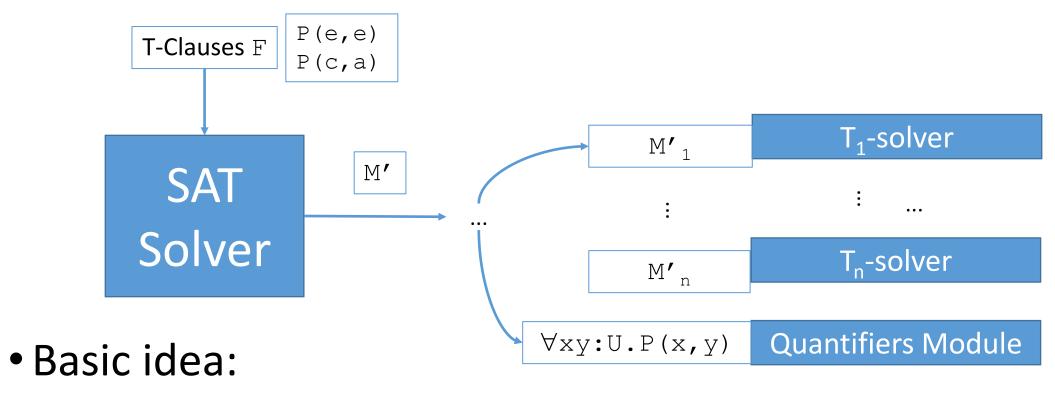
- 1. Build candidate interpretation M, compute $P^{M}(x, y)$
- 2. Add instances (if any) that evaluate to false



- Basic idea:
 - ...and repeat

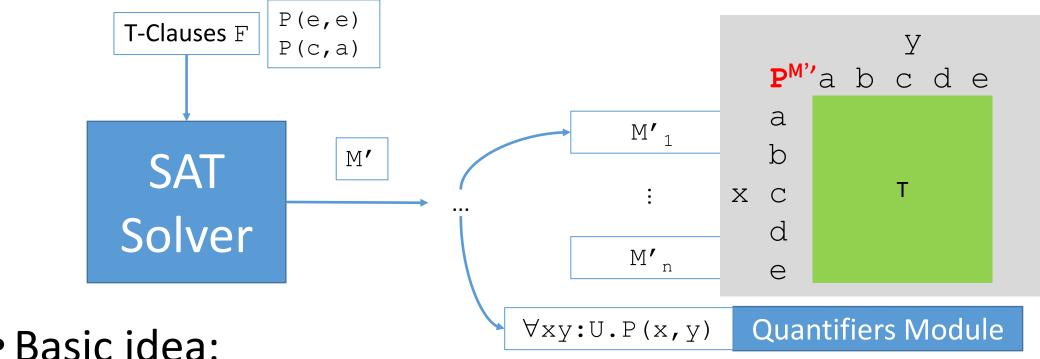
 T_1 -solver : ... T_n -solver Quantifiers Module

Model-Based Quantifier Instantiation



• ...and repeat

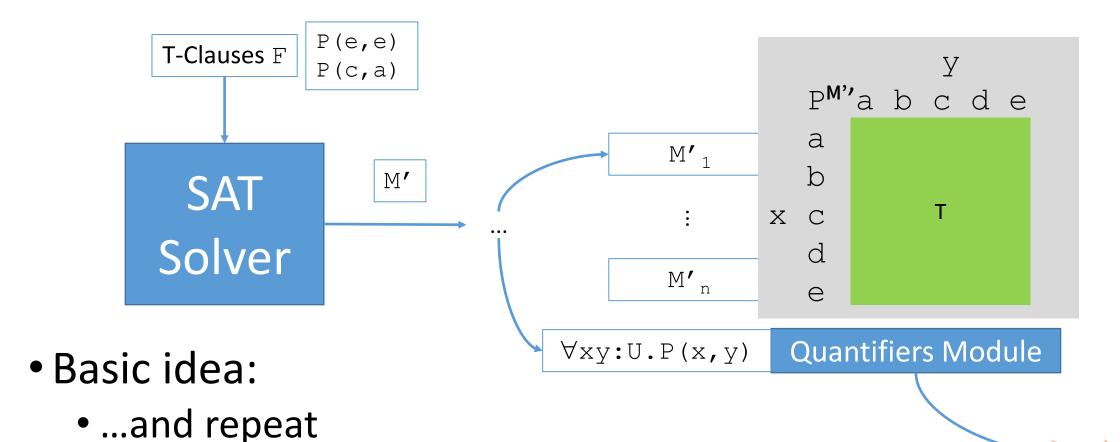
Model-Based Quantifier Instantiation



• Basic idea:

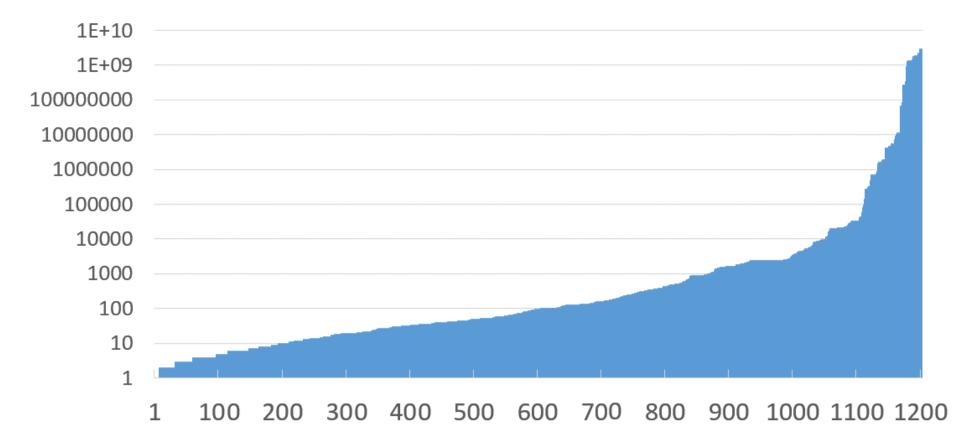
...and repeat

Model-Based Quantifier Instantiation



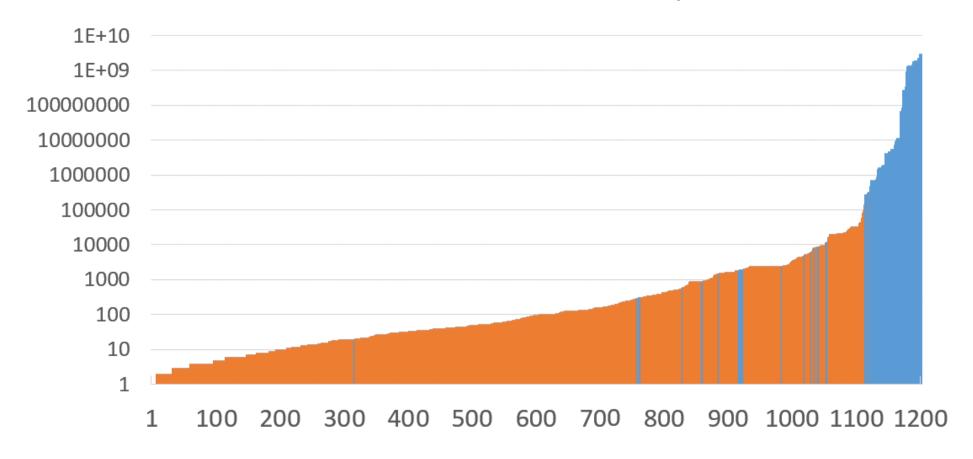
sat < model M '

Model-based Instantiation: Impact



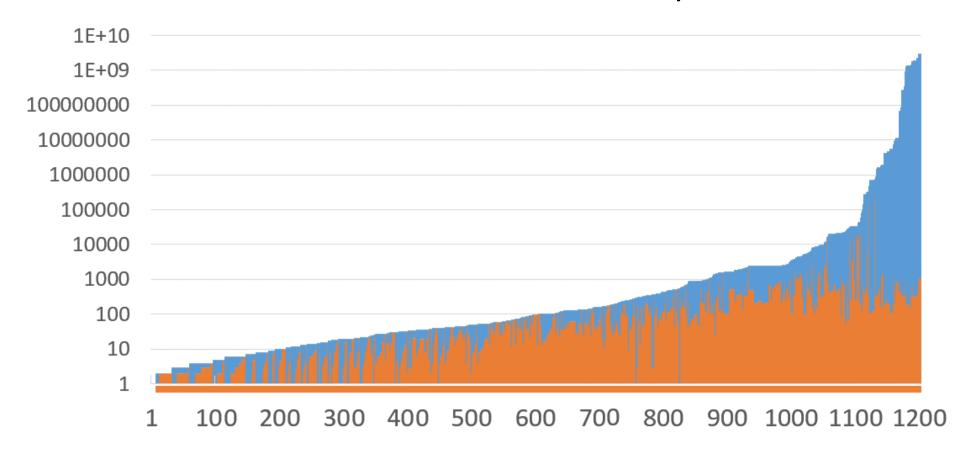
- 1203 satisfiable benchmarks from the TPTP library
 - Graph shows # instances required by exhaustive instantiation
 - E.g. $\forall xyz:U.P(x,y,z)$, if |U|=4, requires $4^3=64$ instances

Model-based Instantiation: Impact



- CVC4 Finite Model Finding + Exhaustive instantiation
 - Scales only up to ~150k instances with a 30 sec timeout

Model-based Instantiation: Impact



- CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]
 - Scales to >2 billion instances with a 30 sec timeout, only adds fraction of possible instances

2. Minimizing Model Sizes

Minimizing Model Sizes

• Finding small models is important (leads to exponentially fewer possible instances of ∀)

To establish T-satisfiability of:

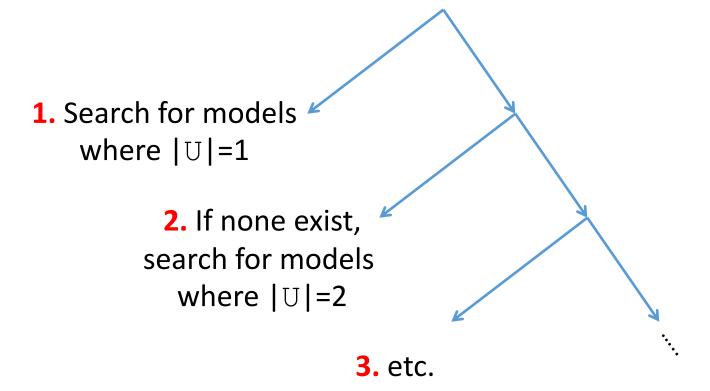
$$G \wedge \forall x : U \cdot P(x)$$

...where G is a set of ground constraints, and U is an uninterpreted sort First, find a model M of G such that $\left|U^{M}\right|$ is minimized

- To minimize |U^M|:
 - Modifications to the DPLL search procedure in the SAT solver
 - Additional theory solver for cardinality constraints

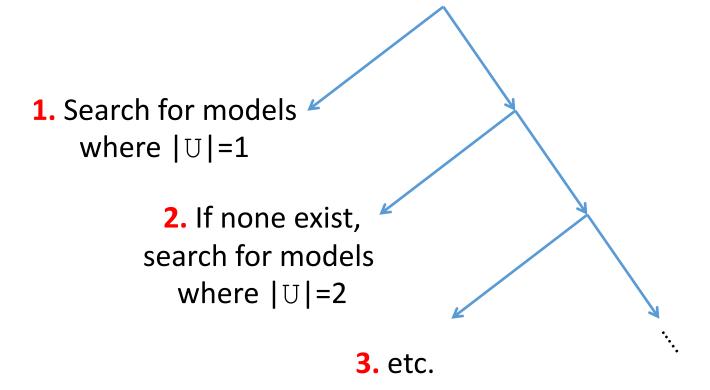
Minimizing Model Sizes

ullet Abstractly, organize DPLL search by fixing the cardinality of ${\mathbb U}$

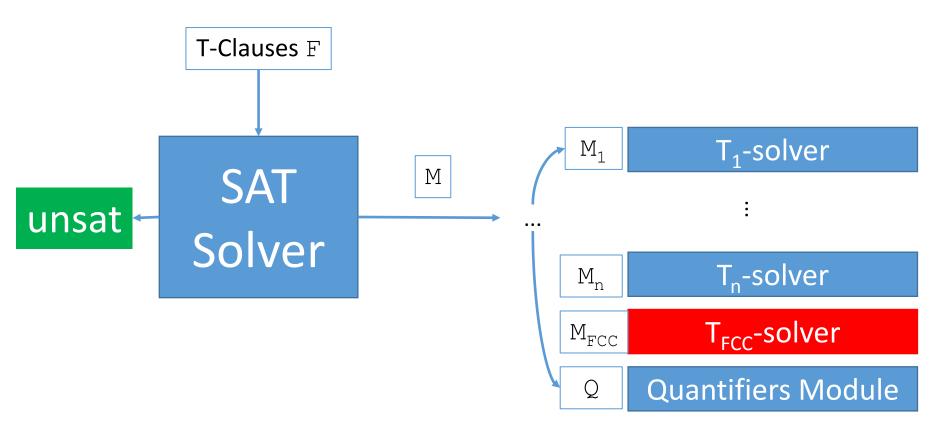


Minimizing Model Sizes

ullet Abstractly, organize DPLL search by fixing the cardinality of ${\mathbb U}$



⇒ Extend the SMT solver with a theory solver for cardinality constraints



- Theory solver for T_{FCC}
 - FCC = finite cardinality constraints

- Theory of finite cardinality constraints T_{FCC}
 - Signature Σ_{FCC} :
 - Predicates $|U| \le k$ for each uninterpreted sort U and positive numeral k

- Theory of finite cardinality constraints T_{FCC}
 - Signature Σ_{FCC} :
 - Predicates $|U| \le k$ for each uninterpreted sort U and positive numeral k

• Examples:

```
a,b,c:U
```

- $a \neq b \land |U| \leq 1$... T_{FCC} -unsatisfiable
- $a \neq b \land a \neq c \land |U| \leq 2$... T_{FCC} -satisfiable (where $b^{M} = c^{M}$)

- Decision procedure for T_{FCC}:
 - Given input G
 - ...where G is a set of equalities and disequalities
 - Consider the disequality graph (V,E) induced by G:
 - Vertices V are equivalence classes
 - Edges E are disequalities

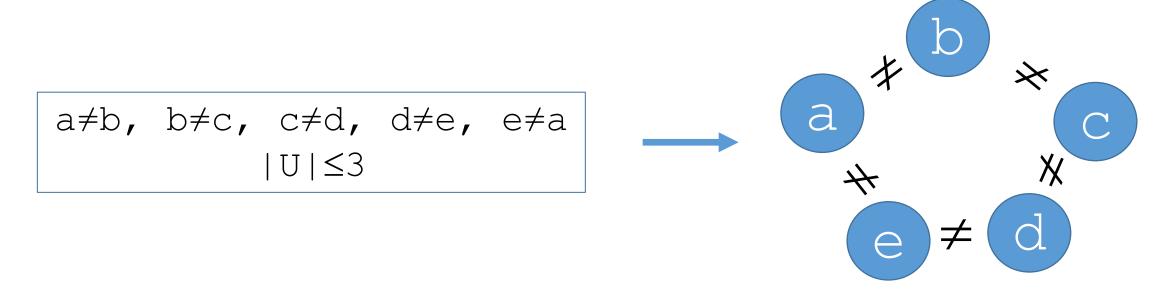
- Decision procedure for T_{FCC}:
 - Given input G

...where G is a set of equalities and disequalities

- Consider the disequality graph (V,E) induced by G:
 - Vertices V are equivalence classes
 - Edges E are disequalities

a
$$\neq$$
b, b \neq c, c \neq d, d \neq e, e \neq a $|U| \leq 3$





a\(\psi b \), \(\begin{aligned} \cdot c \\ |U| \le 3 \\ \end{aligned} \)

• Decision procedure for
$$T_{ECC}$$
:

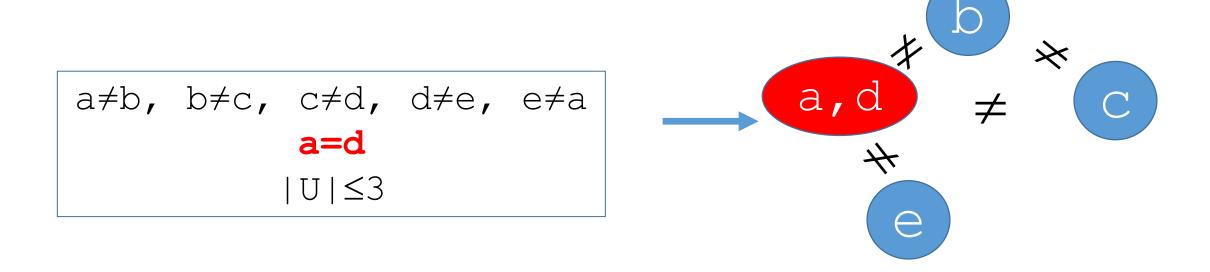
Let k be the smallest k such that $|U| \le k$

- If there is a (k+1)-clique, answer "unsat"
- If there are k or fewer vertices, answer "sat"
- Otherwise, split the problem: $t_1 = t_2 \lor t_1 \neq t_2$ for some vertices t_1 , t_2

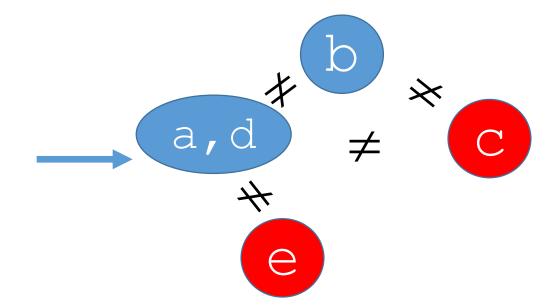
$$a\neq b$$
, $b\neq c$, $c\neq d$, $d\neq e$, $e\neq a$

$$|U|\leq 3$$

Split: a=d ∨ a≠d

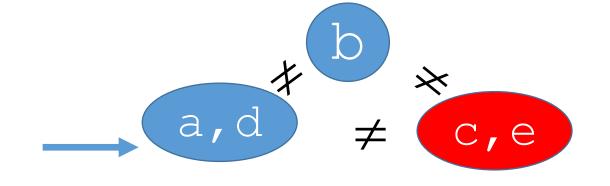


Split: <u>a=d</u> ∨ a≠d



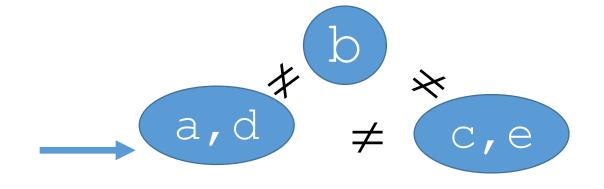
Split: $\underline{a} = \underline{d} \lor a \neq \underline{d}$ Split: $\underline{e} = \underline{c} \lor e \neq \underline{c}$

$$a\neq b$$
, $b\neq c$, $c\neq d$, $d\neq e$, $e\neq a$ $a=d$, $e=c$ $|U|\leq 3$



Split: $\underline{a}=\underline{d} \lor a\neq d$ Split: $\underline{e}=\underline{c} \lor e\neq c$

$$a\neq b$$
, $b\neq c$, $c\neq d$, $d\neq e$, $e\neq a$ $a=d$, $e=c$ $|U|\leq 3$



Split: $\underline{a} = \underline{d} \lor a \neq \underline{d}$

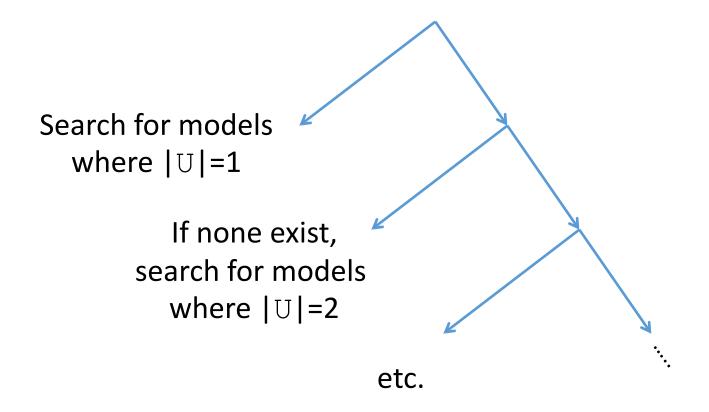
Split: e=c ∨ e≠c

3 equivalence classes ... answer "sat"

- Decision procedure for T_{FCC}
 - Sound, complete and terminating for T_{FCC}-satisfiability
 - Fully integrated into DPLL(T) framework
 - Incremental, generates conflict clauses
 - Incorporates optimizations: [Reynolds et al CAV13]
 - Finds k-cliques (an NP-hard problem) via a fast incomplete check
 - Heuristics for which vertices to split

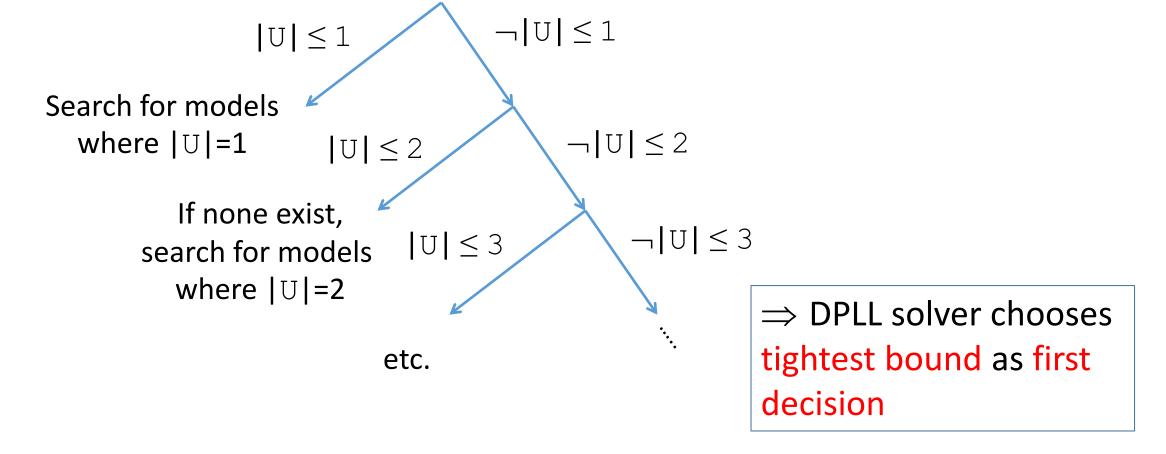
Minimizing Model Sizes with T_{FCC}

• Theory solver for T_{FCC} can be used in part for finding minimal models



Minimizing Model Sizes with T_{FCC}

- Theory solver for T_{FCC} can be used in part for finding minimal models
 - Introduce incremental bounds on cardinality in DPLL search



```
List := cons( head : Int, list : Tail ) | nil
L: "subterm-closed structure" of List

Vx:L.length(x)=ite(is-cons(x),1+length(tail(x)),0)
Vxy:L.append(x,y)=ite(is-cons(x),cons(head(x),append(tail(x),y)),y)
Vx:L.rev(x)=ite(is-cons(x),append(rev(tail(x)),cons(head(x),nil),nil)
...

Axioms

in (Negated)
conjecture
```

```
List := cons ( head : Int, list : Tail ) | nil
                                                                                    Signature
L: "subterm-closed structure" of List
\forall x:L.length(x)=ite(is-cons(x),1+length(tail(x)),0)
\forall xy: L.append(x,y) = ite(is-cons(x), cons(head(x), append(tail(x),y)),y)
                                                                                     Axioms
\forall x: L.rev(x) = ite(is-cons(x), append(rev(tail(x)), cons(head(x), nil), nil)
                                                                                     (Negated)
\exists xy: L. rev(append(x, y)) \neq append(rev(y), rev(x))
                                     \forall xy:L.rev(append(x,y))=append(rev(y),rev(x))
                                                               holds
```

```
List := cons( head : Int, list : Tail ) | nil
L: "subterm-closed structure" of List

Vx:L.length(x)=ite(is-cons(x),1+length(tail(x)),0)
Vxy:L.append(x,y)=ite(is-cons(x),cons(head(x),append(tail(x),y)),y)
Vx:L.rev(x)=ite(is-cons(x),append(rev(tail(x)),cons(head(x),nil),nil))
...

Axioms

(Negated)
conjecture
```

```
List := cons ( head : Int, list : Tail ) | nil
                                                                                     Signature
L: "subterm-closed structure" of List
\forall x:L.length(x)=ite(is-cons(x),1+length(tail(x)),0)
\forall xy: L.append(x,y) = ite(is-cons(x), cons(head(x), append(tail(x),y)),y)
                                                                                      Axioms
\forall x: L.rev(x) = ite(is-cons(x), append(rev(tail(x)), cons(head(x), nil), nil)
                                                                                     (Negated)
\exists xy : L . rev(append(x,y)) \neq append(rev(x), rev(y))
                                                                                     conjecture
                        CVC4
```

Counterexample M:

```
\mathbf{M}(\mathbf{x}) = \mathbf{cons}(0, \mathbf{nil})
```

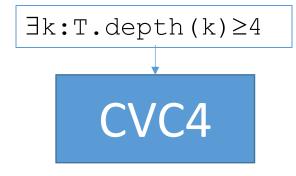
M (y) = cons(1, nil)

```
rev(append(cons(0,nil),cons(1,nil))) = cons(1,cons(0,nil)) \neq cons(0,cons(1,nil)) = append(rev(x),rev(y))
```

Finding Minimal Counterexamples: Challenge

```
Tree := node( left : Tree, data : Int, right : Tree ) | leaf
T: "subterm-closed structure" of Tree
```

```
\forall x: T. depth(x) = ite(is-node(x), 1+max(depth(left(x)), depth(right(x))), 0)
```



• Find a tree with depth at least 4

Finding Minimal Counterexamples: Challenge

```
Tree := node( left : Tree, data : Int, right : Tree ) | leaf
T: "subterm-closed structure" of Tree
```

```
\forall x: T. depth(x) = ite(is-node(x), 1+max(depth(left(x)), depth(right(x))), 0)
```

 $\exists \mathbf{k} : T. depth(\mathbf{k}) \geq 4$

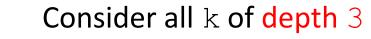
• Find a tree with depth at least 4

Consider all k of depth 0

Consider all k of depth 1

Consider all k of depth 2

Combinatorial explosion ⇒solver is slow!



Finding Minimal Counterexamples: Challenge

```
Tree := node( left : Tree, data : Int, right : Tree ) | leaf
T: "subterm-closed structure" of Tree
```

```
\forall x:T.depth(x)=ite(is-node(x),1=max(depth(left(x)),depth(right(x))),0)
```

 $\exists \mathbf{k} : T. depth(\mathbf{k}) \geq 4$

• Find a tree with depth at least 4

```
is-node(k)
    is-node(left(k)))

is-node(left(left(k))))

is-node(left(left(k))))
CEX
```

Finding (Non-Minimal) CEX: Challenge

```
List := cons( head : Int, list : Tail ) | nil
L: "subterm-closed structure" of List
```

```
\forall x: L.all-pos(x) = ite(is-cons(x), head(x)>0 \land all-pos(tail(x)), true)
```

 $\exists k: L. is-cons(k) \land all-pos(k)$

Find a non-empty list of positive integers

Finding (Non-Minimal) CEX: Challenge

```
List := cons( head : Int, list : Tail ) | nil
L: "subterm-closed structure" of List
```

```
\forall x: L.all-pos(x) = ite(is-cons(x), head(x)>0 \land all-pos(tail(x)), true)
```

```
\exists k:L.is-cons(k) \land all-pos(k)
```

• Find a non-empty list of positive integers

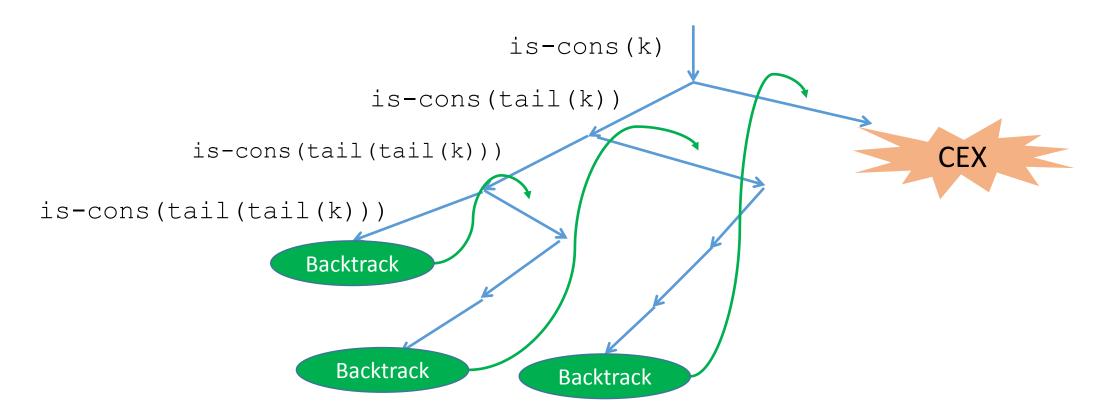
```
is-cons(k)
is-cons(tail(k))

is-cons(tail(tail(k)))

is-cons(tail(tail(k))))
...
```

Search is unfair \Rightarrow solver is non-terminating!

Branch and Bound: Hybrid Approach?



Guide search so that eventually it will consider small models
 ⇒ In development

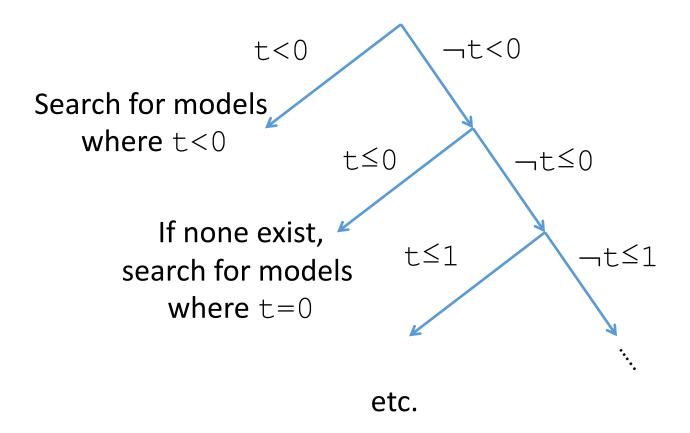
Branch and Bound: Use Cases

- Similar approach can be used for:
 - 1. ∀ bounded by symbolic numeric (integer) range
 - 2. \forall bounded by set membership
 - 3. Model finding for theory of strings + length
 - 4. Syntax-Guided Synthesis

Use case #1: Bounded Integer ∀

Variant: Bounded Integer ∀

• $\forall x:Int. 0 \le x < t \Rightarrow P(x)$



⇒ Incrementally bound the value of term t

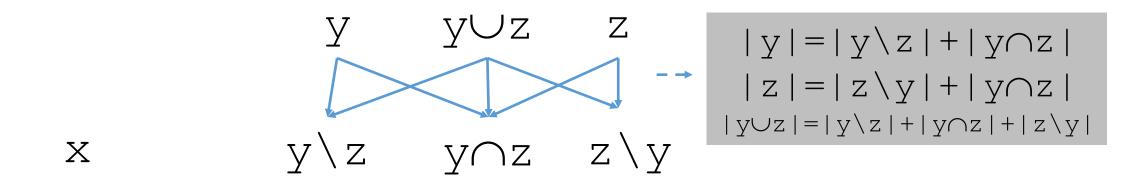
Use case #2: Sets + Cardinality

- ullet Parametric theory of finite sets of elements oxdot
- Signature Σ_{Set} :
 - Empty set \emptyset , Singleton {a}
 - Membership ∈: E x Set → Bool
 - Subset ⊆: Set x Set → Bool
 - Set connectives ∪, ∩,\:Set x Set → Set
- Example input: $x=y \cap z \land a+5 \in x \land y \subseteq w$
- Applications in programming languages, e.g. Alloy

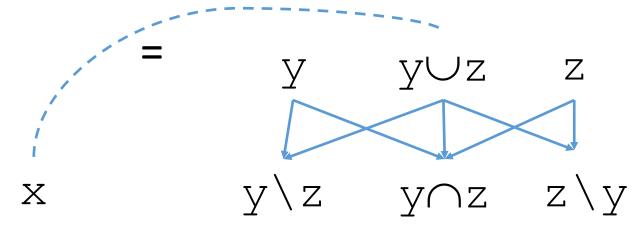
- Recently:
 - Extended signature of theory to include:
 - Cardinality |.|: Set → Int
 - Extended decision procedure for cardinality constraints
 - Fully integrated component in DPLL(T) [Bansal et al IJCAR2016]

• Example input: $x=y \cup z \land |x|=14 \land |y| \ge |z|+5$

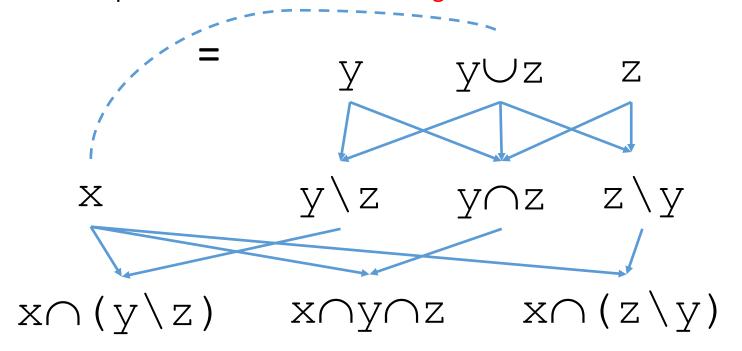
- Decision procedure builds cardinality graph where
 - Cardinality of leaves are disjoint sum of parents



- Decision procedure builds cardinality graph where
 - Cardinality of leaves are disjoint sum of parents
 - Equalities between sets



- Decision procedure builds cardinality graph where
 - Cardinality of leaves are disjoint sum of parents
 - Equalities between sets → merge leaves



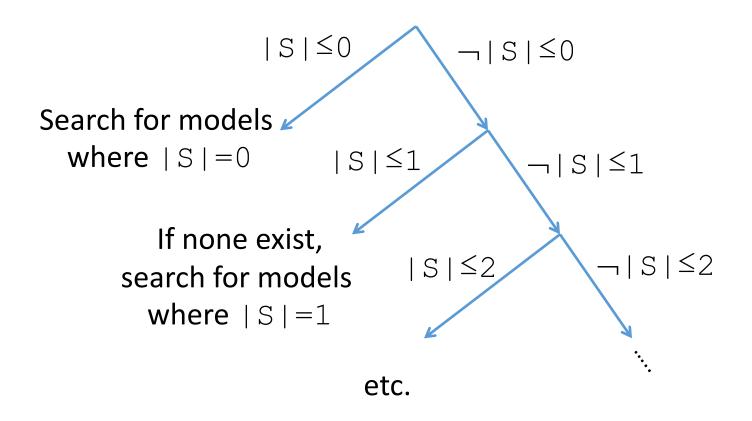
$$x=y \cup z \Rightarrow$$

$$|x|=|x \cap (y \setminus z)|+$$

$$|x \cap y \cap z|+|x \cap (z \setminus y)|$$

Branch and Bound: Set Membership ∀

• $\forall x: Int.x \in S \Rightarrow P(x)$



⇒ Make use of native set
cardinality operator
|.|:Set→Int

Set Membership ∀

• Increased power to encode:

$$\forall x.x \in S \Rightarrow P(x) \land |S| \ge k$$
 ... Pholds for at least k points $\forall x.x \in S \Rightarrow x < 10$... All elements of S are < 10 $\forall xy.x \in S \land y \in T \Rightarrow x < y$... All elements of S are < those in T

Use case #3: Theory of Strings

Theory of Strings + Length

- Signature $\Sigma_{\rm S}$:
 - Constants from a fixed finite alphabet e.g. "a", "ab", ...
 - String concatenation _ · _ : Str × Str → Str
 - Length len(_): Str → Int
 - Extended functions str.substr, str.contains, str.to.int, int.to.str, str.replace, str.indexof
- Example input:

```
len(x) > len(y) \land str.contains(y, "ab")
```

Theory of Strings + Length: Models

```
char buff[15];
                                                                              (declare-const input String)
char pass;
                                                                              (declare-const buff String)
cout << "Enter the password :";
                                                                              (declare-const pass0 String)
                                                    Encode
                                                                              (declare-const rest String)
gets(buff);
                                                                              (declare-const pass1 String)
if (regex match(buff, std::regex("([A-Z]+)") )) {
                                                                              (assert (= (str.len buff) 15))
  if(strcmp(buff, "PASSWORD")) {
                                                                              (assert (= (str.len pass1) 1))
     cout << "Wrong Password":
                                                                              (assert (or (< (str.len input) 15)
  } else {
                                                                                (= input (str.++ buff pass0 rest)))
     cout << "Correct Password":
                                                                              (assert (str.in.re buff
                                                                                       (re.+ (re.range "A" "Z"))))
     pass = 'Y':
                                                                              (assert (ite (= buff "PASSWORD")
                                                                                        (= pass1 "Y")
  if(pass == 'Y') {
                                                                                        (= pass1 pass0)))
     /* Grant the root permission*/
                                                                              (assert (not (= buff "PASSWORD")))
                                                                              (assert (= pass1 "Y"))
         iliang@milner:~/workspace/security/benchmarks/homemade$ ~/CVC4/bin/pt-cvc4 propsalex.smt2
        sat
        (define-fun input () String "AAAAAAAAAAAAAAY")
        (define-fun buff () String "AAAAAAAAAAAAAA")
        (define-fun pass0 () String "Y")
        (define-fun rest () String "")
        (define-fun pass1 () String "Y")
```

(set-logic QF_S)

Models may correspond to security vulnerabilities

Theory of Strings + Length

- Theoretical complexity of:
 - Word equation problem is in PSPACE
 - ...with length constraints is OPEN
 - ...with extended functions is UNDECIDABLE
- Instead, focus on:
 - Solver that is efficient in practice
 - Often, for applications like symbolic execution, able to find models

Theory of Strings + Length

F-Unify
$$\frac{\mathsf{F}\, s = (w,u,u_1) \quad \mathsf{F}\, t = (w,v,v_1) \quad s \approx t \in \mathcal{C}(\mathsf{S}) \quad \mathsf{S} \models \mathsf{len}\, u \approx \mathsf{len}\, v}{\mathsf{S} := \mathsf{S}, u \approx v}$$

$$\mathsf{F}\, s = (w,u,u_1) \quad \mathsf{F}\, t = (w,v,v_1) \quad s \approx t \in \mathcal{C}(\mathsf{S}) \quad \mathsf{S} \models \mathsf{len}\, u \not\approx \mathsf{len}\, v$$

$$\mathsf{F}\text{-Split} \frac{u \notin \mathcal{V}(v_1) \quad v \notin \mathcal{V}(u_1)}{\mathsf{S} := \mathsf{S}, u \approx \mathsf{con}(v,z) \quad \| \quad \mathsf{S} := \mathsf{S}, v \approx \mathsf{con}(u,z)}$$

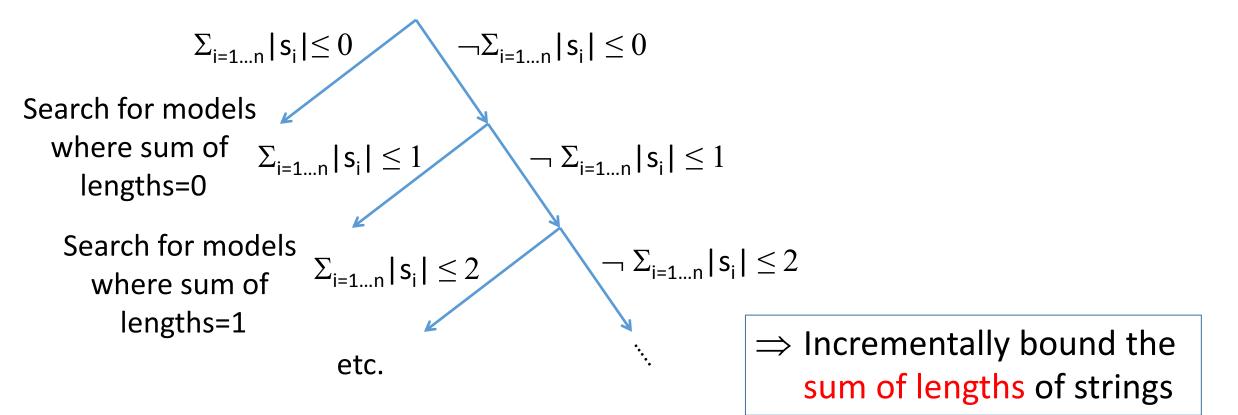
$$\mathsf{F}\text{-Loop} \frac{\mathsf{F}\, s = (w,x,u_1) \quad \mathsf{F}\, t = (w,v,v_1,x,v_2) \quad s \approx t \in \mathcal{C}(\mathsf{S}) \quad x \notin \mathcal{V}((v,v_1))}{\mathsf{S} := \mathsf{S}, \, x \approx \mathsf{con}(z_2,z), \, \mathsf{con}(v,v_1) \approx \mathsf{con}(z_2,z_1), \, \mathsf{con}(u_1) \approx \mathsf{con}(z_1,z_2,v_2)}$$

$$\mathsf{R} := \mathsf{R}, z \text{ in star}(\mathsf{set}\, \mathsf{con}(z_1,z_2)) \quad \mathsf{C} := \mathsf{C}, t$$

- Rule-based algebraic calculus [Liang et al 2014]:
 - Handled unbounded strings
 - E.g. HAMPI [Kiezun et al 2009] reduces to fixed-width Bit Vectors
 - Refutation-sound and model-sound, e.g. "unsat" and "sat" can be trusted
 - Refutation-incomplete, not guaranteed to terminate for "unsat"
 - Finite-model complete
 - ...assuming a branch and bound strategy

Branch and Bound: Theory of Strings + Length

• Given input F[s₁,...,s_n] for strings s₁...s_n:



Use case #4: Syntax-Guided Synthesis

```
∃f:Prog.∀i.S(f,i)
```

• Interested in synthesis conjectures of the above form:

```
There exists a program f,
...such that for all inputs i,
...a (universal) specification S (f, i) holds
```

- Problem is UNDECIDABLE
 - Involves second-order \forall on f, universal \forall on i

```
\exists f: Prog. \forall i.S(f,i)

P = ite(C,P,P) | + (P,P) | - (P,P) | 0 | 1 | i

C = \geq (P,P) | = (P,P) | not(C)
```

- Problem is UNDECIDABLE
 - Involves second-order \forall on f, universal \forall on i
- A way to simplify the problem is to restrict the space of solutions
 - Solutions belong to a grammar P specifying syntax for f

$$\exists f: P. \forall i. S_{P}(f, i)$$

$$P = ite(C, P, P) | + (P, P) | - (P, P) | 0 | 1 | i$$

$$C = \ge (P, P) | = (P, P) | not(C)$$

- Problem is UNDECIDABLE
 - Involves second-order \forall on f, universal \forall on i
- A way to simplify the problem is to restrict the space of solutions
 - Solutions belong to a grammar P specifying syntax for f
- Grammar P can be seen in SMT as an inductive datatype
 - Use deep embedding into specification S_p , solve for f as P [Reynolds et al CAV15]

```
\exists f: P. \forall i. S_{P}(f, i)
P = ite(C, P, P) |+(P, P) |-(P, P) |0|1|i
C = \geq (P, P) |=(P, P) |not(C)
```

Consider solutions (naively) by enumeration:

```
\begin{array}{lll} f^{\text{M}} = 0 & \text{check } \forall \text{i.} S_{\text{P}}(\text{0,i}) \\ f^{\text{M}} = 1 & \text{check } \forall \text{i.} S_{\text{P}}(\text{1,i}) \\ f^{\text{M}} = \dots & \dots & \dots \\ f^{\text{M}} = 1 + 1 & \text{check } \forall \text{i.} S_{\text{P}}(\text{1+1,i}) \\ f^{\text{M}} = \text{i+1} & \text{check } \forall \text{i.} S_{\text{P}}(\text{i+1,i}) \\ f^{\text{M}} = \dots & \dots & \dots \\ f^{\text{M}} = \text{ite}\left(\geq(\text{i,0}),\text{i,0}\right) & \text{check } \forall \text{i.} S_{\text{P}}(\text{ite}\left(\geq(\text{i,0}),\text{i,0}\right),\text{i}\right) \end{array}
```

• In practice, guided via CE-guided inductive synthesis loop [Solar-Lezama 2013]

```
\exists f: P. \forall i. S_{P}(f, i)
P = ite(C, P, P) |+(P, P) |-(P, P) |0|1|i
C = \ge (P, P) |=(P, P) |not(C)
```

Consider solutions (naively) by enumeration:

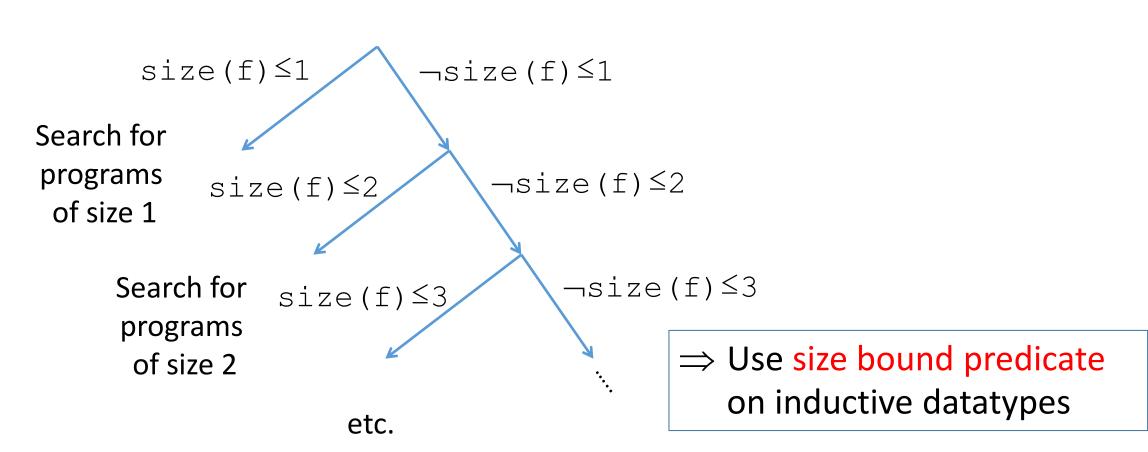
```
\begin{array}{lll} f^{\text{M}} = 0 & \text{check } \forall \text{i.} S_{\text{P}}(0,\text{i}) \\ f^{\text{M}} = 1 & \text{check } \forall \text{i.} S_{\text{P}}(1,\text{i}) \\ f^{\text{M}} = \dots & \dots & \dots \\ f^{\text{M}} = 1 + 1 & \text{check } \forall \text{i.} S_{\text{P}}(1 + 1,\text{i}) \\ f^{\text{M}} = \text{i} + 1 & \text{check } \forall \text{i.} S_{\text{P}}(\text{i} + 1,\text{i}) \\ f^{\text{M}} = \dots & \dots & \dots \\ f^{\text{M}} = \text{ite} (\geq (\text{i},0),\text{i},0) & \text{check } \forall \text{i.} S_{\text{P}}(\text{ite} (\geq (\text{i},0),\text{i},0),\text{i}) \end{array}
```

- In practice, guided via CE-guided inductive synthesis loop [Solar-Lezama 2013]
 - ⇒ Finite-model completeness if we consider smaller solutions before larger ones

- To enumerate smaller solutions before larger ones:
 - Introduce notion of term size of datatype (# constructor applications), e.g.:
 - size(i)=1
 - size(i+1) = 3
 - size(ite($i \ge 0$, i, i+1))=8
- Extend theory of datatypes with size bound predicates:
 - size(t)≤k
 - ...where t is a datatype term and numeral k
 - Decision procedure extends to predicates of this form

Branch and Bound: Syntax-Guided Synthesis

• ∃f:P.∀i.S(f,i)



Each of these variants:

- Modify DPLL search
 - ...to minimize some (numeric) quantity:
 - Finite model finding: cardinality of sorts
 - Bounded integer ∀: value of numeric bounds
 - Bounded set membership: cardinality of sets
 - Strings: sum of lengths
 - Syntax-guided synthesis: term size
- Have similar challenges/tradeoffs for strategies:
 - Minimal ⇒ finite-model complete, slow
 - Non-minimal \Rightarrow incomplete, can be fast

Current Trends in SMT

- Incorporation of many new theories:
 - Strings and regular expressions
 - Floating point
 - Sets with cardinality constraints
 - Finite Relations
 - ...
- Increased support for ∀
- New solving algorithms
 - Natural domain SMT, mcSat [Jovanovic/deMoura 2013]
- Some work on Optimization Modulo Theories

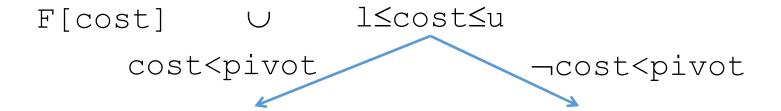
- Some SMT solvers support optimization queries:
 - vZ (extension of Z3) [Bjorner/Phan 2014]
 - OptiMathSAT (extension of MathSat) [Sebastiani/Tomasi 2014]

F[cost] ∪ l≤cost≤u

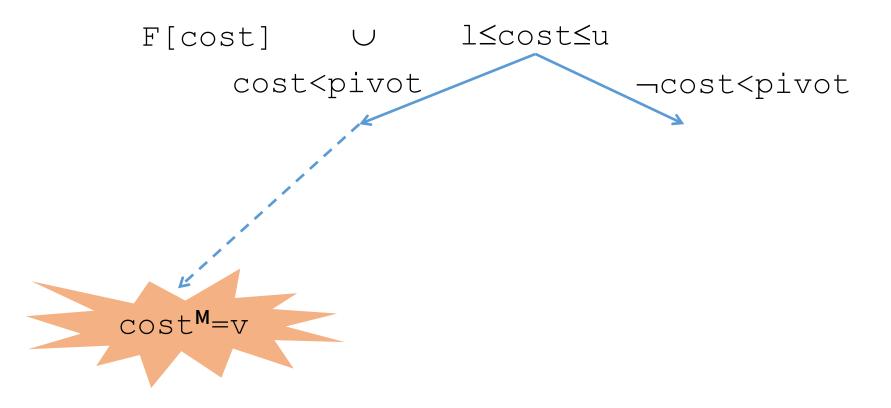
- Given input F [cost] where l≤cost≤u,
 - Find model that minimizes cost

F[cost] ∪ l≤cost≤u

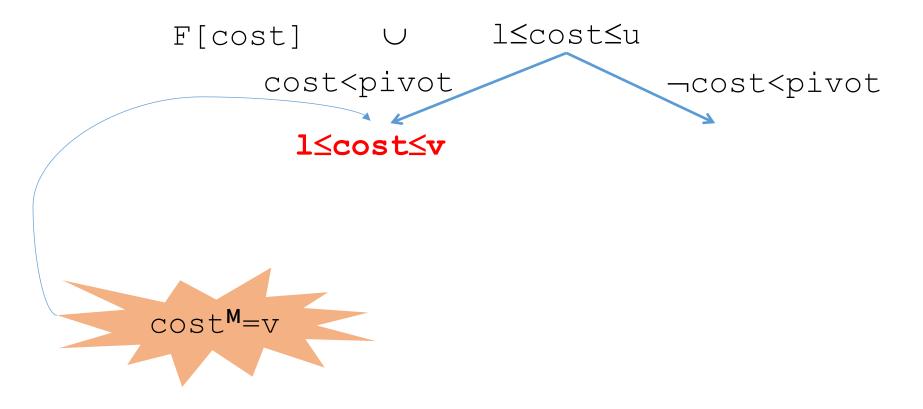
return cost=1
...if l=u



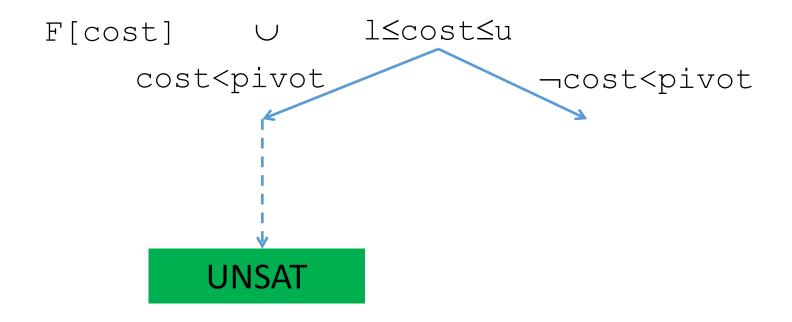
• Otherwise, split on pivot for some 1<pivot<u</pre>



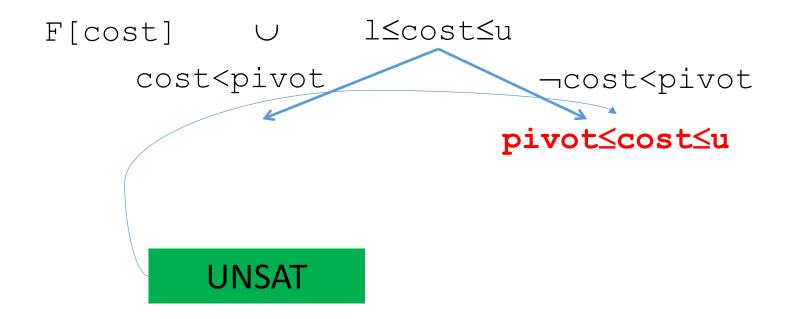
• If we find model where $cost^{M}=v$, update upper bound



• If we find model where $cost^{M}=v$, update upper bound



• If no model found, update lower bound



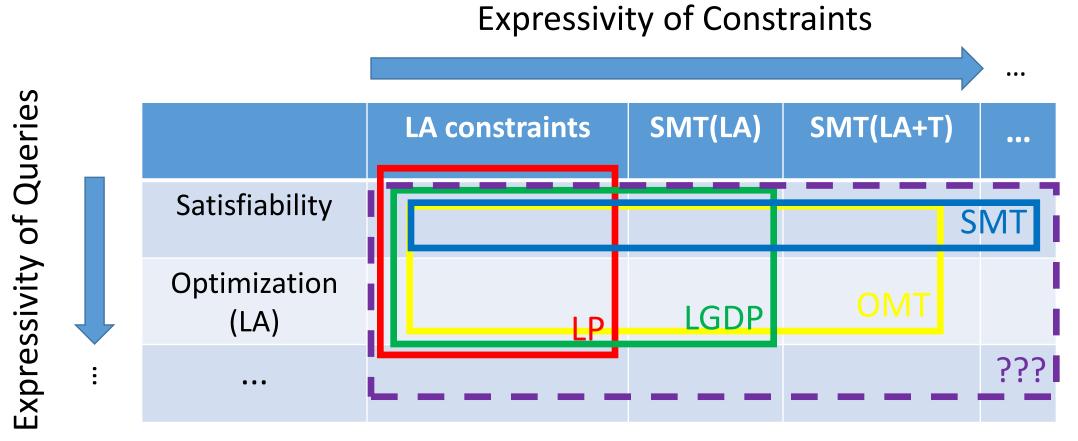
• If no model found, update lower bound

- Similarly, uses branch and bound to minimize cost
 - Modify the behavior of the DPLL search
- Improvements:
 - Use LP solvers to minimize size of cost in models
 - Use conflict analysis to terminate when "unsat" does not depend on cost

Future Work

Expressivity of Constraints Expressivity of Queries SMT(LA) SMT(LA+T) **LA constraints** ••• Satisfiability **SMT** Optimization **LGDP** e.g. CVC4 (LA) ... e.g. OptiMathSat

Future Work



⇒Extensions of optimization queries for rich set of theories supported by SMT solvers

Summary

- SMT solvers + DPLL(T) used in many applications
- Can be modified to support model finding and optimization
 - Extensions of theories, e.g. native support for cardinality
 - Modifications to decision heuristics in SAT solver

Thanks for listening!

- SMT Solver CVC4:
 - Open source, available at http://cvc4.cs.nyu.edu/downloads/
 - Supports many theories:
 - UF, Linear arithmetic, Arrays, Strings, Sets, ...
 - and techniques mentioned in this talk:
 - Finite model finding, syntax-guided synthesis, etc.

