
CVC3 Proof Conversion to LFSC

Andrew Reynolds
Cesare Tinelli
Aaron Stump

The University of Iowa

Liana Hadarean
Yeting Ge

Clark Barrett
New York University

1 Introduction

This technical report gives definitions for conversion methods for proofs gen-
erated by the SMT solver Cvc3, into a format readable by the proof checker
LFSC. We will discuss proofs in the quantifier-free linear real arithmetic logic
(QF LRA) of SMT.

LFSC (“Logical Framework with Side Conditions”) is a proof checker based
on the Edinburgh Logical Framework (LF), a high-level declarative language in
which logics (understood as inference systems over a certain language of formu-
las) can be specified. LFSC increases LF’s flexibility by including support for
computational side conditions on inference rules. These conditions, expressed
in a small functional programming language, enable some parts of a proof to be
established by computation.

In this work, proofs in the LFSC calculus were translated from proofs pro-
duced by Cvc3 in its own calculus. Since Cvc3’s proof-generation facility is
deeply embedded in the system’s code, a translation module was added to Cvc3
that traverses the internal data structure storing the proof, and produces an
LFSC proof from it. This translation module consisted of three translation
strategies (which we will call Lit, Lib, LibA), varying in the degree of computa-
tional side conditions in which they incorporate.

The core of this document will be devoted to a formal definition of these
translations.

Document outline. Section 2 introduces necessary definitions, including QF LRA
terminology and a definition of a proof datatype. Section 3 describes a high level
view of the three translation methods from Cvc3 to LFSC proofs. Section 4 gives
an overview of the proof calculi on which these translations operate.

A technical description of three Cvc3 to LFSC proof translations is provided
in Sections 5-7. Section 5 describes the Lit translation that remains mostly
faithful to the structure of the original Cvc3 proof. Section 6 and 7 describe
two alternate translations (Lib and LibA) that attempt to compact portions of
the Cvc3 proof into computational side conditions.

Section 8 details the compression we achieve when converting to proof rules
in a proof calculus involving computational side conditions.

2 Preliminaries

2.1 LRA Terms

Define rational constants c and terms t to be of the following format:

c ::= n1 | n1

n2

t ::= c | v | t1 + t2 | t1 − t2 | c · t1 | t1 · c | ite(ϕ, t1, t2)

where n1 is an integer numeral, n2 is a non-zero integer numeral, and v is a

2.2 QF LRA Formulas

The following is a describes the format for all QF LRA formulas used by Cvc3.
We will refer to formulas ϕa as theory atoms.

ϕa ::= t1 = t2 | t1 > t2 | t1 ≥ t2 | t1 6= t2 | t1 < t2 | t1 ≤ t2
ϕ ::= ϕa | ⊥ | > | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2 | ite(ϕ,ϕ1, ϕ2)

We will write ∼ to denote an element of {=, >,≥, 6=, <,≤}, � will denote an
element of {≥, >}, and ≺ will denote an element of {≤, <}. When ∼ is =, >,≥
, 6=, <,≤, we will write � to denote 6=,≤, <,=,≥, > respectively, and write ∼↓
to denote =, >,≥, 6=, >,≥ respectively. We will also write (∼1 · ∼2) to denote
the resulting relation according to the lra add rules (or their unnormalized
equivalents) in the L calculus for ∼1 and ∼2. For example (> · >) is > and
(= · ≥) is ≥.

2.3 Proofs

Formally introduce a proof datatype P as a triple, containing a set of subproofs,
rule instance, and conclusion formula. We say that P : Γ ` ϕ iff
(1) P is one of:

({}, assert , ϕ), where ϕ ∈ Γ, or
({P1, . . . Pn}, r, ϕ)

(2) Pi : Γi ` ϕi for all i, for some ϕi and Γi,
(3) applying r to ϕ1 . . . ϕn produces ϕ

For a proof P to be well-formed, we also require a legal choice of Γ according
to what is specified by rule r. We will write proofs P graphically as the following,
where P1 . . . Pn are the proofs of the premises of P :

P1 : Γ1 ` ϕ1 . . . Pn : Γn ` ϕn

P : Γ ` ϕ r

We will omit annotations (P :) for unnamed subproofs and write P : ϕ as
shorthand for P : Γ ` ϕ when Γ is understood or is not important.

2

2.4 Polynomials

In order to efficiently manipulate linear real arithmetic terms, LFSC will operate
terms that are normalized to a linear polynomial form. A linear polynomial
is of the form (c1 · v1 + . . . + cn · vn) + c, where each ci is a rational constant,
each vi is a real variable. We will write the symbol p (possibly with subscripts)
to denote such polynomials. Furthermore, we will refer to polynomial atoms
of the form p ∼ 0, denoting a formula whose left hand side is an instance of a
polynomial.

We will write e↓ to denote the result of normalizing the expression e to a
polynomial. In the case of normalization occurring in the conclusion of a proof
rule, this normalization is done by the rule’s side condition, which is left implicit
to keep the notation uncluttered.

3 Proof Generation

Proofs in our LFSC calculus for LRA are generated from proofs produced by
Cvc3 in its own calculus. We will refer to the former calculus as L and the latter
as C.

Cvc3 Proof structure Roughly speaking, Cvc3’s proofs have a two-tiered
structure, typical of solvers based on the DPLL(T) architecture [?], with a
propositional skeleton filled with several theory-specific subproofs. The conclu-
sion is reached by means of propositional or purely equational inferences applied
to a set of input formula and a set of theory lemmas. The latter are disjunctions
of arithmetic atoms deduced from no assumptions, mostly using proof rules
specific to the theory in question—the theory of real arithmetic in this case.

In order to experiment with the declarative/computational continuum, we
implemented three different translations from Cvc3 proofs, differing in how close
they are to the original proof. We refer to these as the literal, the liberal and the
aggressively liberal translation, and name them Lit, Lib, and LibA, respectively.

Literal translation. In the literal translation, Lit, an LFSC proof is produced
directly from Cvc3’s proof, using whenever possible L rules that mirror the
corresponding C rules, and resorting to additional L-specific rules only for those
few C rules that cannot be checked by simple pattern matching (but require, for
instance, to verify that a certain expression in the C rule is a normalized version
of another).

Liberal translation. In the liberal translation Lib, the Cvc3 proof is used
as a guide to produce a compact proof that relies on rules with side conditions
specific to L—that is, not encoding a rule of C. The use of side conditions enables
compaction that is otherwise infeasible due to the declarative nature of rules
in the C calculus. In Lib, the subproofs of all theory lemmas are systematically
converted to more compact proofs that use L-specific rules; the rest of the Cvc3
proof is translated as in the literal translation.

Aggressively Liberal translation. The LibA translation is identical to Lib
except that it tries to compact also parts of the proof that rely on generic

3

ϕ1 ⇔ ϕ2 ϕ2 ⇔ ϕ3

ϕ1 ⇔ ϕ3
iff trans

ϕ1 ϕ1 ⇔ ϕ2

ϕ2
iff mp

t1 = t2 t3 = t4
t1 ∼ t3 ⇔ t2 ∼ t4

congr 1
t1 = t2 t2 = t3

t1 = t3
eq trans

t1 = t2 t3 = t4
t1 ./ t3 = t2 ./ t4

congr 2
t1 = t2
t2 = t1

eq symm

t1 > t2 t2 > t3
t1 > t3

gt trans
t1 > t2 t2 > t1

⊥
gt acyc

{0 � c}
(0 ∼ c)⇔ ⊥

const pred 1
t1 ∼ t2 ⇔ 0 ∼ t2 − t1

right minus left

{t′ canonical form of t}
t = t′

canon
{c non-negative}

t1 ∼ t2 ⇔ c · t1 ∼ c · t2
mult pred

t1 > t2 ⇔ t2 < t1
flip ineq

t1 ∼ t2 ⇔ t1 + t3 ∼ t2 + t3
plus pred

Figure 1: Some of Cvc3’s proof rules for QF LRA.

equality reasoning (for instance, applications of congruence rules), again by us-
ing L-specific rules. This translation uses an adaptive strategy to switch from
L-specific equality rules to C-like equality rules and back, making heuristic deci-
sions on when it is worthwhile to do so. We will see that this switching requires
some additional overhead.

4 The Cvc3 and LFSC Calculi for LRA

4.1 The C Calculus

Although implemented in Cvc3 as a sequent calculus, the fragment of Cvc3’s
proof system for QF LRA can be described mathematically as a natural deduc-
tion calculus. A proof in the C calculus derives a quantifier-free formula ϕ from
a set of assumed LRA formulas Γ, all of which are also quantifier-free.

A sample of Cvc3’s rules is provided in Figure 1.1 Most of the rules are
fairly standard and self-explanatory, with the possible exception of canon, which
asserts an equality between a term t and its equivalent canonical form produced
by Cvc3’s canonizer module. As a whole, these rules are used to represent a
trace of the reasoning used by Cvc3’s decision procedure for QF LRA.

Although the C calculus itself is quite general, all Cvc3 proofs in it are
refutations, that is, they prove ⊥ from a set of assumptions Γ, where Γ is a
subset of the formulas whose joint satisfiability Cvc3 was asked to check.

4

p = 0

(c · p)↓ = 0
lra mult c=

p > 0 {c > 0}
(c · p)↓ > 0

lra mult c>

p1 = 0 p2 ∼ 0

(p1 + p2)↓ ∼ 0
lra add=∼

p1 ∼ 0 p2 = 0

(p1 − p2)↓ ∼ 0
lra sub∼=

{c ∼ 0}
c ∼ 0 lra axiom∼

p ∼ 0 {p � 0}
⊥ lra contra∼

p ≥ 0 p′ ≥ 0 {p+ p′ = 0}
p = 0

lra≥≥to=

Figure 2: Some of the polynomial rules of L.

4.2 The L Calculus

The LFSC calculus for L can be described as a proper superset of C. For the
purposes of optimization, both liberal translations use rules to convert arith-
metic terms—denoted by the letter t in the rules—to polynomials—denoted by
p. 2

A further set of rules operate only on polynomial atoms and are used by
the liberal translations to generate proofs of LRA lemmas. A sample of these
rules is provided in Figure 2. 3 To ease formatting, side conditions are written
together with the premises, but enclosed in braces. Although side conditions use
the same syntax used in the sequents, they should be read as a mathematical
notation. For example, p = 0 in a premise denotes an atomic formula whose
left-hand side is an arbitrary polynomial and whose right-hand side is the 0
polynomial; in contrast, the side condition {p+ p′ = 0}, say, denotes the result
of checking whether the expression p+ p′ evaluates to 0 in the polynomial ring
Q[X], where Q is the field of rational numbers and X the set of all variables (or
“free constants” in SMT-LIB parlance).

In the following sections, we use the terminology C proof to refer to a proof
whose rule r belongs to the C calculus, and similarly for L proof. Note we do
not impose restrictions on the types of subproofs in the proof datatype.

5 Literal Conversion

Translation TLit Define a proof translation operator TLit : P→P from C
proofs to L proofs. This translation is faithful, that is to say:

Lemma 1 If P : Γ ` ϕ, then TLit(P) : Γ ` ϕ.

Although faithful with respect to what is proven, in some cases, TLit may
change the concrete syntax of proofs, including rule names, as well as structural

1A more extensive set of rules is provided in the appendix. Note the complete proof system
is a lot bigger because it supports a much larger logic than QF LRA.

2These conversion rules can be found in Appendix B.7.
3A complete set of L-specific rules is provided in the appendix.

5

details that come as consequence of our LFSC implementation. In this section,
we will discuss such exceptions for TLit(P).

5.1 Canon

Cvc3 proofs include a variety of canonize rules (including canon mult, canon plus,
canon invert divide), all of which can be summarized by the canon rule. Say
that P is a proof of the following form:

{t′ canonical form of t}
P : t = t′

canon

Instead of explicitly modeling the Cvc3 canonizer in LFSC, we define TLit(P) as
the following:

P ′1 : t = p P ′2 : t′ = p′ {(p− p′)↓ = 0}
TLit(P) : t = t′

canon

This is to say, we first normalize both t and t′ to their polynomial form using
proofs P ′1 and P ′2, and use a computational side condition to verify that p− p′
normalizes to the constant polynomial 0.

5.2 rewrite and, rewrite or

Cvc3 uses the coarse grained rules rewrite and, and rewrite or to deal with
associativity of conjunctions and disjunctions respectively. We will discuss
rewrite and in this section, noting that rewrite or is translated analogously.
Say P is a proof of the following form:

{ϕ′ canonical form of ϕ}
P : ϕ⇔ ϕ′

rewrite and

where ϕ is ϕ1∧ . . .∧ϕn with an arbitrary parenthesization, and ϕ′ is equivalent
to ϕ with a different parenthesization, canonized according to Cvc3.

The corresponding rule in LFSC is very similar. Instead of modeling the
Cvc3 canonizer, we use a side condition to compute ϕ′. We define TLit(P) to
be the following, where ϕ ↓ represents the result of reassociating ϕ according to
the LFSC side condition “normalize and”:

{ϕ ↓= ϕ′}
TLit(P) : ϕ⇔ ϕ′

rewrite and

Since we were unable to fully simulate the canonize method used by Cvc3,
there are cases in which we must accept an instance of this rule as an axiom.

6

5.3 cycleConflict

The coarse grained Cvc3 rule cycleConflict takes a variable number of premise
inequalities which are jointly unsatisfiable. Say P is a proof of the following
form:

P1 : t1 ≺1 t
′
1 . . . Pn : tn ≺n t

′
n

⊥ cycleConflict

where (t1 ≺1 t
′
1) ∧ . . . ∧ (tn ≺n t

′
n)⇒ ⊥. 4

To prove these premises to be unsatisfiable, we will first normalize all premises
to polynomial form (using a polynomial normalization operator Tp that will be
defined in Section 6.1) and sum them to obtain an inconsistent polynomial
equation.

Since the LFSC framework does not support type definitions taking a vari-
able number of arguments, we cascade a chain of corresponding polynomial
addition operations. We define TLit(P) as the following:

P ′1 : p1 �1 0 P ′2 : p2 �2 0

(p1 + p2)↓ �′2 0
lra add�1�2

... P ′n : pn �n 0

(p1 + . . .+ pn)↓ �′n−1 0
lra add�′n−1�n

TLit(P) : ⊥
lra contra�′n

where P ′i = Tp(TLit(Pi)), �′1 is �1, and �′i is (�′i−1 · �i) for i > 1.

We claim that the resultant summation (p1 + . . .+ pn)↓ �′n−1 0 is indeed a
contradiction. As a consequence of footnote 4, we have that (p1 + . . .+ pn)↓ =
(t2 − t1) + (t3 − t2) + . . . (t1 − tn))↓ = 0, and �′n−1 is >, giving us 0 > 0, a
contradiction.

Note that because cycleConflict is coarse grained, requires a fairly lengthy
corresponding proof in LFSC. However, note that the overhead incurred for this
rule by the literal translation will be comparable to the overhead incurred by
the liberal translations Lib and LibA.

5.4 optimized subst op

= Case Say P is a proof of the following form:

P1 : t1 = s1 . . . Pn : tn = sn
P : t = t[s1/t1 . . . sn/tn]

optimized subst op1

Here, proof P has n subproofs of equalities ti = si. The rule optimized subst op1

will replace si for ti within the right hand side of the conclusion. The conclu-
sion is described in general terms, although the location of replacements si/ti

4More precisely, we have that t1 ≺1 t′1 = t2 ≺2 t′2 = . . . = tn ≺n t′n = t1, where at least
one of �1 . . . ≺n is <.

7

is restricted and occurs in only one location per pair of terms. Additionally, t
is either (1) an ite expression or (2) an expression of the form t1 .// tn,
where ./∈ {+,−, ·}.

In the case when t is an ite expression, we make use of the following two
rules:

ite(ψ1, t
′, t1) = ite(ψ2, t

′, s1) t2 = s2

ite(ψ1, t2, t1) = ite(ψ2, s2, s1)
ite t1oso1

ite(ψ1, t1, t
′) = ite(ψ2, s1, t

′) t2 = s2

ite(ψ1, t1, t2) = ite(ψ2, s1, s2)
ite t2oso1

We cascade (up to two) applications of these rules, and overall define TLit(P)
as the following:

ite(ψ, t, t′) = ite(ψ, t, t′)
refl

TLit(P1) : t1 = s1

ite(ψ, t1, t
′) = ite(ψ, s1, t

′)
1

TLit(P2) : t2 = s2

TLit(P) : ite(ψ, t1, t2) = ite(ψ, s1, s2)
2

where 1 is ite t1oso1 and 2 is ite t2oso1.

Otherwise, when t is an expression of the form t1 .// tn, we define
TLit(P) as the following:

TLit(P1) : t1 = s1 TLit(P1) : t2 = s2
t1 ./ t2 = s1 ./ s2

1

... TLit(Pn) : tn = sn

TLit(P) : t1 .// tn = s1 .// sn
1

where 1 is basic subst op1.

⇔ Case Say P is a proof of the following form:

P1 : ϕ1 ⇔ ψ1 . . . Pn : ϕn ⇔ ψn

P : ϕ⇔ ϕ[ψ1/ϕ1, . . . , ψn/ϕn]
optimized subst op2

Similarly to the previous section, ϕ is either (1) an ite expression, or (2) a
formula of the form ϕ1� . . .�ϕn where � ∈ {∧,∨,⇔}.

In the first case, when ϕ is an ite formula, we use the following two rules:

ite(ψ,ϕ′, ϕ1)⇔ ite(ψ′, ϕ′, ψ1) ϕ2 ⇔ ψ2

ite(ψ,ϕ2, ϕ1)⇔ ite(ψ′, ψ2, ψ1)
ite ϕ1oso1

ite(ψ,ϕ1, ϕ
′)⇔ ite(ψ′, ψ1, ϕ

′) ϕ2 ⇔ ψ2

ite(ψ,ϕ1, ϕ2)⇔ ite(ψ′, ψ1, ψ2)
ite ϕ2oso1

8

We cascade (up to two) applications of these rules, and overall define TLit(P)
as the following:

ite(ψ,ϕ, ϕ′)⇔ ite(ψ,ϕ, ϕ′)
refl

TLit(P1) : ϕ1 ⇔ ψ1

ite(ψ,ϕ1, ϕ
′)⇔ ite(ψ,ψ1, ϕ

′)
1

TLit(P2) : ϕ2 ⇔ ψ2

TLit(P) : ite(ψ,ϕ1, ϕ2)⇔ ite(ψ,ψ1, ψ2)
2

where 1 is ite ϕ1oso1 and 2 is ite ϕ2oso1.

Otherwise, when t is an expression of the form ϕ1� . . .�ϕn, we will define
TLit(P) as the following:

TLit(P1) : ϕ1 ⇔ ψ1 TLit(P2) : ϕ2 ⇔ ψ2

ϕ1�ϕ2 ⇔ ψ1�ψ2
1

... TLit(Pn) : ϕn ⇔ ψn

TLit(P) : ϕ1� . . .�ϕn ⇔ ψ1� . . .�ψn
1

where 1 is basic subst op2.

5.5 Default Case

In all other cases for which P is of the following form:

P1 : ϕ1 . . . Pn : ϕn

P : ϕ
r

We define TLit(P) as the proof:

TLit(P1) : ϕ1 . . . TLit(Pn) : ϕn

TLit(P) : ϕ
r’

where r′ is the corresponding rule name for r in the LFSC signature.

6 Aggressive Liberal Conversion

In this section we will define the aggressive liberal translation TLibA. This trans-
lation will be defined in terms of four operators, the first being the literal trans-
lation TLit as defined in Section 5. The second, Tp will be our method of conclud-
ing normalized polynomial formulas from term formulas. The third, T will refer
to proof compression technique involving proofs about normalized polynomials.
The fourth, T−1p will be a method of constructing TLit proofs from polynomial
proofs.

9

6.1 Polynomial Normalization Operator Tp

For each theory atom ϕ proven by the Cvc3 proof, we will associate a unique
polynomial atom p ∼ 0 such that p ∼ 0 is logically equivalent to ϕ, that is,
p ∼ 0 is true in exactly the same valuations in which ϕ is. For example, for the
equality atom 2x = 2y, this polynomial is (2x− 2y)↓ = 0.

For a theory atom (or negation thereof) ϕ, we will denote its polynomial
equivalent with the notation ϕp. This correspondence is defined as follows:

(t1 ∼ t2)p := (t1 − t2)↓ ∼ 0 for ∼ ∈ {=,≥, >}
(t1 ∼ t2)p := (t2 − t1)↓ ∼↓ 0 for ∼ ∈ {6=,≤, <}
(¬(t1 ∼ t2))p := (t1 � t2)p

(¬¬ϕ)p := ϕp

Lemma 2
If ϕp ::= p ∼ 0, then (¬ϕ)p ::= (−p)↓(�)↓0.

Lemma 3
ϕp ↔ ϕ.

We claim that by using the poly norm proof rules used in the L calculus as
well as rules for eliminating negations from theory literals, we can define a proof
translation function Tp : P→P from L proofs to L proofs such that:
Lemma 4

If P : Γ ` ϕ and ϕp is defined, then Tp(P) : Γ ` ϕp.

The precise defintion of Tp and proof of Lemma 4 is omitted here. The gen-
eral idea is that we apply normalization inductively over the structure of terms
(using rules in Section B.7) until we are able to apply a equation normalization
rule (defined in Section B.8) to convert our statement involving terms to one
involving polynomials.

6.2 Polynomial Operator T

Define a proof translation operator T : Plra →P from theory reasoning C proofs
5 to L proofs. This translation is performed incrementally and bottom-up over
the structure of the Cvc3 proof, where applications of rules in C are translated
to applications of corresponding rules for polynomials in L. The translation will
rely on the following invariant:
Invariant 1
(a) For all theory reasoning C proofs P : Γ ` ϕ where ϕp is defined:

(i) T (P) : Γ ` ϕp.
(b) For all theory reasoning C proofs P : Γ ` ϕ1 ⇔ ϕ2, there is a constant c s.t.:

(i) T (P) : Γ ` (c · p1 − p2)↓ = 0,
(ii) ϕp

1 ::= (p1 ∼ 0),
(iii) ϕp

2 ::= (p2 ∼ 0),
(iv) c > 0 (if ∼ is > or ≥), c 6= 0 otherwise.

(c) For all theory reasoning C proofs P : Γ ` ϕ⇔ > where ϕp is defined:
(i) T (P) : Γ ` ϕp.

(d) For all theory reasoning C proofs P : Γ ` ϕ⇔ ⊥ where ϕp is defined:

5A proof P : ϕ is a theory reasoning C proof if and only if Invariant 1 is defined for P , and
all premise subproofs of P are also theory reasoning C proofs.

10

(i) T (P) : Γ ` (¬ϕ)p.
(e) For all theory reasoning C proofs P : Γ ` ⊥:

(i) T (P) : Γ ` ⊥.

Our definition of Invariant 1 is slightly simplified here for the purposes of
clarity. There are specific instances in which our corresponding proof T (P) may
prove something strictly stronger than what is specified by Invariant 1. Such
cases come as a consequence of a sixth case of Invariant 1 that is defined for
proofs of the form P : Γ ` ϕ1 ⇒ ϕ2, which is not mentioned here.

Note that Invariant 1 covers all cases of our definition of T , due to the
following lemma:
Lemma 5

If T (P) is defined, then Invariant 1 holds for P .

All translated proofs T (P) are at least as strong as the original proof P , due
to the following theorem:

Theorem 1 If P : Γ ` ϕ and T (P) : Γ ` p ∼ 0, then p ∼ 0 implies ϕ.

Proof The proof is constructive and follows from each case of Invariant 1. In
Section 6.3, we will define a translation T−1p , such that whenever P : Γ ` ϕ and
T (P) : Γ ` p ∼ 0, we have that T−1p (T (P)) : Γ ` ϕ. This will suffice as a proof
of Theorem 1, under the assumption that our L calculus is sound. �

We will now give a formal definition of all theory reasoning proof rules han-
dled by our translation function T , and show that Invariant 1 is locally main-
tained in each case.

6.2.1 Assertions

Say proof P is an assertion of the assumption ϕ, for some ϕ ∈ Γ. We claim that
all Cvc3 assertions ϕ in the QF LRA logic are such that ϕp is defined. In this
case, we define T (P) = Tp(P ′), where P ′ is the corresponding assertion of ϕ in
the L calculus. Furthermore, since ϕp is defined, by Lemma 4, we have that
T (P) : Γ ` ϕp, and thus Invariant 1(a) holds for P .

6.2.2 iff trans

> Case Consider when P is a proof of the following form:

P1 : ϕ1 ⇔ ϕ2 P2 : ϕ2 ⇔ >
P : ϕ1 ⇔ >

iff trans

By assumption of Invariant 1(b) for P1, we have that T (P1) : (c·p1−p2)↓ = 0,
where ϕp

1 ::= (p1 ∼ 0) and ϕp
2 ::= (p2 ∼ 0). Note that property (iv) of Invariant

1(b) guarantees that a multiplication of an equation of the form p ∼ 0 by the
constant 1

c is legal. Assume Invariant 1(c) holds for P2. The following defines
the transformed proof T (P):

11

T (P1) : (c · p1 − p2)↓ = 0 T (P2) : (p2 ∼ 0)

(c · p1 − p2 + p2)↓ ∼ 0
lra add=∼

(1
c · (c · p1 − p2 + p2))↓ ∼ 0

lra mult c∼

We show that Invariant 1(c) holds for P , by noting that (1
c ·(c·p1−p2+p2))↓ =

p1. Thus, we have T (P) : ϕp
1 as required by property (i).

⊥ Case Consider when P is a proof of the following form:

P1 : ϕ1 ⇔ ϕ2 P2 : ϕ2 ⇔ ⊥
P : ϕ1 ⇔ ⊥

iff trans

By assumption of Invariant 1(b) for P1, we have that T (P1) : (c·p1−p2)↓ = 0,
where ϕp

1 ::= (p1 ∼ 0) and ϕp
2 ::= (p2 ∼ 0). Note that property (iv) of Invariant

1(b) guarantees that a multiplication of an equation of the form p(�)↓0 by the
constant 1

c is legal. Assume Invariant 1(d) holds for P2. The following defines
the transformed proof T (P):

T (P2) : (−p2)↓(�)↓0 T (P1) : (c · p1 − p2)↓ = 0

(−p2 − (c · p1 − p2))↓(�)↓0
lra sub(�)↓ =

(1
c · (−p2 − (c · p1 − p2)))↓(�)↓0

lra mult c(�)↓

We show that Invariant 1(d) holds for P , by noting that (1
c · (−p2− (c · p1−

p2)))↓ = (−p1)↓. Thus, we have T (P) : (¬ϕ1)p as required by property (i).

Default Case Consider when P is a proof of the following form:

P1 : ϕ1 ⇔ ϕ2 P2 : ϕ2 ⇔ ϕ3

P : ϕ1 ⇔ ϕ3
iff trans

Assume Invariant 1(b) holds for P1 and P2. The following defines the trans-
formed proof T (P):

T (P1) : (c1 · p1 − p2)↓ = 0

(c2 · (c1 · p1 − p2))↓ = 0
lra mult c=

T (P2) : (c2 · p2 − p3)↓ = 0

T (P) : (c2 · (c1 · p1 − p2) + (c2 · p2 − p3))↓ = 0
lra add==

We show that Invariant 1(b) holds for P . Firt note that (c2 · (c1 · p1 − p2) +
(c2 · p2− p3))↓ = ((c2 · c1) · p1− p3)↓, giving us property (i). Properties (ii) and
(iii) hold by assumption from Invariant 1(b) for P1 and P2. To show property
(iv), note that c1 6= 0 and c2 6= 0 imply c2 · c1 6= 0, and similarly for >.

12

6.2.3 iff mp

⊥ Case Consider when P is a proof of the following form:

P1 : ϕ1 P2 : ϕ1 ⇔ ⊥
P : ⊥ iff mp

Assume Invariant 1(a) holds for P1 and Invariant 1(d) holds for P2. The
following defines the transformed proof T (P):

T (P1) : p ∼ 0 T (P2) : (−p)↓(�)↓0

(p+−p)↓ ∼′ 0
lra add∼ (�)↓

T (P) : ⊥ lra contra∼′

where ∼′ is (∼ ·(�)↓).

Note that since ∼′ is (∼ ·(�)↓), ∼′ is restricted to be one of >, 6=. Thus, in
both cases we have a contradiction from 0 ∼′ 0, and Invariant 1(e) holds for P .

Default Case Consider when P is a proof of the following form:

P1 : ϕ1 P2 : ϕ1 ⇔ ϕ2

P : ϕ2
iff mp

Assume Invariant 1(a) holds for P1. By assumption of Invariant 1(b) for P2,
we have that ϕp

2 ::= p2 ∼ 0. The following defines the transformed proof T (P):

T (P1) : p1 ∼ 0

(c · p1)↓ ∼ 0
lra mult c∼

T (P2) : (c · p1 − p2)↓ = 0

T (P) : (c · p1 − (c · p1 − p2))↓ ∼ 0
lra sub∼=

We show that Invariant 1(a) holds for P , noting that (c·p1−(c·p1−p2))↓ = p2.
Thus, T (P) : ϕp

2, as required by property (i).

6.2.4 iff symm

Consider when P is a proof of the following form:

P1 : ϕ1 ⇔ ϕ2

P : ϕ2 ⇔ ϕ1
iff symm

By assumption of Invariant 1(b) for P1, we have that T (P1) : (c ·p1−p2)↓ =
0, where ϕp

1 ::= (p1 ∼ 0) and ϕp
2 ::= (p2 ∼ 0). The following defines the

transformed proof T (P):

13

T (P1) : (c · p1 − p2)↓ = 0

T (P) : (− 1
c · (c · p1 − p2))↓ = 0

lra mult c=

We show that Invariant 1(b) holds for P . Note that (− 1
c · (c · p1 − p2))↓ =

(1
c ·p2−p1)↓, giving us property (i). Properties (ii) and (iii) hold by assumption

of Invariant 1(b) for P1. To show property (iv), note that c ∼ 0 implies 1
c ∼ 0

when ∼ is > or 6=.

6.2.5 basic subst op

Consider when P is a proof of the following form:

P1 : t1 = t2 P2 : t3 = t4
P : t1 ∼ t3 ⇔ t2 ∼ t4

basic subst op

Assume Invariant 1(a) holds for P1 and P2. The following defines the trans-
formed proof T (P), when ∼ ∈ {=, >,≥}:

T (P1) : (t1 − t2)↓ = 0 T (P2) : (t3 − t4)↓ = 0

T (P) : ((t1 − t2)− (t3 − t4))↓ = 0
lra sub==

We show that Invariant 1(b) holds for P . Note that ((t1− t2)− (t3− t4))↓ =
(1 · (t1 − t3)↓ − (t2 − t4)↓)↓, giving us property (i). By unfolding definitions,
we have properties (ii) and (iii). Property (iv) is satisfied by the constant 1 for
both cases of >, 6=.

The following defines the transformed proof T (P), when ∼ ∈ {6=, <,≤}:

T (P2) : (t3 − t4)↓ = 0 T (P1) : (t1 − t2)↓ = 0

T (P) : ((t3 − t4)− (t1 − t2))↓ = 0
lra sub==

We show that Invariant 1(b) holds for P . Note that ((t3− t4)− (t1− t2))↓ =
(1 · (t3 − t1)↓ − (t4 − t2)↓)↓, giving us property (i). By unfolding definitions,
we have properties (ii) and (iii). Property (iv) is satisfied by the constant 1 for
both cases of >, 6=.

6.2.6 basic subst op 1

Addition Case Consider when P is a proof of the following form:

P1 : t1 = t2 P2 : t3 = t4
P : t1 + t3 = t2 + t4

basic subst op 1

Assume Invariant 1(a) holds for P1 and P2. The following defines the trans-
formed proof T (P):

14

T (P1) : (t1 − t2)↓ = 0 T (P2) : (t3 − t4)↓ = 0

T (P) : ((t1 − t2) + (t3 − t4))↓ = 0
lra add==

We show that Invariant 1(a) holds for P , by noting that ((t1 − t2) + (t3 −
t4))↓ = ((t1 + t3)− (t2 + t4))↓. Thus, T (P) : (t1 + t3 = t2 + t4)p, as required by
property (i).

Subtraction Case The case for proving the subtraction case is very similar
to the addition case, where instead of lra add== , we use the LFSC rule
lra sub== .

Multiplication Case Consider when P is a proof of the following form:

P1 : c = c P2 : t1 = t2
P : c · t1 = c · t2

basic subst op 1

Assume Invariant 1(a) holds for P2. The following defines the transformed
proof T (P):

T (P2) : (t1 − t2)↓ = 0

T (P) : (c · (t1 − t2))↓ = 0
lra mult c=

We show that Invariant 1(a) holds for P , noting that (c · (t1 − t2))↓ =
((c · t1)− (c · t2))↓. Thus, T (P) : (c · t1 = c · t2)p, as required by property (i).

6.2.7 basic subst op 0

Not Case Consider when P is a proof of the following forms:

P1 : t1 ∼ t2 ⇔ t3 ∼ t4
P : ¬(t1 ∼ t2)⇔ ¬(t3 ∼ t4)

basic subst op 0

Assume that Invariant 1(b) holds for P1. The following defines the trans-
formed proof T (P):

T (P1) : (c · p1 − p2)↓ = 0

T (P) : (−1 · (c · p1 − p2))↓ = 0
lra mult c=

We show that Invariant 1(b) holds for P . Note that (−1 · (c · p1 − p2))↓ =
(c · (−p1) − (−p2))↓, giving us property (i). By unfolding our definitions and
relying upon Lemma 2 (twice), we have properties (ii) and (iii). Property (iv)
holds as a consequence of our assumption of Invariant 1(b) property (iv) for P1.

15

Unary Minus Case Consider when P is a proof of the following forms:

P1 : t1 = t2
P : −t1 = −t2

basic subst op 0

Assume that Invariant 1(a) holds for P1. The following defines the trans-
formed proof T (P):

T (P1) : (t1 − t2)↓ = 0

T (P) : (−1 · (t1 − t2))↓ = 0
lra mult c=

We show that Invariant 1(a) holds for P , noting that (−1 · (t1 − t2))↓ =
((−t1)− (−t2))↓. Thus, T (P) : (−t1 = −t2)p, as required by property (i).

6.2.8 eq trans

Consider when P is a proof of the following form:

P1 : t1 = t2 P2 : t2 = t3
P : t1 = t3

eq trans

Assume Invariant 1(a) holds for P1 and P2. The following defines the trans-
formed proof T (P):

T (P1) : (t1 − t2)↓ = 0 T (P2) : (t2 − t3)↓ = 0

T (P) : ((t1 − t2) + (t2 − t3))↓ = 0
lra add==

We show that Invariant 1(a) holds for P , noting that ((t1−t2)+(t2−t3))↓ =
(t1 − t3)↓. Thus, T (P) : (t1 = t3)p, as required by property (i).

6.2.9 eq symm

Consider when P is a proof of the following form:

P1 : t1 = t2
P : t2 = t1

eq symm

Assume Invariant 1(a) holds for P1. The following defines the transformed
proof T (P):

T (P1) : (t1 − t2)↓ = 0

T (P) : (−1 · (t1 − t2))↓ = 0
lra mult c=

We show that Invariant 1(a) holds for P , noting that (−1 · (t1 − t2))↓ =
(t2 − t1)↓. Thus, T (P) : (t2 = t1)p, as required by property (i).

16

6.2.10 real shadow

Consider when P is a proof of the following form:

P1 : t1 ≺1 t2 P2 : t2 ≺2 t3
P : t1 ≺′ t3

real shadow

where ≺′ is (≺1 · ≺2).

Assume Invariant 1(a) holds for P1 and P2. The following defines the trans-
formed proof T (P):

T (P1) : (t2 − t1)↓ �1 0 T (P2) : (t3 − t2)↓ �2 0

T (P) : ((t2 − t1) + (t3 − t2))↓ �′ 0
lra add�1�2

We show that Invariant 1(a) holds for P , noting that ((t2−t1)+(t3−t2))↓ =
(t3 − t1)↓. Thus, T (P) : (t1 ≺′ t3)p, as required by property (i).

6.2.11 real shadow eq

Consider when P is a proof of the following form:

P1 : t1 ≤ t2 P2 : t2 ≤ t1
P : t1 = t2

real shadow eq

Assume Invariant 1(a) holds for P1 and P2. The following defines the trans-
formed proof T (P):

T (P1) : (t2 − t1)↓ ≥ 0 T (P2) : (t1 − t2)↓ ≥ 0

T (P) : (t1 − t2)↓ = 0
lra ≥ ≥ to =

We have that Invariant 1(a) holds for P , noting that T (P) : (t1 = t2)p, as
required by property (i).

6.2.12 add inequalities

Consider when P is a proof of the following form:

P1 : t1 ≺1 t2 P2 : t3 ≺2 t4
P : t1 + t3 ≺′ t2 + t4

add inequalities

where ≺′ is (≺1 · ≺2).

Assume Invariant 1(a) holds for P1 and P2. The following defines the trans-
formed proof T (P):

17

T (P1) : (t2 − t1)↓ �1 0 T (P2) : (t4 − t3)↓ �2 0

T (P) : ((t2 − t1) + (t4 − t3))↓ �′ 0
lra add�1�2

We show that Invariant 1(a) holds for P , noting that ((t2−t1)+(t4−t3))↓ =
((t2 + t4)−(t1 + t3))↓. Thus, T (P) : (t1 + t3 ≺′ t2 + t4)p, as required by property
(i).

6.2.13 optimized subst op

+ Case Consider when P is a proof of the following form:

P1 : t1 = s1 . . . Pn : tn = sn
P : t1 + . . .+ tn = s1 + . . .+ sn

optimized subst op

Assume Invariant 1(a) holds for P1 . . . Pn. The following defines the trans-
formed proof T (P):

T (P1) : p1 = 0 T (P2) : p2 = 0

(p1 + p2)↓ = 0
lra add==

... T (Pn) : pn = 0

T (P) : (p1 + . . .+ pn)↓ = 0
lra add==

where pi = (ti − si)↓ for all i.

We show that Invariant 1(a) holds for P , by noting that (p1 + . . .+ pn)↓ =
((t1 − s1) + . . . + (tn − sn))↓ = (t1 + . . . + tn − (s1 + . . . + sn)↓. Thus, T (P) :
(t1 + . . .+ tn = s1 + . . .+ sn)p, as required by property (i).

Other Cases A similar translation can be used for when P is a proof of the
following form:

P1 : t1 = s1 . . . Pn : tn = sn
P : t1 .// tn = s1 .// sn

optimized subst op

where ./∈ {−, ·}.

6.2.14 cycleConflict

Consider when P is a proof of the following form:

P1 : t1 ≺1 t
′
1 . . . Pn : tn ≺n t

′
n

⊥ cycleConflict

18

where (t1 ≺1 t
′
1) ∧ . . . ∧ (tn ≺n t

′
n)⇒ ⊥.

Assume Invariant 1(a) holds for P1 . . . Pn. The following defines the trans-
formed proof T (P):

T (P1) : p1 �1 0 T (P2) : p2 �2 0

(p1 + p2)↓ �′2 0
lra add�1�2

... T (Pn) : pn �n 0

(p1 + . . .+ pn)↓ �′n−1 0
lra add�′n−1�n

T (P) : ⊥
lra contra�′n

where P ′i = Tp(TLit(Pi)), �′1 is �1, and �′i is (�′i−1 · �i) for i > 1.

Due to the restricted form for the premises used in the cycleConflict rule
(as discussed in section 5.3), the summation (p1 + . . .+ pn)↓ �′n−1 0 ::= 0 > 0,
giving us a contradiction. Thus, we have that Invariant 1(e) holds for P .

6.2.15 const pred

⊥ Case Consider when P is a proof of the following form:

{0 � c}
P : (0 ∼ c)⇔ ⊥

const pred1

The following defines the transformed proof T (P):

T (P) : c(�)↓0
lra axiom (�)↓

when ∼ ∈ {=, >,≥}
T (P) : (−c)↓ � 0

lra axiom �

when ∼ ∈ {6=, <,≤}

In both cases, we have that Invariant 1(d) holds for P , noting that T (P) :
(¬(0 ∼ c))p as required by property (i).

> Case Consider when P is a proof of the following form:

{0 ∼ c}
P : (0 ∼ c)⇔ >

const pred2

The following defines the transformed proof T (P) when ∼ ∈ {=, >,≥}:

19

T (P) : (−c)↓ ∼ 0
lra axiom ∼

when ∼ ∈ {=, >,≥}

T (P) : c ∼↓ 0
lra axiom ∼↓

when ∼ ∈ {6=, <,≤}

In both cases, we have that Invariant 1(c) holds for P , noting that T (P) :
(0 ∼ c)p as required by property (i).

6.2.16 Equality Axioms

In this section, we consider when P is a proof of any of the following forms:

P : t1 = t1
refl

P : −t = (−1) · t uminus to mult

P : (t1 − t2) = t1 + (−1 · t2)
minus to plus

{t′ canonical form of t}
P : t = t′

canon

In all of the above cases, we define T (P) as:

T (P) : 0 = 0
lra axiom=

We show that Invariant 1(a) holds for each case of P : t = t′, noting we have
that (t− t′)↓ = 0 in each case. Thus, T (P) : (t = t′)p, giving us property (i) as
required.

6.2.17 Rewrite Axioms

In this section, we consider when P is a proof of any of the following forms:

{c positive}
P : t1 ≺ t2 ⇔ c · t1 ≺ c · t2

mult ineqn
{c non-zero}

P : t1 = t2 ⇔ c · t1 = c · t2
mult eqn

P : t1 ∼ t2 ⇔ 0 ∼ t2 − t1
right minus left

P : t1 ∼ t2 ⇔ t1 + t3 ∼ t2 + t3
plus pred

P : t1 � t2 ⇔ t2 ≺ t1
flip ineq

P : ¬(t1 ≺ t2)⇔ t1 ⊀ t2
negated ineq

P : (¬¬(t1 ∼ t2))⇔ (t1 ∼ t2)
rewrite not not

P : t1 = t2 ⇔ t2 = t1
rewrite eq symm

P : (t = t)⇔ >
rewrite eq refl

In all of the above cases, we define T (P) as:

T (P) : 0 = 0
lra axiom=

20

We show that Invariant 1 holds for each case of P : ϕ1 ⇔ ϕ2.
Invariant 1(b) holds for mult ineqn. Note we have that ϕp

1 ::= p � 0 where
p = (t2 − t1)↓, giving us property (ii). We have property (iii), further noting
that ϕp

2 ::= (c · p)↓ � 0. Thus, T (P) : (c · p − (c · p))↓ = 0, giving us property
(i). Property (iv) is satisfied as a result of the Cvc3 condition that c is positive.

Similarly for mult eqn, we have that ϕp
1 ::= p = 0 where p = (t1−t2)↓, giving

us property (ii), ϕp
2 ::= (c·p)↓ = 0 for property (iii), and T (P) : (c·p−(c·p))↓ = 0

for property (i). Property (iv) is satisfied as a result of the Cvc3 condition that
c is non-zero.

Invariant 1(c) holds for rewrite eq refl. Note that (t− t)↓ = 0, thus, T (P) :
(t = t)p as required by property (i).

Invariant 1(b) holds for all the other cases of P : ϕ1 ⇔ ϕ2. Note we have
that ϕp

1 ::= ϕp
2 ::= p ∼ 0 (that is, they are identical) for some polynomial p,

giving us properties (ii) and (iii). Thus, we have that T (P) : (1 · p − p)↓ = 0,
giving us property (i). Property (iv) is satisfied by the constant 1 for both cases
of >, 6=.

6.2.18 Miscellaneous Propositional Rules

In this section, we consider when P is a proof of any of the following forms:

P1 : (t1 ∼ t2)

P : (t1 ∼ t2)⇔ > iff true
P1 : (t1 ∼ t2)⇔ >

P : (t1 ∼ t2)
iff true elim

P1 : (t1 ∼ t2)

P : ¬(t1 ∼ t2)⇔ ⊥ iff not false
P1 : (t1 ∼ t2)⇔ ⊥
P : ¬(t1 ∼ t2)

iff false elim

P1 : ¬(t1 ∼ t2)

P : (t1 ∼ t2)⇔ ⊥ not to iff
P1 : ¬¬(t1 ∼ t2)

P : (t1 ∼ t2)
not not elim

Assume that Invariant 1 holds for P1. In all of the above cases, we define
T (P) = T (P1). It can be shown that Invariant 1 holds for all cases of P , each
coming as a direct consequence of Invariant 1 holding for P1.

6.3 Patch Operator T−1
p

Define a proof translation function T−1p : P→P from L proofs to L proofs with
the following property:

Lemma 6
For all C theory reasoning proofs P : Γ ` ϕ, we have T−1p (T (P)) : Γ ` ϕ.

In the following section, we will give the definition T−1p (T (P)) for an arbi-
trary theory reasoning C proof P . 6 We will use three additional proof rules
from the L calculus in our definition:

6For all other L proofs P ′, we define T−1
p (P ′) = P ′.

21

[¬ϕ]
....
⊥
ϕ proof by contradiction

[ϕ1]
....
ϕ2

ϕ1 ⇒ ϕ2
impl intro

ϕ1 ⇒ ϕ2 ϕ2 ⇒ ϕ1

ϕ1 ⇔ ϕ2
iff intro

By Lemma 5, we know that Invariant 1 holds for P . In order to define
T−1p (T (P)), we will case split on Invariant 1 for P and show that Lemma 6
holds in each case.

6.3.1 Case (a)

Assume that P : Γ ` ϕ and Invariant 1(a) holds for P . By property (i) of
Invariant 1(a), T (P) : Γ ` ϕp . We define T−1p (T (P)) as the following: 7

T (P) : Γ1 ` ϕp Tp(P ′) : Γ1 ` (¬ϕ)p

Γ1 ` (p+−p)↓ ∼′ 0
lra add∼ (�)↓

Γ1 ` ⊥
lra contra∼’

T−1p (T (P)) : Γ ` ϕ
proof by contradiction

where ϕp ::= p ∼ 0, P ′ is an assertion of ¬ϕ, and Γ1 = Γ ∪ ¬ϕ.

We use proof by contradiction, where we conclude ϕ by proving a contra-
diction under the assumption ¬ϕ asserted by P ′. We convert this assump-
tion to a polynomial formula with the proof translation Tp to obtain proof
Tp(P ′). Lemma 2 tell us that (¬ϕ)p ::= (−p)↓(�)↓0. We then add this for-
mula with p ∼ 0, as proven by T (P), to produce the inconsistent formula
(p+−p)↓ ∼′ 0. Note that ∼′ is (∼ ·(�)↓), which restricts ∼′ to be one of 6=, >.
Thus (p+−p)↓ = 0 ∼′ 0 gives a contradiction for both cases of ∼′.

6.3.2 Case (b)

Assume that P : Γ ` ϕ1 ⇔ ϕ2 and Invariant 1(b) holds for P . Thus, we have
that T (P) : (c · p1 − p2)↓ = 0, ϕp

1 ::= p1 ∼ 0 and ϕp
2 ::= p2 ∼ 0 for some

polynomials p1 and p2.
We must prove both directions of the double implication ϕ1 ⇔ ϕ2. We give

the proof of ⇒ (call it P1): 8

Tp(P ′1) : Γ2 ` ϕp
1

Γ2 ` (c · p1)↓ ∼ 0
1

Tp(P ′2) : Γ2 ` (¬ϕ2)p

Γ2 ` (c · p1 +−p2)↓ ∼′ 0
2

T (P) : Γ2 ` p = 0

Γ2 ` (p− p)↓ ∼′ 0
3

Γ2 ` ⊥ lra contra∼′

Γ1 ` ϕ2
proof by contradiction

P1 : Γ ` ϕ1 ⇒ ϕ2
impl intro

7We (implicitly) weaken T (P) : Γ ` ϕp to T (P) : Γ1 ` ϕp for the sake of consistency.
8We (implicitly) weaken T (P) : Γ ` p = 0 to T (P) : Γ2 ` p = 0 for the sake of consistency.

22

where 1 is lra multc∼, 2 is lra add∼ (�)↓, 3 is lra sub∼′=, P ′1 is an assertion
of ϕ1, P ′2 is an assertion of ¬ϕ2, p = (c·p1−p2)↓, Γ1 = Γ∪ϕ1, and Γ2 = Γ1∪¬ϕ2.

We use the implication introduction rule to introduce the assumption ϕ1,
and then use proof by contradiction to introduce the assumption ¬ϕ2. These
are converted to polynomial formulas with the proof translation Tp to obtain
proofs Tp(P ′1) and Tp(P ′2). We multiply p1 by c to obtain (c · p1)↓ ∼ 0, noting
that property (iv) of Invariant 1(b) guarantees that is a legal constant. By
Lemma 2, we know (¬ϕ2)p ::= (−p2)↓(�)↓0. Thus, we add these formulas to
obtain the equation (c · p1 +−p2)↓ ∼′ 0, where ∼′ is (∼ ·(�)↓). Similar to Case
(a), this restricts ∼′ to be one of 6=, >. Finally, we subtract p = 0, as proven by
T (P), to obtain (p− p)↓ = 0 ∼′ 0, giving a contradiction for both cases of ∼′.

A similar proof, call it P2, gives us the⇐ direction. Because these two proofs
both involve the subproof T (P), we introduce T (P) as a lemma and reference
it in both instances. 9 Overall, we define T−1p (T (P)) to be:

P1 : Γ ` ϕ1 ⇒ ϕ2 P2 : Γ ` ϕ2 ⇒ ϕ1

T−1p (T (P)) : Γ ` ϕ1 ⇔ ϕ2
iff intro

6.3.3 Case (c)

When P : ϕ ⇔ >, and Invariant 1(c) holds for P , the proof is similar to Case
(a) in the ⇐ direction of the implication, and trivial in the ⇒ direction.

6.3.4 Case (d)

When P : ϕ ⇔ ⊥, and Invariant 1(d) holds for P , the proof is similar to Case
(a) in the ⇒ direction of the implication, and trivial in the ⇐ direction.

6.3.5 Case (e)

When P : ⊥, and Invariant 1(e) holds for P (that is, T (P) also concludes ⊥),
we define T−1p (T (P)) = T (P). �

We are now ready to define the aggressive liberal translation TLibA.

Translation TLibA Define a proof translation operator TLibA : P→P from C
proofs to L proofs. Say P is a proof in the following form:

P1 : ϕ1 . . . Pn : ϕn

P : ϕ
r

If all premises P1 . . . Pn can be compacted according to T , and further T is
defined for rule r, we continue applying polynomial compaction to P . Other-
wise, we will revert all proofs of our premises and subsequently use the literal
translation Lit.

9In many cases, it suffices for us to conclude ϕ1 ⇒ ϕ2 only. For optimization purposes,
such cases are recognized by our translation.

23

Formally, define TLibA as the following:

For all theory reasoning C proofs P ,

TLibA(P) = T (P).

Otherwise,

TLibA(P) = TLit(({T−1p (TLibA(P1)), . . . , T−1p (TLibA(Pn)}, r, ϕ)).

7 Liberal Conversion

Translation TLib The translation function TLib : P→P can be described in
terms of the translations TLit and TLibA.

7.1 Learned Clause

Say P is the following proof of the following form:

P1 : ϕ1, . . . , ϕn ` ⊥
P :` ¬ϕ1 ∨ . . . ∨ ¬ϕn

learned clause

In this case, TLib(P) = TLibA(P).

7.2 Default Case

For all other proofs P = ({P1, . . . , Pn}, r, ϕ),
TLib(P) = TLit(({TLib(P1), . . . , TLib(Pn)}, r, ϕ)). �

We claim that all subproofs P of theory lemmas (whose top node is an
instance of the learned clause rule) are such that T (P) is defined. Because of
this, we know that T−1p is never called as a sub-routine of TLib. That is to say,
we do not incur any overhead as a result of converting from polynomial formulas
to term formulas.

8 Compression for Polynomial Proofs

In the following section, we will discuss all post-processing performed on poly-
nomial portions of the LFSC proof. It is important to note that such processing
occurs at the same time the proof is created, that is to say, all Cvc3 to LFSC
translations incorporate this compression and are done in one pass.

8.1 Trivial Addition

Say we generate the following L proof P :

P1 : p = 0 P2 : 0 = 0

P : (p+ 0)↓ = 0
lra add==

24

In this case, we will return the proof P1.

Similarly, if we generate the L proof P :

P1 : 0 = 0 P2 : p ∼ 0

P : (0 + p)↓ ∼ 0
lra add=∼

In this case, we will return the proof P2.

8.2 Trivial Subtraction

Say we generate the following L proof P :

P1 : p ∼ 0 P2 : 0 = 0

P : (p− 0)↓ ∼ 0
lra sub∼=

In this case, we will return the proof P1.

If we generate the L proof P :

P1 : 0 = 0 P2 : p = 0

P : (0− p)↓ = 0
lra sub==

We will return the following proof:

P2 : p = 0

P : (−1 · p)↓ = 0
lra multc∼

8.3 Trivial Multiplication

Say we generate the following L proof P :

P1 : p ∼ 0

P : (1 · p)↓ ∼ 0
lra multc∼

In this case, we will return the proof P1.

8.4 Repeated Multiplication

Say we generate the following L proof P :

P1 : p ∼ 0

(c1 · p)↓ ∼ 0
lra multc∼

P : (c2 · (c1 · p))↓ ∼ 0
lra multc∼

We will return the following proof:

P1 : p ∼ 0

P : ((c2 · c1) · p)↓ ∼ 0
lra multc∼

25

Figure 3: Comparing proof sizes.

8.5 Addition to Subtraction

Say we generate the following L proof P :

P1 : p1 = 0

(−1 · p1)↓ = 0
lra multc=

P2 : p2 ∼ 0

P : ((−1 · p1) + p2)↓ ∼ 0
lra add=∼

We will return the following proof:

P2 : p2 ∼ 0 P1 : p1 = 0

P : (p2 − p1)↓ ∼ 0
lra sub∼=

9 Experimental Results

To evaluate the various translations experimentally, we looked at all the QF LRA
and QF RDL unsatisfiable benchmarks from SMT-LIB Version 1.2.10 Since we
could not find working alternatives, our results contain no comparisons with
other proof checkers besides LFSC. A potential candidate was a former system
developed by Ge and Barrett that used the HOL Light prover as a proof checker
for Cvc3 [?]. Unfortunately, that system, which was never tested on QF LRA
benchmarks and was not kept in sync with the latest developments of Cvc3,
currently breaks on most of these benchmarks. While we expect that it could
be fixed, the required amount of effort is beyond the scope of this work.

We ran our experiments on a Linux machine with two 2.67GHz 4-core Xeon
processors and 8GB of RAM. We will discuss 161 of the 317 unsatisfiable
QF LRA benchmarks, and 40 of the 113 unsatisfiable QF RDL benchmarks.
For the rest, either Cvc3 could not generate a proof within a timeout of 900
seconds, or produced a proof containing one of the few known rules we could
not support in our translations due to time constraints.

We collected runtimes for the following five main configurations of Cvc3.

cvc: Default, solving benchmarks but with no proof generation.
cvcpf: Solving with proof generation in Cvc3’s native format.
lit: Solving with proof generation and literal translation to LFSC.
lib: Solving with proof generation and liberal translation to LFSC.
libA: Like lib but with aggressively liberal translation to LFSC.

10Each of these benchmarks consists of an unsatisfiable quantifier-free LRA formula.
QF RDL is a sublogic of QF LRA.

26

!"#$%&'()
Class ! "#" "#"$% &'(&') &')* &'(+, "#"$% &'(&') &')* &'(+, &'(&') &')* &'(+, ,-
"./"01&23 1 0.1 0.2 0.3 0.2 0.2 0.2 0.3 0.5 0.1 0.1 0.1 0.1 0.0 0.0 0.03 79%
"./"0124& 1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48%
"&5"06789". 18 11.7 21.0 21.8 21.7 21.4 21.5 9.1 14.8 13.0 7.4 12.7 2.6 2.3 1.4 2.3 17%
:37);29/2 19 4.0 7.5 8.6 7.8 7.5 6.8 8.5 13.9 7.7 6.8 6.8 2.5 1.6 1.3 1.2 46%
$;27;'(8 16.6 26.6 26.3 26.3 26.2 25.7 3.9 5.1 3.6 3.6 3.4 0.8 0.7 0.6 0.6 36%
73& 31 1584.8 3130.5 3254.3 3239.8 3296.9 3285.9 718.6 537.1 472.2 485.9 452.1 275.6 269.0 268.4 262.0 6%
7"./4;&'9: 8 281.8 322.0 322.9 322.1 321.1 321.1 18.4 25.1 17.8 12.4 18.3 3.7 2.9 2.2 2.6 37%
7$'4/2 35 10.2 16.7 17.4 17.4 17.5 16.8 10.1 12.7 11.1 10.8 10.8 2.3 2.4 2.0 2.0 15%
(:" 21 31.5 54.8 55.9 55.4 55.9 54.3 21.0 22.7 16.9 17.7 16.6 4.2 3.4 3.4 3.1 16%
,< 1 17.6 29.4 29.3 29.0 29.2 29.1 1.3 2.7 2.7 2.7 2.7 0.4 0.4 0.4 0.4 0%
=367(32(;$ 25 29.7 65.9 68.4 68.5 69.9 67.9 38.8 43.6 43.2 49.2 42.9 5.4 5.6 6.2 5.3 3%
;32(9 1074.2 1387.4 1391.2 1434.7 1404.8 1379.1 118.9 102.4 76.6 78.8 72.2 42.7 37.0 38.0 34.5 13%
>'945>2/3& 24 20.6 40.6 41.6 41.7 42.4 41.4 20.7 22.1 21.9 23.8 21.7 2.8 2.9 3.0 2.9 3%
Total 201 3082.9 5102.6 5238.0 5264.6 5293.1 5249.7 969.4 802.8 686.9 699.4 660.2 343.2 328.1 327.0 316.8 8%

Solve + (Proof Gen) + (Proof Conv) (sec) Proof Size (MB) Proof Check Time (sec)

Table 1: Cumulative results, grouped by benchmark class. Column 2 gives
the numbers of benchmarks in each class. Columns 3 through 8 give Cvc3’s
(aggregate) runtime for each of the five configurations. Columns 9 through 13
show the proof sizes for each of the 5 proof-producing configurations. Columns
14 through 17 show LFSC proof checking times. The last column gives the
percentage of proof nodes found beneath theory lemmas in Cvc3’s native proofs.

Figure 4: Solving times vs. proof checking times.

We also ran a sixth configuration, litNT, for the purpose of isolating the non-
theory component of proof sizes and checking times. This configuration trusts all
theory lemmas treating them like premises, but otherwise behaves like lit (and
so also like Lib which differs from Lit only on theory lemmas). Comparisons with
litNT are useful because the liberal translations work mostly by compacting
the theory-specific portion of a proof. Hence, their effectiveness is expected to
be correlated with the amount of theory content of a proof. We measure that as
the percentage of nodes in a Cvc3 proof belonging to the (sub)proof of a theory
lemma. For this data set, the average theory content is very low, about 8.3%.

Table 1 shows a summary of our results for various classes of benchmarks.11

As can be seen there, Cvc3’s solving times are on average 1.65 times faster
than solving with native proof generation. The translation to LFSC proofs
adds additional overhead, which is however less than 3% on average for all
translations.

The scatter plots in Figure 3 are helpful in comparing proof sizes for the

11Detailed results are available at http://clc.cs.uiowa.edu/tacas11 .

27

various configurations.12 The first plot compares proofs in Cvc3 native format
against their literal translation Lit. Notice that, except for a couple of outliers,
Lit suffers only a small constant overhead which we believe is due to structural
differences between the Cvc3 and the LFSC proof languages.

The second plot shows that the liberal translation Lib introduces constant
compression factors over the literal translation. A number of benchmarks in
our test set do not benefit from the Lib translation. Such benchmarks are not
heavily dependent on theory reasoning, having a theory content of less than
2%. In contrast, for benchmarks with higher theory content, Lib is effective at
proof compression. Over the set of all benchmarks with enough theory content,
quantified as 10% or more, Lib compresses proof sizes an average of 24%—i.e, a
Lib proof on average uses 24% less space than its corresponding Lit proof. When
focusing on theory lemma subproofs, by subtracting proofs sizes in litNT from
both lit and lib, the average compression goes up significantly, to 81.3%.

The differences in proof sizes between benchmarks with enough theory con-
tent and the rest are magnified in the LibA translation. With the former set,
LibA compacts the proof size by 26.4% on average. However, LibA suffers on
the other benchmarks, showing a 1% increase in size on average. This can be
attributed to cost incurred by context switching between compact and literal
translation modes as discussed in Section ??. Overall, Lib is the more effective
of the two liberal translations, showing an average compression of 14%.

Interestingly, in all plots the compression factor is not the same for all bench-
marks, although an analysis of the individual results shows that benchmarks in
the same SMT-LIB family tend to have the same compression factor.

We compared the proof checking times of Lit vs. Lib and LibA, using the
LFSC checker. Perhaps unsurprisingly, their scatter plots (not shown here)
are very similar to the corresponding ones in Figure 3. Over benchmarks with
enough theory content, checking Lib proofs is on average 1.14 times faster than
checking the corresponding Lit proofs. Looking just at proofs of theory lemmas,
this time by subtracting the checking times of litNT, reveals that proof checking
times are 2.33 times faster for Lib than for Lit.

It is generally expected that proof checking should be substantially faster
than proof generation or even just solving. This is generally the case for both Lit
and Lib when proof checking using compiled side conditions. Compared against
Cvc3’s solving times alone, LFSC proof checking times are 8.98 times faster with
Lit proofs, and 9.4 times faster with Lib proofs. A more detailed comparison
(given on a logarithmic scale) can be seen in Figure 4.

12These plots show only the data for proof sizes less that or equal to 5MB. The general
trends shown by these plots are preserved with the addition of larger benchmarks.

28

A C Proof Rules

The following is a representative list of rules in the C calculus. The letters c
and t, possibly with subscripts, denote rational constants and arithmetic terms,
respectively.

A.1 Core Rules

v ∨ ϕ1 ¬v ∨ ϕ2

ϕ1 ∨ ϕ2
bool res

[ϕ1 ∧ . . . ∧ ϕn]
....
⊥

¬ϕ1 ∨ . . .¬ ∨ ϕn
learned clause

A.2 Rewrite Axioms
{0 � c}

(0 ∼ c)⇔ ⊥
const pred1

{0 ∼ c}
(0 ∼ c)⇔ >

const pred2

{c positive}
t1 ≺ t2 ⇔ c · t1 ≺ c · t2

mult ineqn
{c non-zero}

t1 = t2 ⇔ c · t1 = c · t2
mult eqn

t1 ∼ t2 ⇔ 0 ∼ t2 − t1
right minus left

t1 ∼ t2 ⇔ t1 + t3 ∼ t2 + t3
plus pred

t1 � t2 ⇔ t2 ≺ t1
flip ineq ¬(t1 ≺ t2)⇔ t1 ⊀ t2

negated ineq

(t = t)⇔ >
rewrite eq refl

t1 = t2 ⇔ t2 = t1
rewrite eq symm

{c1 ≺1 c2}
0 ≺2 c1 + t⇒ 0 (≺1 · ≺2) c2 + t

weaker ineq

{c1 < −c2}
0 ≤ c1 + t1 ⇒ ¬(0 ≤ c2 − t1)

imply negated ineq

A.3 Propositional Rules
ϕ1 ⇔ ϕ2 ϕ2 ⇔ ϕ3

ϕ1 ⇔ ϕ3
iff trans

ϕ1 ϕ1 ⇔ ϕ2

ϕ2
iff mp

ϕ1 ⇔ ϕ2

ϕ2 ⇔ ϕ1
iff symm ϕ⇔ ϕ iff refl

ϕ1 ⇒ ϕ2 ϕ2 ⇒ ϕ3

ϕ1 ⇒ ϕ3
impl trans

ϕ1 ϕ1 ⇒ ϕ2

ϕ2
impl mp

29

ϕ

ϕ⇔ > iff true
ϕ⇔ >
ϕ iff true elim

ϕ

¬ϕ⇔ ⊥ iff not false
ϕ⇔ ⊥
¬ϕ iff false elim

¬ϕ
ϕ⇔ ⊥ not to iff

¬¬ϕ
ϕ not not elim

(¬¬ϕ)⇔ ϕ
rewrite not not

(ϕ1 ⇒ ϕ2)⇔ (ϕ2 ∨ ¬ϕ1)
rewrite implies

ϕ1 ⇔ ϕ2

¬ϕ1 ⇔ ¬ϕ2
basic subst op02 (ϕ1 ⇔ ϕ2)⇔ (ϕ2 ⇔ ϕ1)

rewrite iff symm

(¬>)⇔ ⊥ rewrite not true
(¬⊥)⇔ > rewrite not false

(ϕ⇔ >)⇔ ϕ
rewrite iff0

(ϕ⇔ ⊥)⇔ ¬ϕ rewrite iff1

(¬ϕ⇔ ϕ)⇔ ⊥ rewrite iff2
ϕ1 ∧ . . . ∧ ϕn

ϕi
andE

ϕ1 ⇔ ϕ2 ϕ3 ⇔ ϕ4

ϕ1� ϕ3 ⇔ ϕ2� ϕ4
basic subst op2

where � ∈ {∧, ∨, ⇔}.

A.4 Equality Rules

t1 = t1
refl

t1 = t2 t3 = t4
t1 ∼ t3 ⇔ t2 ∼ t4

basic subst op1
t1 = t2 t2 = t3

t1 = t3
eq trans

t1 = t2 t3 = t4
t1 ./ t3 = t2 ./ t4

basic subst op1
t1 = t2
t2 = t1

eq symm

A.5 Theory Rules

t1 ≺1 t2 t2 ≺2 t3
t1(≺1 · ≺2) t3

real shadow
t1 ≤ t2 t2 ≤ t1

t1 = t2
real shadow eq

t1 ≺1 t2 t3 ≺2 t4
t1 + t3(≺1 · ≺2) t2 + t4

add inequalities
t1 = s1
−t1 = −s1

basic subst op01

−t = (−1) · t uminus to mult
ite(ϕ, t, t) = t

rewrite ite same

(t1 − t2) = t1 + (−1 · t2)
minus to plus

{t′ canonical form of t}
t = t′

canon

30

t1 ≤ t2 + c1 t2 ≤ t1 + c2 {c1 + c2 = 0}
t1 = t2 + c1 ∧ t2 = t1 + c2

implyEqualities

A.6 CNF Conversion Rules

(ϕ1 ⇒ ϕ2) ∨ ϕ1
CNF imp 0

(ϕ1 ⇒ ϕ2) ∨ ¬ϕ2
CNF imp 1

¬(ϕ1 ⇒ ϕ2) ∨ ¬ϕ1 ∨ ϕ2
CNF imp 2

(ϕ1 ⇔ ϕ2) ∨ ϕ1 ∨ ϕ2
CNF iff 0

(ϕ1 ⇔ ϕ2) ∨ ¬ϕ1 ∨ ¬ϕ2
CNF iff 1

¬(ϕ1 ⇔ ϕ2) ∨ ¬ϕ1 ∨ ϕ2
CNF iff 2 ¬(ϕ1 ⇔ ϕ2) ∨ ϕ1 ∨ ϕ2

CNF iff 3

¬(ϕ1 ∧ . . . ∧ ϕn) ∨ ϕi
CNF and mid

(ϕ1 ∧ . . . ∧ ϕn) ∨ ¬ϕ1 ∨ . . . ∨ ¬ϕn
CNF and final

(ϕ1 ∨ . . . ∨ ϕn) ∨ ¬ϕi
CNF or mid ¬(ϕ1 ∨ . . . ∨ ϕn) ∨ ϕ1 ∨ . . . ∨ ϕn

CNF or final

¬ite(φ, ϕ1, ϕ2) ∨ φ ∨ ϕ2
CNFITE 0

ite(φ, ϕ1, ϕ2) ∨ φ ∨ ¬ϕ2
CNFITE 1

ite(φ, ϕ1, ϕ2) ∨ ¬φ ∨ ¬ϕ1
CNFITE 2 ¬ite(φ, ϕ1, ϕ2) ∨ ¬φ ∨ ϕ1

CNFITE 3

ite(φ, ϕ1, ϕ2) ∨ φ ∨ ¬ϕ1 ∨ ¬ϕ2
CNFITE 4 ¬ite(φ, ϕ1, ϕ2) ∨ ϕ1 ∨ ϕ2

CNFITE 5

A.7 Coarse Grained Rules

{ϕ′ canonical form of ϕ}
ϕ⇔ ϕ′

rewrite and, rewrite or

P1 : t1 ≺1 t
′
1 . . . Pn : tn ≺n t

′
n

⊥ cycleConflict

where (t1 ≺1 t
′
1) ∧ . . . ∧ (tn ≺n t

′
n)⇒ ⊥.

t1 = s1 . . . tn = sn
t = t[s1/t1, . . . , sn/tn]

optimized subst op1

ϕ1 ⇔ ψ1 . . . ϕn ⇔ ψn

ϕ⇔ ϕ[ψ1/ϕ1, . . . , ψn/ϕn]
optimized subst op2

31

B L Specific Proof Rules

B.1 Axiom Rules

0 = 0 lra axiom=
{c > 0}
c > 0

lra axiom>

{c ≥ 0}
c ≥ 0

lra axiom≥
{c 6= 0}
c 6= 0

lra axiom 6=

B.2 Equality Deduction Rule

p ≥ 0 p′ ≥ 0 {p+ p′ = 0}
p = 0

lra≥≥to=

B.3 Contradiction Rules

p = 0 {p 6= 0}
⊥ lra contra=

p > 0 {p 6> 0}
⊥ lra contra>

p ≥ 0 {p < 0}
⊥

lra contra≥
p 6= 0 {p = 0}

⊥
lra contra6=

B.4 Multiplication Rules

p = 0

(c · p)↓ = 0
lra mult c=

p > 0 {c > 0}
(c · p)↓ > 0

lra mult c>

p ≥ 0 {c ≥ 0}
(c · p)↓ ≥ 0

lra mult c≥
p 6= 0 {c 6= 0}

(c · p)↓ 6= 0
lra mult c 6=

B.5 Addition Rules

p1 = 0 p2 = 0

(p1 + p2)↓ = 0
lra add==

p1 > 0 p2 > 0

(p1 + p2)↓ > 0
lra add>>

p1 ≥ 0 p2 ≥ 0

(p1 + p2)↓ ≥ 0
lra add≥≥

p1 = 0 p2 > 0

(p1 + p2)↓ > 0
lra add=>

p1 = 0 p2 ≥ 0

(p1 + p2)↓ ≥ 0
lra add=≥

p1 > 0 p2 ≥ 0

(p1 + p2)↓ > 0
lra add>≥

p1 = 0 p2 6= 0

(p1 + p2)↓ 6= 0
lra add=6=

32

B.6 Subtraction Rules

p1 = 0 p2 = 0

(p1 − p2)↓ = 0
lra sub==

p1 > 0 p2 = 0

(p1 − p2)↓ > 0
lra sub>=

p1 ≥ 0 p2 = 0

(p1 − p2)↓ ≥ 0
lra sub≥=

p1 6= 0 p2 = 0

(p1 − p2)↓ 6= 0
lra sub6==

B.7 Term Normalization Rules

In the rules below ct and cp denote the same rational constant, in one case
considered of term type and in the other as of polynomial type (similarly for
the variables vt and vp).

ct = cp
poly norm const

t1 = p1 t2 = p2
t1 + t2 = (p1 + p2)↓

poly norm+

vt = vp
poly norm var

t1 = p1 t2 = p2
t1 − t2 = (p1 − p2)↓

poly norm−

t = p

ct · t = (cp · p)↓
poly normc·

t = p

t · ct = (p · cp)↓
poly norm·c

t = p

−t = (−p)↓
poly normu−

The following rules are used to normalize ite terms as polynomials:

[t = v]
....
ϕ
ϕ atomize term

t = v
t = vp

poly norm atom

where v is introduced as a fresh variable in the atomize term rule.

B.8 Equation Normalization Rules

t1 = t2 t1 − t2 = p

p = 0
poly norm=

t1 6= t2 t2 − t1 = p

p 6= 0
poly norm 6=

t1 > t2 t1 − t2 = p

p > 0
poly norm>

t1 < t2 t2 − t1 = p

p > 0
poly norm<

t1 ≥ t2 t1 − t2 = p

p ≥ 0
poly norm≥

t1 ≤ t2 t2 − t1 = p

p ≥ 0
poly norm≤

33

