CVC(C3 Proof Conversion to LFSC

Andrew Reynolds Liana Hadarean
Cesare Tinelli Yeting Ge
Aaron Stump Clark Barrett

The University of lowa New York University

1 Introduction

This technical report gives definitions for conversion methods for proofs gen-
erated by the SMT solver Cve3, into a format readable by the proof checker
LFSC. We will discuss proofs in the quantifier-free linear real arithmetic logic
(QF _LRA) of SMT.

LFSC (“Logical Framework with Side Conditions”) is a proof checker based
on the Edinburgh Logical Framework (LF), a high-level declarative language in
which logics (understood as inference systems over a certain language of formu-
las) can be specified. LFSC increases LF’s flexibility by including support for
computational side conditions on inference rules. These conditions, expressed
in a small functional programming language, enable some parts of a proof to be
established by computation.

In this work, proofs in the LFSC calculus were translated from proofs pro-
duced by Cve3 in its own calculus. Since Cvc3’s proof-generation facility is
deeply embedded in the system’s code, a translation module was added to Cvc3
that traverses the internal data structure storing the proof, and produces an
LFSC proof from it. This translation module consisted of three translation
strategies (which we will call Lit, Lib, LibA), varying in the degree of computa-
tional side conditions in which they incorporate.

The core of this document will be devoted to a formal definition of these
translations.

Document outline. Section 2 introduces necessary definitions, including QF _LRA
terminology and a definition of a proof datatype. Section 3 describes a high level
view of the three translation methods from Cve3 to LESC proofs. Section 4 gives
an overview of the proof calculi on which these translations operate.

A technical description of three Cve3 to LESC proof translations is provided
in Sections 5-7. Section 5 describes the Lit translation that remains mostly
faithful to the structure of the original Cvc3 proof. Section 6 and 7 describe
two alternate translations (Lib and LibA) that attempt to compact portions of
the Cve3 proof into computational side conditions.

Section 8 details the compression we achieve when converting to proof rules
in a proof calculus involving computational side conditions.

2 Preliminaries

2.1 LRA Terms

Define rational constants ¢ and terms ¢ to be of the following format:

cu=mny | 1t
t22:C|’U|t1+t2|t1—t2 ‘ C't1|t1‘C|’L't€(gD,t1,t2)

where n, is an integer numeral, ny is a non-zero integer numeral, and v is a

2.2 QF_LRA Formulas

The following is a describes the format for all QF _LRA formulas used by Cvc3.
We will refer to formulas ¢* as theory atoms.

gOaZZ:tlth‘t1>t2|t12t2|t17ét2|t1<t2|t1§t2
pu=@® [LT [=ple1Ap2] o1V |pr= 02| @1 pa|ite(p, o1,92)

We will write ~ to denote an element of {=, >, >, #, <, <}, > will denote an
element of {>, >}, and < will denote an element of {<, <}. When ~ is =, >, >
7, <, <, we will write ~ to denote #, <, <, =, >, > respectively, and write ~
to denote =, >, >, #, >, > respectively. We will also write (~7 - ~2) to denote
the resulting relation according to the lra_add rules (or their unnormalized
equivalents) in the £ calculus for ~; and ~5. For example (> - >) is > and
(=-2)is >.

2.3 Proofs

Formally introduce a proof datatype P as a triple, containing a set of subproofs,
rule instance, and conclusion formula. We say that P : T' F ¢ iff
(1) P is one of:
({}, assert ,), where ¢ €T, or
{Pr,... P}, 1, 0)
(2) P;:T; o, for all i, for some ¢; and T';,
(3) applying r to @1 ... ¢, produces ¢

For a proof P to be well-formed, we also require a legal choice of I' according
to what is specified by rule r. We will write proofs P graphically as the following,
where P ... P, are the proofs of the premises of P:

Plzl"ll—cpl Pnl"nl—cpn
P:TFo

We will omit annotations (P :) for unnamed subproofs and write P : ¢ as
shorthand for P : ' - ¢ when I' is understood or is not important.

2.4 Polynomials

In order to efficiently manipulate linear real arithmetic terms, LESC will operate
terms that are normalized to a linear polynomial form. A linear polynomial
is of the form (¢ - v1 + ... 4 ¢ - vn) + ¢, where each ¢; is a rational constant,
each v; is a real variable. We will write the symbol p (possibly with subscripts)
to denote such polynomials. Furthermore, we will refer to polynomial atoms
of the form p ~ 0, denoting a formula whose left hand side is an instance of a
polynomial.

We will write el to denote the result of normalizing the expression e to a
polynomial. In the case of normalization occurring in the conclusion of a proof
rule, this normalization is done by the rule’s side condition, which is left implicit
to keep the notation uncluttered.

3 Proof Generation

Proofs in our LFSC calculus for LRA are generated from proofs produced by
Cve3 in its own calculus. We will refer to the former calculus as £ and the latter
as C.

Cvc3 Proof structure Roughly speaking, Cvc3d’s proofs have a two-tiered
structure, typical of solvers based on the DPLL(T) architecture [?], with a
propositional skeleton filled with several theory-specific subproofs. The conclu-
sion is reached by means of propositional or purely equational inferences applied
to a set of input formula and a set of theory lemmas. The latter are disjunctions
of arithmetic atoms deduced from no assumptions, mostly using proof rules
specific to the theory in question—the theory of real arithmetic in this case.
In order to experiment with the declarative/computational continuum, we
implemented three different translations from Cvc3 proofs, differing in how close
they are to the original proof. We refer to these as the literal, the liberal and the
aggressively liberal translation, and name them Lit, Lib, and LibA, respectively.

Literal translation. In the literal translation, Lit, an LFSC proof is produced
directly from Cve3’s proof, using whenever possible £ rules that mirror the
corresponding C rules, and resorting to additional L-specific rules only for those
few C rules that cannot be checked by simple pattern matching (but require, for
instance, to verify that a certain expression in the C rule is a normalized version
of another).

Liberal translation. In the liberal translation Lib, the Cve3 proof is used
as a guide to produce a compact proof that relies on rules with side conditions
specific to L—that is, not encoding a rule of C. The use of side conditions enables
compaction that is otherwise infeasible due to the declarative nature of rules
in the C calculus. In Lib, the subproofs of all theory lemmas are systematically
converted to more compact proofs that use L£-specific rules; the rest of the Cvc3
proof is translated as in the literal translation.

Aggressively Liberal translation. The LibA translation is identical to Lib
except that it tries to compact also parts of the proof that rely on generic

P1 = P2 Y2 = P3 Y1 P12

oS 03 iff_trans % iff_mp

t1 =12 t3 =14 t1 =12 tg =13

_t
o~ s by~ 1 congr_1 R eq-trans
th=ty t3=14 ty =ty
eq_symm
hoals = lyoat; ON8-2 =t ¥
t1 > 1o tog > 13 t1 >ty to>1
e —— = =~ ~ gtacyc
S gt_trans T gt_acy
{0 e} tpred.1 ight_minus_lef
——————— const_pred_
O~c) o L p o0~ 1t right_minus_left
{t' canonical form of ¢} {c non-negative}
- canon mult_pred
t=1 t1 ~ta&c-ty ~c-ta
flip_ineq plus_pred

1 >ty &t <ty t1 ~tyg &t +13 ~to+ 13

Figure 1: Some of Cvc3’s proof rules for QF _LRA.

equality reasoning (for instance, applications of congruence rules), again by us-
ing L-specific rules. This translation uses an adaptive strategy to switch from
L-specific equality rules to C-like equality rules and back, making heuristic deci-
sions on when it is worthwhile to do so. We will see that this switching requires
some additional overhead.

4 The Cvc3 and LFSC Calculi for LRA
4.1 The C Calculus

Although implemented in Cvc3 as a sequent calculus, the fragment of Cve3’s
proof system for QF_LRA can be described mathematically as a natural deduc-
tion calculus. A proof in the C calculus derives a quantifier-free formula ¢ from
a set of assumed LRA formulas I'; all of which are also quantifier-free.

A sample of Cve3’s rules is provided in Figure 1.! Most of the rules are
fairly standard and self-explanatory, with the possible exception of canon, which
asserts an equality between a term t and its equivalent canonical form produced
by Cvc3’s canonizer module. As a whole, these rules are used to represent a
trace of the reasoning used by Cvc3’s decision procedure for QF _LRA.

Although the C calculus itself is quite general, all Cve3 proofs in it are
refutations, that is, they prove L from a set of assumptions I', where I' is a
subset of the formulas whose joint satisfiability Cvc3 was asked to check.

P=0 o mult p>0 {e>0 |
——— lra_mult.c= ————— lra_multc>
(c-p)l=0 (c-p)l >0
p1=0 pa~0 p1~0 py=0
—— lra_add=~ —— lra_sub~=
(p1+p2)d ~0 (p1—p2)d ~0
{c~ 0}) p~0 {p~=0}

——— lra_axiom~ —F lra_contra~
c~0 1

p=>0 p'>0 {p+p =0}
p=0

[ra>>to=

Figure 2: Some of the polynomial rules of L.

4.2 The L Calculus

The LFSC calculus for £ can be described as a proper superset of C. For the
purposes of optimization, both liberal translations use rules to convert arith-
metic terms—denoted by the letter ¢ in the rules—to polynomials—denoted by
p-?

A further set of rules operate only on polynomial atoms and are used by
the liberal translations to generate proofs of LRA lemmas. A sample of these
rules is provided in Figure 2. 3 To ease formatting, side conditions are written
together with the premises, but enclosed in braces. Although side conditions use
the same syntax used in the sequents, they should be read as a mathematical
notation. For example, p = 0 in a premise denotes an atomic formula whose
left-hand side is an arbitrary polynomial and whose right-hand side is the 0
polynomial; in contrast, the side condition {p 4+ p’ = 0}, say, denotes the result
of checking whether the expression p + p’ evaluates to 0 in the polynomial ring
Q[X], where Q is the field of rational numbers and X the set of all variables (or
“free constants” in SMT-LIB parlance).

In the following sections, we use the terminology C proof to refer to a proof

whose rule r belongs to the C calculus, and similarly for £ proof. Note we do
not impose restrictions on the types of subproofs in the proof datatype.

5 Literal Conversion

Translation Ty Define a proof translation operator T : P—P from C
proofs to L proofs. This translation is faithful, that is to say:

Lemma 1 If P: T+ ¢, then T1;(P) : T F .

Although faithful with respect to what is proven, in some cases, T\ may
change the concrete syntax of proofs, including rule names, as well as structural

1A more extensive set of rules is provided in the appendix. Note the complete proof system
is a lot bigger because it supports a much larger logic than QF_LRA.

2These conversion rules can be found in Appendix B.7.

3A complete set of L-specific rules is provided in the appendix.

details that come as consequence of our LFSC implementation. In this section,
we will discuss such exceptions for Ti;t(P).

5.1 Canon

Cvce3 proofs include a variety of canonize rules (including canon_mult, canon_plus,
canon_invert_divide), all of which can be summarized by the canon rule. Say
that P is a proof of the following form:

{t' canonical form of ¢}
P:t=t

canon

Instead of explicitly modeling the Cvc3 canonizer in LFSC, we define T ;(P) as
the following;:

Pl:t=p Py:t'=p {(p—p)l=0}
TLit(P):t:tl

canon

This is to say, we first normalize both ¢ and ¢’ to their polynomial form using
proofs P and Py, and use a computational side condition to verify that p — p’
normalizes to the constant polynomial 0.

5.2 rewrite_and, rewrite_or

Cvc3 uses the coarse grained rules rewrite_and, and rewrite_or to deal with
associativity of conjunctions and disjunctions respectively. We will discuss
rewrite_and in this section, noting that rewrite_or is translated analogously.
Say P is a proof of the following form:

{¢’ canonical form of ¢}
P:os ¢

rewrite_and

where ¢ is o1 A... A, with an arbitrary parenthesization, and ¢’ is equivalent
to ¢ with a different parenthesization, canonized according to Cvc3.

The corresponding rule in LFSC is very similar. Instead of modeling the
Cve3 canonizer, we use a side condition to compute ¢'. We define Ti;:(P) to
be the following, where ¢ | represents the result of reassociating ¢ according to
the LFSC side condition “normalize_and”:

{el=¢'}

W rewrite_and
Lit .

Since we were unable to fully simulate the canonize method used by Cve3,
there are cases in which we must accept an instance of this rule as an axiom.

5.3 cycleConflict

The coarse grained Cve3 rule cycleConflict takes a variable number of premise
inequalities which are jointly unsatisfiable. Say P is a proof of the following
form:

Pty <1ty ... Ppitp<npth
1

cycleConflict

where (t1 <1) A ... A(tp <p t,) = L. 4

To prove these premises to be unsatisfiable, we will first normalize all premises
to polynomial form (using a polynomial normalization operator T}, that will be
defined in Section 6.1) and sum them to obtain an inconsistent polynomial
equation.

Since the LFSC framework does not support type definitions taking a vari-
able number of arguments, we cascade a chain of corresponding polynomial
addition operations. We define 71;:(P) as the following:

P{:p1>10 P2':p2>20

Ira_add>q >
(p1 +p2)b =5 0 e
: P ipn>n0
_n P Ira_add>="_ >
(Lt 4 pn)b 70 O Ira_contra>’
TLit(P) L h "

where P! = T,(Tii(P;)), >} is >1, and >} is (>]_; - >=;) for i > 1.

We claim that the resultant summation (p1 + ...+ pp)d =,_1 0 is indeed a
contradiction. As a consequence of footnote 4, we have that (p; + ...+ pp)d =
(ta —t1) 4+ (t3 —t2) + ... (t1 — tn))d = 0, and >/ _; is >, giving us 0 > 0, a
contradiction.

Note that because cycleConflict is coarse grained, requires a fairly lengthy
corresponding proof in LFSC. However, note that the overhead incurred for this
rule by the literal translation will be comparable to the overhead incurred by
the liberal translations Lib and LibA.

5.4 optimized _subst_op

= Case Say P is a proof of the following form:

P:ti=s ... P,:t,=s,
Pt:t[Sl/tlsn/tn]

optimized_subst_op;

Here, proof P has n subproofs of equalities t; = s;. The rule optimized_subst_op;
will replace s; for ¢; within the right hand side of the conclusion. The conclu-
sion is described in general terms, although the location of replacements s;/¢;

4More precisely, we have that t; <1 t) =t2 <2 th = ... =t, <n t, = t1, where at least
one of =1 ... <, is <.

is restricted and occurs in only one location per pair of terms. Additionally, t
is either (1) an ite expression or (2) an expression of the form ¢, > ... < t,,
where e {+, —,-}.

In the case when ¢ is an ite expression, we make use of the following two
rules:

it@(wl,t,,tl) = ite(wg,t,, 81) tz = S9
ite(1,t2, 1) = ite(ia, s2,51)

ite(wl,tl,t') = Z.te(’(ﬁg, Sl,t/) tz = S9
ite(vr,ty,t2) = ite(ia, 51, 52)

ite_tlogo1

ite_t2,501

We cascade (up to two) applications of these rules, and overall define T} (P)
as the following:

et) = ite(int,0) " TP it = s .
it6(¢7t17t,) = ’Lte(w7 Slatl) TLit(PQ) : t2 = S2 5
Tiie(P) = ite(1, t1,ta) = ite(y), 51, 52)
where 1 is ite_tl,s1 and 2 is ite_t2,501-
Otherwise, when t is an expression of the form t; 0 ... X t,, we define

Tiit(P) as the following:

Tiie(Pr) s t1 =51 Tie(Pr) t ta = s
t1 DXty = 81 X So

. TLit(Pn):tn:Sn
Tiw(P) ity ..., =81 ... <8y,

where 1 is basic_subst_opl.

& Case Say P is a proof of the following form:

P1:(p1<:>¢1 Pni(pn<:>’l/1n
P:ype pi/e1,. .. %0/ en]

optimized_subst_ops

Similarly to the previous section, ¢ is either (1) an ite expression, or (2) a
formula of the form ¢10...0p, where O € {A,V,<}.
In the first case, when ¢ is an ite formula, we use the following two rules:

ite(i/% (PI7 901) ~ it@(’l/)’7 9017 ql)l) Y2 = /(/)2
ite(l/}, Y2, 901) <~ it€(¢/7 ’(/}27 wl)

ite(y, p1,¢") & ite(V',P1,¢") P2 & Po
ite(, 1, p2) < ite(V’, Y1, v2)

iterlosol

iterzosol

We cascade (up to two) applications of these rules, and overall define T} (P)
as the following;:

- - f|
ite(, o,) & ite(,0,0) o Tin(P) : o1 <t .

ite(), p1,¢") & ite(, 1, ¢") Tiie(P2) : p2 < o
TLit(P) : Zt@(l/fa L1, @2) < it€(¢7’¢1,¢2)

2

where 1 is ite_plyso1 and 2 is ite_2,501-

Otherwise, when t is an expression of the form ¢10J... Oy, , we will define
Tiit(P) as the following:

Tie(Pr) c o1 © 1 Tiie(P2) : 2 & o
p10ps & 1y

1

TLit(Pn) D Pn & Un
T(P) : 10 . Opn < 10 O

1

where 1 is basic_subst_ops.

5.5 Default Case

In all other cases for which P is of the following form:

Py ... Py,
P:y

r

We define Ti(P) as the proof:

Tiie(Pr) cp1r .. Tie(Pn) t on
TLit(P) Y2

i

r

where " is the corresponding rule name for r in the LFSC signature.

6 Aggressive Liberal Conversion

In this section we will define the aggressive liberal translation Tijpa. This trans-
lation will be defined in terms of four operators, the first being the literal trans-
lation 7i;; as defined in Section 5. The second, 7}, will be our method of conclud-
ing normalized polynomial formulas from term formulas. The third, T will refer
to proof compression technique involving proofs about normalized polynomials.
The fourth, Tp’1 will be a method of constructing 7i;; proofs from polynomial
proofs.

6.1 Polynomial Normalization Operator 7,

For each theory atom ¢ proven by the Cvc3 proof, we will associate a unique
polynomial atom p ~ 0 such that p ~ 0 is logically equivalent to ¢, that is,
p ~ 0 is true in exactly the same valuations in which ¢ is. For example, for the
equality atom 2z = 2y, this polynomial is (22 — 2y)] = 0.

For a theory atom (or negation thereof) ¢, we will denote its polynomial
equivalent with the notation ¢P. This correspondence is defined as follows:

(tl ~ tg) = (tl — tg)i, ~0 for ~ € {:, >, >}
(tl ~ tg) = (tQ — tl)\l/ ~ 0 for~ € {#, <, <}
(m(ty ~t2))P = (t1 % £2)P
(mp)? = pF
Lemma 2
If @P ::=p ~ 0, then (—)? = (—p)l(=),0.
Lemma 3
P < .

We claim that by using the poly_norm proof rules used in the £ calculus as
well as rules for eliminating negations from theory literals, we can define a proof
translation function T}, : P—P from £ proofs to £ proofs such that:

Lemma 4
If P:TF ¢ and ¢P is defined, then T,,(P) : I' F ¢P.

The precise defintion of T}, and proof of Lemma 4 is omitted here. The gen-
eral idea is that we apply normalization inductively over the structure of terms
(using rules in Section B.7) until we are able to apply a equation normalization
rule (defined in Section B.8) to convert our statement involving terms to one
involving polynomials.

6.2 Polynomial Operator T

Define a proof translation operator T' : P, —P from theory reasoning C proofs
5 to L proofs. This translation is performed incrementally and bottom-up over
the structure of the Cvc3 proof, where applications of rules in C are translated
to applications of corresponding rules for polynomials in £. The translation will
rely on the following invariant:
Invariant 1
(a) For all theory reasoning C proofs P : I' F ¢ where ¢P is defined:
(1) T(P): Tk ¢P.
(b) For all theory reasoning C proofs P : I' 1 < 9, there is a constant ¢ s.t.:
() T(P) : TF (- p1 — pa)b = 0,
(i) o7 == (p1 ~0),
(iif) 3 == (p2 ~ 0),
(iv) ¢ > 0 (if ~ is > or >), ¢ # 0 otherwise.
(c) For all theory reasoning C proofs P : '+ ¢ < T where ¢P is defined:
(i) T(P) : Tk P.
(d) For all theory reasoning C proofs P : '+ ¢ < 1 where ¢? is defined:

5A proof P : ¢ is a theory reasoning C proof if and only if Invariant 1 is defined for P, and
all premise subproofs of P are also theory reasoning C proofs.

10

(1) T(P):TF (—p)P.
(e) For all theory reasoning C proofs P : '+ L:
(i) T(P): T+ L.

Our definition of Invariant 1 is slightly simplified here for the purposes of
clarity. There are specific instances in which our corresponding proof T'(P) may
prove something strictly stronger than what is specified by Invariant 1. Such
cases come as a consequence of a sixth case of Invariant 1 that is defined for
proofs of the form P : ' F @1 = o, which is not mentioned here.

Note that Invariant 1 covers all cases of our definition of T, due to the
following lemma:

Lemma 5
If T(P) is defined, then Invariant 1 holds for P.

All translated proofs T'(P) are at least as strong as the original proof P, due
to the following theorem:

Theorem 1 If P: T+ ¢ and T(P): T F p ~ 0, then p ~ 0 implies ¢.

Proof The proof is constructive and follows from each case of Invariant 1. In
Section 6.3, we will define a translation Tp_l, such that whenever P : I' - ¢ and
T(P):TFp~0, we have that T, ' (T(P)) : I' F . This will suffice as a proof
of Theorem 1, under the assumption that our £ calculus is sound. [J

We will now give a formal definition of all theory reasoning proof rules han-
dled by our translation function T', and show that Invariant 1 is locally main-
tained in each case.

6.2.1 Assertions

Say proof P is an assertion of the assumption ¢, for some ¢ € I'. We claim that
all Cve3 assertions ¢ in the QF_LRA logic are such that ¢P is defined. In this
case, we define T(P) = T,(P’), where P’ is the corresponding assertion of ¢ in
the £ calculus. Furthermore, since ¢P is defined, by Lemma 4, we have that
T(P):T'F P, and thus Invariant 1(a) holds for P.

6.2.2 iff trans

T Case Consider when P is a proof of the following form:

P12(p1¢>g02 PQZQDQ@T
PZ(p1<:>T

iff_trans

By assumption of Invariant 1(b) for P;, we have that T'(P;) : (¢:p1—p2)l = 0,
where ¢ := (p; ~ 0) and ¢ ::= (p2 ~ 0). Note that property (iv) of Invariant
1(b) guarantees that a multiplication of an equation of the form p ~ 0 by the
constant 1 is legal. Assume Invariant 1(c) holds for P,. The following defines
the transformed proof T'(P):

11

T(Pr):(c-pr—p2)l =0 T(P):(p2~0)
(c-pr—p2+p2)l~0
(L-(copr—p2+p2))l~0

Ira_add=~

Ira_mult_c~

We show that Invariant 1(c) holds for P, by noting that (1-(c-p1—p2+p2))| =
p1. Thus, we have T'(P) : ¢! as required by property (i).

1 Case Consider when P is a proof of the following form:

Pi:piro o Poipos L
P:ip,e 1

iff_trans

By assumption of Invariant 1(b) for P;, we have that T(Py) : (¢:p1—p2)l = 0,
where ¢! ::= (p; ~ 0) and ¢ ::= (p2 ~ 0). Note that property (iv) of Invariant
1(b) guarantees that a multiplication of an equation of the form p(=);0 by the
constant 1 is legal. Assume Invariant 1(d) holds for P,. The following defines
the transformed proof T'(P):

T(Py) : (—p2)d(»#),0 T(P1):(c-p1 —p2)d =0
(=p2 — (¢ p1 — p2)) (=)0
(£ (=p2—(c-p1—p2)))4(=),0

lra_sub(); =

Ira_mult_c(~),
We show that Invariant 1(d) holds for P, by noting that (X - (—p2 — (c-p1 —
p2)))d = (=p1)d. Thus, we have T(P) : (—p1)P as required by property (i).

Default Case Consider when P is a proof of the following form:

Pi:pr &9y Pr:pr e g3
P:p1 &3

iff_trans

Assume Invariant 1(b) holds for P; and P,. The following defines the trans-
formed proof T'(P):

T(Py):(ci-p1—p2)d =0

(c2-(c1-p1—p2))l =0 T(P,):(cz-p2—p3)d =0
T(P):(c2-(c1-p1—p2)+(c2-p2—p3))L =0

[ra_mult_c=

Ira_add==

We show that Invariant 1(b) holds for P. Firt note that (c2 - (¢1-p1 —p2) +

(c2-p2—p3))d = ((e2 - ¢1) - p1 — p3)d, giving us property (i). Properties (ii) and
(iii) hold by assumption from Invariant 1(b) for P; and P,. To show property
(iv), note that ¢; # 0 and c¢o # 0 imply ¢z - ¢1 # 0, and similarly for >.

12

6.2.3 iff mp

1 Case Consider when P is a proof of the following form:

P1:(p1 PQZQD1¢>L
Pl

iff_mp

Assume Invariant 1(a) holds for P; and Invariant 1(d) holds for P,. The
following defines the transformed proof T'(P):

T(P):p~0 T(P2):(—pH(*),0

(p+-pI~0
T(P): L

Ira_add~ (=),

Ira_contra~’

where ~' is (~ -(»),).

Note that since ~ is (~ -(=);), ~ is restricted to be one of >, #. Thus, in
both cases we have a contradiction from 0 ~' 0, and Invariant 1(e) holds for P.

Default Case Consider when P is a proof of the following form:

Pi:pr P& @
P

iff_-mp

Assume Invariant 1(a) holds for P;. By assumption of Invariant 1(b) for P,
we have that ¢b ::= pa ~ 0. The following defines the transformed proof T'(P):

T(Pl) P11~ 0 | |t N
(c-p)b~0 T () s (eopy —p2)l =0
T(P):(c-pr—(c-pr—p2))}~0

Ira_sub~=

We show that Invariant 1(a) holds for P, noting that (¢-p1—(c-p1—p2))d = pa.
Thus, T'(P) : ©5, as required by property (i).
6.2.4 iff symm

Consider when P is a proof of the following form:

P1:(p1<:><,02

iff_.symm
P:ps &1 Y

By assumption of Invariant 1(b) for Py, we have that T'(P;) : (¢-p1 —p2)d =
0, where ¢} == (p1 ~ 0) and ¢} ::= (p2 ~ 0). The following defines the
transformed proof T'(P):

13

T(Pr):(c-pr—p2)d =0

Ira_mult_c—
T(P): (—% (cp1—p2))d =0

We show that Invariant 1(b) holds for P. Note that (=2 - (c-p; — p2))| =
(% -p2 —p1)4, giving us property (i). Properties (ii) and (iii) hold by assumption
of Invariant 1(b) for P;. To show property (iv), note that ¢ ~ 0 implies 1 ~ 0

when ~ is > or #.

6.2.5 basic_subst_op

Consider when P is a proof of the following form:

Plltlitg P21t3:t4
Pltht3<:>t2Nt4

basic_subst_op

Assume Invariant 1(a) holds for P; and P,. The following defines the trans-
formed proof T'(P), when ~ € {=,>,>}:
T(Pl) : (tl - tQ)J/ =0 T(PQ) : (tg - t4)l, =0
T(P) : ((tr — t2) — (s —)4 = 0

Ira_sub==

We show that Invariant 1(b) holds for P. Note that ((t1 —t2) — (t3 —t4))} =
(1 (t1 — t3)d — (t2 — ta)})], giving us property (i). By unfolding definitions,
we have properties (ii) and (iii). Property (iv) is satisfied by the constant 1 for
both cases of >, .

The following defines the transformed proof T'(P), when ~ € {#, <, <}:

T(PQ) . (tg — t4)\l, =0 T(Pl) : (tl — tg)l, =0
T(P): ((ts —t4) — (t1 — t2))L =0

Ira_sub==

We show that Invariant 1(b) holds for P. Note that ((t5 —t4) — (t1 —t2)) =
(1 (ts — t1)} — (ta — t2)}), giving us property (i). By unfolding definitions,
we have properties (ii) and (iii). Property (iv) is satisfied by the constant 1 for
both cases of >, .

6.2.6 basic_subst_op_1

Addition Case Consider when P is a proof of the following form:

Plitlztg Pgit3:t4
P2t1+t3:t2+t4

basic_subst_op_1

Assume Invariant 1(a) holds for P; and P,. The following defines the trans-
formed proof T'(P):

14

T(Pl) : (tl — tQ)J, =0 T(PQ) : (t3 — t4)l, =0
T(P) . ((tl - tg) + (t3 - t4))$ = 0

Ira_add==

We show that Invariant 1(a) holds for P, by noting that ((¢; — t2) + (t5 —
t4))\l, = ((t1 + tg) — (tQ + t4))\l,. Thus, T(P) : (tl +it3 =1+ t4)p, as required by
property (i).

Subtraction Case The case for proving the subtraction case is very similar
to the addition case, where instead of lra_add== , we use the LFSC rule
Ira_sub==.

Multiplication Case Consider when P is a proof of the following form:

P1:C:C Pgltlztg
P:c-ti=c-ty

basic_subst_op_1

Assume Invariant 1(a) holds for P,. The following defines the transformed
proof T'(P):

T(Pg) : (tl - tg)\L =0

T(P) : (C . (tl _ t2))\L —0 Ira_mult_c—

We show that Invariant 1(a) holds for P, noting that (¢ - (t1 — t2))} =
((c-t1) — (¢~ ta2))}. Thus, T(P): (c-t1 = ¢~ ta2)P, as required by property (i).

6.2.7 basic_subst_op_0

Not Case Consider when P is a proof of the following forms:

Pty ~tg sty ~iy
P:_‘(tlwtz)@_‘(thtzl)

basic_subst_op_0

Assume that Invariant 1(b) holds for P;. The following defines the trans-
formed proof T'(P):

T(P1):(c-p1—p2)l =0

T(P):(=1-(c-p1 — p2))7¢ ~0 Ira_mult_c—

We show that Invariant 1(b) holds for P. Note that (=1 (c¢-p; —p2))l =
(¢ (=p1) — (=p2)){, giving us property (i). By unfolding our definitions and
relying upon Lemma 2 (twice), we have properties (i) and (iii). Property (iv)
holds as a consequence of our assumption of Invariant 1(b) property (iv) for P;.

15

Unary Minus Case Consider when P is a proof of the following forms:

Plltlitg

m basic_subst_op_0

Assume that Invariant 1(a) holds for P;. The following defines the trans-
formed proof T'(P):

T(Pl) : (tl - tz)\l, =0

T(P): (=1-(ty —t2))L =0 l[ra_mult_c—

We show that Invariant 1(a) holds for P, noting that (=1 - (t; — t2)) =
((=t1) = (—=t2))). Thus, T(P) : (—t; = —t2)P, as required by property (i).

6.2.8 eq_trans

Consider when P is a proof of the following form:

Plitlztg Pgitgztg
P2t1:t3

eqg-trans

Assume Invariant 1(a) holds for P; and P,. The following defines the trans-
formed proof T'(P):

T(Pl) : (tl - tg)\L =0 T(PQ) : (fg - t‘g)i =0
T(P):((t1i —t2) + (t2 —t3))L =0

Ira_add==

We show that Invariant 1(a) holds for P, noting that ((t1 —t2)+ (t2—t3)) =
(t1 —t3)d. Thus, T'(P) : (t1 = t3)P, as required by property (i).
6.2.9 eq.symm

Consider when P is a proof of the following form:

P11t1:t2

eg_symm
P:tQZtl -y

Assume Invariant 1(a) holds for P;. The following defines the transformed
proof T'(P):

T(Py):(t1 —t2)d =0
T(P) . (—1 . (tl — tz))l, =0

Ira_mult_c—

We show that Invariant 1(a) holds for P, noting that (—1 - (t; — t2))} =
(ta —t1)). Thus, T(P) : (t2 = t1)P, as required by property (i).

16

6.2.10 real_shadow

Consider when P is a proof of the following form:

Pty <1t Py:ity <ats
P2t1-</t3

real_shadow

where <’ is (<1 + <2).

Assume Invariant 1(a) holds for P; and P». The following defines the trans-
formed proof T'(P):

T(Pl) : (tz — tl)\L =10 T(PQ) : (tg — tg)\L =9 0
T(P) : ((tz — tl) + (tg - tg))J, =0

Ira_add>1>»
We show that Invariant 1(a) holds for P, noting that ((t2 —t1)+ (t3—t2))} =
(ts —t1)J. Thus, T(P) : (t1 < t3)P, as required by property (i).

6.2.11 real_shadow_eq

Consider when P is a proof of the following form:

P1:t1§t2 Pgitzétl
P:tlztg

real_shadow_eq

Assume Invariant 1(a) holds for P; and P,. The following defines the trans-
formed proof T'(P):

T(Pl) : (tQ - tl)\J/ 2 0 T(PQ) : (tl —tg)i 2 0
T(P) : (tl —tQ)J, =0

lra_>_>_to_=

We have that Invariant 1(a) holds for P, noting that T'(P) : ({1 = t2)?, as
required by property (i).

6.2.12 add_inequalities

Consider when P is a proof of the following form:

P t1 <1 to P25t3~<2t4
Pt +t3 -</t2+t4

add_inequalities

where <’ is (<1 - <2).

Assume Invariant 1(a) holds for P; and P,. The following defines the trans-
formed proof T'(P):

17

T(Pl) : (t2 - tl)J, =10 T(PQ) : (t4 - t3)l, 2 0
T(P) : ((t2 — t1) + (t4 — tg))i, =0

Ira_add>1 =9

We show that Invariant 1(a) holds for P, noting that ((t2 —t1)+ (t4—t3)) =
((t2+t4) — (t1+1t3))d. Thus, T(P) : (t1 +t5 <" t2+14)P, as required by property
(i)

6.2.13 optimized_subst_op

+ Case Consider when P is a proof of the following form:

P11t1:51 PnlthSn
P:ti+...+t,=s1+...+ 58,

optimized_subst_op

Assume Invariant 1(a) holds for P ... P,. The following defines the trans-
formed proof T'(P):

T(P]) 1p1:0 T(P2)2p2:0
(p1+p2)l =0

Ira_add==

T(P,) :p, =0
T(P):(p1+...+p)l =0

Ira_add==

where p; = (t; — s;){ for all i.

We show that Invariant 1(a) holds for P, by noting that (p; + ...+ pp)) =
(t1=s1)+ ...+t —s)d=Et1+...+tn — (851 + ...+ 8p)d. Thus, T(P) :
(t14...+t, =81+ ...+ s,)P, as required by property (i).

Other Cases A similar translation can be used for when P is a proof of the
following form:

P:ti=s1 ... P,:t,=s,
P:ti>x...<xt, =81 X...X 8,

optimized_subst_op

where € {—,-}.

6.2.14 cycleConflict

Consider when P is a proof of the following form:

Pty <1ty ... Ppitp<pth
1

cycleConflict

18

where (t; <1 th) A A (En < t)) = L.

Assume Invariant 1(a) holds for P ... P,. The following defines the trans-
formed proof T'(P):

T(P1):p1>10 T(P3):ps>20
(p1+p2)l =50

Ira_add>1>9

T(P,) :pn >=n0
(pr+...4+p)l =1 0
T(P): L

|ra,add>;l,1 >‘n

Ira_contra>/,

where P/ = T,(Tic(P;)), > is =1, and > is (>=]_; - >;) for i > 1.

Due to the restricted form for the premises used in the cycleConflict rule
(as discussed in section 5.3), the summation (p1 + ... +pp)d >, _1 0:=0>0,
giving us a contradiction. Thus, we have that Invariant 1(e) holds for P.

6.2.15 const_pred

1 Case Consider when P is a proof of the following form:

{0 c}

U7 onst_pred
P:0~c) o L CONSHPrEQ

The following defines the transformed proof T'(P):

m Ira_axiom_(~)

when ~ € {=,>,>}
Ira_axiom_~

T(P):(—c)l =0
when ~ € {#, <, <}

In both cases, we have that Invariant 1(d) holds for P, noting that T'(P) :
(=(0 ~ ¢))? as required by property (i).

T Case Consider when P is a proof of the following form:

{0~¢}

— U7Y const_pred
P:(0~c) e T CONSHPrER

The following defines the transformed proof T'(P) when ~ € {=, > >}:

19

I[ra_axiom_~

T(P):(—c)l~0

when ~ € {=,>,>}
————— lra_axiom_~
T(P):c~, 0
when ~ € {#,<, <}

In both cases, we have that Invariant 1(c) holds for P, noting that T'(P) :
(0 ~ ¢)P as required by property (i).

6.2.16 Equality Axioms

In this section, we consider when P is a proof of any of the following forms:

— 1 . | |
Piti=h refl P:i=(—1)-¢ uminus_to_mult
_ {t' canonical form of ¢}
minus_to_plus ; canon
P:(ty —ta) =t1+ (—1-t2) P:t=t

In all of the above cases, we define T'(P) as:
[ra_axiom—

T(P):0=0

We show that Invariant 1(a) holds for each case of P : t = t/, noting we have
that (t —t')} = 0 in each case. Thus, T'(P) : (t = t')?, giving us property (i) as
required.

6.2.17 Rewrite Axioms

In this section, we consider when P is a proof of any of the following forms:

{c positive}
P:ti <ty c-t1 <c-ts

{¢ non-zero}
P:ti=tysc-ti1=c-ty

mult_ineqn

right_minus_left

P:ti ~to & 0~ty — 1ty P:ti ~to oty +it3 ~1ty+ 13

flip_ineq

P:ti =ty sty <ty Piﬁ(t1-<t2)<:>t174t2

Pl(_\ﬂ(thtg))@(thtQ) P:ti=tao sty =1

m rewrite,eq _refl

In all of the above cases, we define T'(P) as:

m Ira_axiom—

20

mult_eqn

plus_pred

negated_ineq

rewrite_not_not rewrite_eq_symm

We show that Invariant 1 holds for each case of P : ¢ < @a.

Invariant 1(b) holds for mult_ineqn. Note we have that ¢} ::= p > 0 where
p = (t2 — t1), giving us property (ii). We have property (iii), further noting
that @b == (c-p)} = 0. Thus, T(P) : (c-p— (c-p))} = 0, giving us property
(). Property (iv) is satisfied as a result of the Cve3 condition that ¢ is positive.

Similarly for mult_eqn, we have that ¢ ::= p = 0 where p = (t; —t2)J, giving
us property (ii), ¢5 ::= (¢:p)d = 0 for property (iii), and T'(P) : (¢:p—(c-p))d =0
for property (i). Property (iv) is satisfied as a result of the Cve3 condition that
¢ is non-zero.

Invariant 1(c) holds for rewrite_eq_refl. Note that (t — ¢)J = 0, thus, T(P) :
(t = t)P as required by property (i).

Invariant 1(b) holds for all the other cases of P : ¢; < ¢5. Note we have
that @) == @5 == p ~ 0 (that is, they are identical) for some polynomial p,
giving us properties (ii) and (iii). Thus, we have that T(P) : (1-p —p)] = 0,
giving us property (i). Property (iv) is satisfied by the constant 1 for both cases
of >, #.

6.2.18 Miscellaneous Propositional Rules

In this section, we consider when P is a proof of any of the following forms:

Pr: () ~to) ot Pli(ty~t) e T S
P:(ti~t) e T Irr_true Pt~ iff_true_elim
Py (ty ~ta) . P:(ty~ty) & L .
Pio(ti~ty) o L iff_not_false Pt~ 1) iff_false_elim
Pty ~ta) _ Py —(ty ~ ty) _
P : (tl ~ t2) PEN 1 nOt’to’Iﬂ: P . (tl ~ tQ) nOt,nOt,ehm

Assume that Invariant 1 holds for P;. In all of the above cases, we define
T(P) =T(Py). It can be shown that Invariant 1 holds for all cases of P, each
coming as a direct consequence of Invariant 1 holding for P;.

6.3 Patch Operator T,

Define a proof translation function 7, L. P—P from L proofs to £ proofs with
the following property:

Lemma 6
For all C theory reasoning proofs P : I' - ¢, we have Tp_l(T(P)) T E .

In the following section, we will give the definition T, !(T'(P)) for an arbi-
trary theory reasoning C proof P. ¢ We will use three additional proof rules
from the £ calculus in our definition:

6For all other £ proofs P, we define T, }(P’) = P".

21

(] o]

P2

% proof_by_contradiction T impl_intro
P1=> Y2 P2 =01 .
21 S 03 iff_intro

By Lemma 5, we know that Invariant 1 holds for P. In order to define

T, Y (T(P)), we will case split on Invariant 1 for P and show that Lemma 6

holds in each case.

6.3.1 Case (a)

Assume that P : I' + ¢ and Invariant 1(a) holds for P. By property (i) of
Invariant 1(a), T(P) : Ik P . We define T, ' (T(P)) as the following: *

T(P):T1F P Tp(P/) T F ()P
LiE(p+-p)l~0
'L

szl(T(P)) Tk

lra_add~ (»¢);

Ira_contra~'
proof_by_contradiction

where P ::=p ~ 0, P’ is an assertion of -, and I'; = "' U —.

We use proof by contradiction, where we conclude ¢ by proving a contra-
diction under the assumption —¢ asserted by P’. We convert this assump-
tion to a polynomial formula with the proof translation 7, to obtain proof
T,(P’). Lemma 2 tell us that (—¢)P == (—p)l(=),0. We then add this for-
mula with p ~ 0, as proven by T(P), to produce the inconsistent formula
(p+ —p)} ~' 0. Note that ~' is (~ (),), which restricts ~’ to be one of #, >.
Thus (p+ —p)J =0 ~' 0 gives a contradiction for both cases of ~'.

6.3.2 Case (b)

Assume that P : T F ¢ < @9 and Invariant 1(b) holds for P. Thus, we have
that T(P) : (c-p1 —p2)d = 0, ¢} == p1 ~ 0 and ¢ 1= py ~ 0 for some
polynomials p; and ps.

We must prove both directions of the double implication p; < @o. We give
the proof of = (call it P;): 8

Tp(Pll):FQF‘PZl)
PQ - (C']Ql)\lf ~0 Tp(PQ/) : FQ = (“(pg)p 5
FQF(C~p1+*p2)\LN’0 T(P)FQFPZO

Iob(p—p)i~'0 I ,
ToF L ra_contra~

roof_by_contradiction
' o P Y

P1:F|—<p1:>502

impl_intro

"We (implicitly) weaken T'(P) : ' - P to T(P) : T'1 - P for the sake of consistency.
8We (implicitly) weaken T(P): T p =0 to T(P) : T2 F p = 0 for the sake of consistency.

22

where 1 is Ira_multc~, 2 is Ira_add~ ()|, 3 is lra_sub~'=, Pj is an assertion
of 1, P4 is an assertion of —pq, p = (¢:p1—p2)J, ['1 = TUp, and T'y = T U—ps.

We use the implication introduction rule to introduce the assumption 1,
and then use proof by contradiction to introduce the assumption —¢s. These
are converted to polynomial formulas with the proof translation 7}, to obtain
proofs T,(P]) and T,(P;). We multiply p; by ¢ to obtain (c¢- p1)] ~ 0, noting
that property (iv) of Invariant 1(b) guarantees that is a legal constant. By
Lemma 2, we know (—p2)P ::= (—p2)d(=),;0. Thus, we add these formulas to
obtain the equation (¢-p; + —p2)d ~' 0, where ~' is (~ -(»¢);). Similar to Case
(a), this restricts ~’ to be one of #, >. Finally, we subtract p = 0, as proven by
T(P), to obtain (p — p) = 0 ~' 0, giving a contradiction for both cases of ~’.

A similar proof, call it P», gives us the <= direction. Because these two proofs
both involve the subproof T'(P), we introduce T'(P) as a lemma and reference
it in both instances. * Overall, we define T, ' (T(P)) to be:

P1ZFF¢1:>QD2 PQZFFC)OQ:>301

T, YT(P)): Tk ¢ & @

iff_intro

6.3.3 Case (c)
When P : ¢ & T, and Invariant 1(c) holds for P, the proof is similar to Case
(a) in the < direction of the implication, and trivial in the = direction.
6.3.4 Case (d)
When P : ¢ & 1, and Invariant 1(d) holds for P, the proof is similar to Case
(a) in the = direction of the implication, and trivial in the < direction.
6.3.5 Case (e)
When P : L, and Invariant 1(e) holds for P (that is, T'(P) also concludes L),
we define T, (T'(P)) = T(P). O

We are now ready to define the aggressive liberal translation T pa.
Translation Tij,a Define a proof translation operator Tijpa : P—P from C
proofs to L proofs. Say P is a proof in the following form:

Plchl Pncpn
P:yp

r

If all premises P; ... P, can be compacted according to T, and further T is
defined for rule r, we continue applying polynomial compaction to P. Other-
wise, we will revert all proofs of our premises and subsequently use the literal
translation Lit.

9In many cases, it suffices for us to conclude ¢1 = @2 only. For optimization purposes,
such cases are recognized by our translation.

23

Formally, define T{ipa as the following:
For all theory reasoning C proofs P,
TLiva(P) = T(P).
Otherwise,

Tiiba(P) = Tiie(({T, (Tuba(Pr)), - - -, Ty (Tiiba(Po) }, 7,).

7 Liberal Conversion

Translation Ti;, The translation function 7}, : P—P can be described in
terms of the translations 7i;; and T} ;pA.

7.1 Learned Clause
Say P is the following proof of the following form:

Py, oL
P:=—p1 V...V e,

learned_clause

In this case, Tiip(P) = TLiba(P).

7.2 Default Case

For all other proofs P = ({Py,..., P,}, 7, ¢),
Tiin(P) = TLie(({TLin(Pr), - - -, TLin(Pn) }, 1y). O

We claim that all subproofs P of theory lemmas (whose top node is an
instance of the learned_clause rule) are such that T'(P) is defined. Because of
this, we know that Tp‘1 is never called as a sub-routine of Ti;,. That is to say,
we do not incur any overhead as a result of converting from polynomial formulas
to term formulas.

8 Compression for Polynomial Proofs

In the following section, we will discuss all post-processing performed on poly-
nomial portions of the LFSC proof. It is important to note that such processing
occurs at the same time the proof is created, that is to say, all Cve3 to LFSC
translations incorporate this compression and are done in one pass.

8.1 Trivial Addition
Say we generate the following £ proof P:

Pr:p=0 P,:0=0
P:(p+0)=0

Ira_add==

24

In this case, we will return the proof P;.

Similarly, if we generate the £ proof P:
Pr:0=0 Pr:p~0
P:(0+pl~0

Ira_add=~

In this case, we will return the proof Ps.

8.2 Trivial Subtraction

Say we generate the following £ proof P:

Pr:p~0 P:0=0
P:(p—0){~0

Ira_sub~=

In this case, we will return the proof P;.

If we generate the £ proof P:
P:0=0 P:p=0
P:(0-p)l=0

Ira_sub==

We will return the following proof:
P,:p=20
P:(~-1-p)l=0

I[ra_multc~

8.3 Trivial Multiplication

Say we generate the following £ proof P:
Piip~0
=~ lra_multc~

P:(1-p)l~0

In this case, we will return the proof P;.

8.4 Repeated Multiplication

Say we generate the following £ proof P:
Pr:p~0

(c1-pld~0

P:(ca-(c1-p)l~0

Ira_multc~

Ira_multc~

We will return the following proof:
Pr:p~0
P: ((CQ . Cl) p)\LN 0

Ira_multc~

25

Lit Proof Size (KB)
Lib Proof Size (KB)
LibA Proof Size (KB)

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
CVC3 Proof Size (KB) Lit Proof Size (KB) Lit Proof Size (KB)

Figure 3: Comparing proof sizes.
8.5 Addition to Subtraction
Say we generate the following £ proof P:

m I[ra_multc= Py Cpy ~ 0

P((=1-p1) +p2)i ~0

Ira_add=~

We will return the following proof:
Pripy~0 Pr:p =0
P:(pa—p1)}~0

Ira_sub~=

9 Experimental Results

To evaluate the various translations experimentally, we looked at all the QF_LRA
and QF _RDL unsatisfiable benchmarks from SMT-LIB Version 1.2.'° Since we
could not find working alternatives, our results contain no comparisons with
other proof checkers besides LESC. A potential candidate was a former system
developed by Ge and Barrett that used the HOL Light prover as a proof checker
for Cve3 [?]. Unfortunately, that system, which was never tested on QF_LRA
benchmarks and was not kept in sync with the latest developments of Cvc3,
currently breaks on most of these benchmarks. While we expect that it could
be fixed, the required amount of effort is beyond the scope of this work.

We ran our experiments on a Linux machine with two 2.67GHz 4-core Xeon
processors and 8GB of RAM. We will discuss 161 of the 317 unsatisfiable
QF_LRA benchmarks, and 40 of the 113 unsatisfiable QF_RDL benchmarks.
For the rest, either Cve3 could not generate a proof within a timeout of 900
seconds, or produced a proof containing one of the few known rules we could
not support in our translations due to time constraints.

We collected runtimes for the following five main configurations of Cvc3.

cvc: Default, solving benchmarks but with no proof generation.
cvepf: Solving with proof generation in Cvc3’s native format.

lit: Solving with proof generation and literal translation to LFSC.
lib: Solving with proof generation and liberal translation to LFSC.

libA: Like lib but with aggressively liberal translation to LFSC.

0Fach of these benchmarks consists of an unsatisfiable quantifier-free LRA formula.
QF_RDL is a sublogic of QF_LRA.

26

Benchmark Solve + (Proof Gen) + (Proof Conv) (sec) Proof Size (MB) Proof Check Time (sec)

Class # | cvc cvepf lit lib libA IitNT | cvepf it lib libA [itNT| it lib libA |itNT| T%
check-Ira 1 0.1 0.2 0.3 0.2 0.2 02/ 03 05 01 01 01/ 01 00 00 0.03]79%
check-rd| 1 0.1 0.1 0.1 0.1 0.1 0.1 00 00 00 00 00f 00 0.0 00 0.0/48%
clock_synch| 18| 11.7 210 218 217 214 215 91 148 130 74 127 26 23 14 23|17%
gasburner | 19 4.0 7.5 8.6 7.8 7.5 68 85 139 7.7 68 68 25 16 13 12/46%
pursuit 8| 166 266 263 263 262 257 39 51 36 36 34/ 08 07 06 0.6[36%
sal 31/1584.8 3130.5 3254.3 3239.8 3296.9 3285.9(718.6 537.1 472.2 485.9 452.1|275.6 269.0 268.4 262.0| 6%
scheduling | 8| 281.8 322.0 3229 3221 3211 321.1| 184 251 178 124 183| 37 29 22 26[37%
spider 35 102 167 174 174 175 16.8[101 127 111 10.8 108 23 24 20 20|15%
tge 21| 315 548 559 554 559 543 21.0 227 169 17.7 166 42 34 34 3.1|16%
™ 1 176 294 293 290 292 291 13 27 27 27 27| 04 04 04 04| 0%
tta_startup | 25| 29.7 659 684 685 69.9 67.9| 38.8 436 432 492 429 54 56 6.2 53| 3%
uart 9|1074.2 1387.4 1391.2 1434.7 1404.8 1379.1(118.9 1024 76.6 78.8 72.2| 427 37.0 38.0 34.5|/13%
windowreal| 24| 20.6 40.6 41.6 417 424 414| 20.7 221 219 238 21.7[28 29 3.0 29| 3%
Total 201(3082.9 5102.6 5238.0 5264.6 5293.1 5249.7|969.4 802.8 686.9 699.4 660.2|343.2 328.1 327.0 316.8| 8%

Table 1: Cumulative results, grouped by benchmark class. Column 2 gives
the numbers of benchmarks in each class. Columns 3 through 8 give Cvc3’s
(aggregate) runtime for each of the five configurations. Columns 9 through 13
show the proof sizes for each of the 5 proof-producing configurations. Columns
14 through 17 show LFSC proof checking times. The last column gives the
percentage of proof nodes found beneath theory lemmas in Cvc3’s native proofs.

1000 — 1000 -
-_ e
£ 100 & 100
% % ,
£ 10 3 10
o <=
Y (=]
ol -
s =

0.1 0.1

//,/
01 1 10 100 1000
CVC3 Solve (s) CVC3 Solve (s)

Figure 4: Solving times vs. proof checking times.

We also ran a sixth configuration, litN'T, for the purpose of isolating the non-
theory component of proof sizes and checking times. This configuration trusts all
theory lemmas treating them like premises, but otherwise behaves like lit (and
so also like Lib which differs from Lit only on theory lemmas). Comparisons with
litN'T are useful because the liberal translations work mostly by compacting
the theory-specific portion of a proof. Hence, their effectiveness is expected to
be correlated with the amount of theory content of a proof. We measure that as
the percentage of nodes in a Cve3 proof belonging to the (sub)proof of a theory
lemma. For this data set, the average theory content is very low, about 8.3%.

Table 1 shows a summary of our results for various classes of benchmarks.!!
As can be seen there, Cved’s solving times are on average 1.65 times faster
than solving with native proof generation. The translation to LFSC proofs
adds additional overhead, which is however less than 3% on average for all
translations.

The scatter plots in Figure 3 are helpful in comparing proof sizes for the

HDetailed results are available at http://clc.cs.uiowa.edu/tacasil .

27

various configurations.'? The first plot compares proofs in Cve3 native format
against their literal translation Lit. Notice that, except for a couple of outliers,
Lit suffers only a small constant overhead which we believe is due to structural
differences between the Cvc3 and the LFSC proof languages.

The second plot shows that the liberal translation Lib introduces constant
compression factors over the literal translation. A number of benchmarks in
our test set do not benefit from the Lib translation. Such benchmarks are not
heavily dependent on theory reasoning, having a theory content of less than
2%. In contrast, for benchmarks with higher theory content, Lib is effective at
proof compression. Over the set of all benchmarks with enough theory content,
quantified as 10% or more, Lib compresses proof sizes an average of 24%—i.e, a
Lib proof on average uses 24% less space than its corresponding Lit proof. When
focusing on theory lemma subproofs, by subtracting proofs sizes in litN'T from
both lit and lib, the average compression goes up significantly, to 81.3%.

The differences in proof sizes between benchmarks with enough theory con-
tent and the rest are magnified in the LibA translation. With the former set,
LibA compacts the proof size by 26.4% on average. However, LibA suffers on
the other benchmarks, showing a 1% increase in size on average. This can be
attributed to cost incurred by context switching between compact and literal
translation modes as discussed in Section ?7. Overall, Lib is the more effective
of the two liberal translations, showing an average compression of 14%.

Interestingly, in all plots the compression factor is not the same for all bench-
marks, although an analysis of the individual results shows that benchmarks in
the same SMT-LIB family tend to have the same compression factor.

We compared the proof checking times of Lit vs. Lib and LibA, using the
LFSC checker. Perhaps unsurprisingly, their scatter plots (not shown here)
are very similar to the corresponding ones in Figure 3. Over benchmarks with
enough theory content, checking Lib proofs is on average 1.14 times faster than
checking the corresponding Lit proofs. Looking just at proofs of theory lemmas,
this time by subtracting the checking times of litN'T', reveals that proof checking
times are 2.33 times faster for Lib than for Lit.

It is generally expected that proof checking should be substantially faster
than proof generation or even just solving. This is generally the case for both Lit
and Lib when proof checking using compiled side conditions. Compared against
Cvcd’s solving times alone, LESC proof checking times are 8.98 times faster with
Lit proofs, and 9.4 times faster with Lib proofs. A more detailed comparison
(given on a logarithmic scale) can be seen in Figure 4.

12These plots show only the data for proof sizes less that or equal to 5MB. The general
trends shown by these plots are preserved with the addition of larger benchmarks.

28

A C Proof Rules

The following is a representative list of rules in the C calculus. The letters ¢
and t, possibly with subscripts, denote rational constants and arithmetic terms,
respectively.

A.1 Core Rules
[L1 Ao A o]

vVir 0V 1

21V o bool_res o V... =Von learned_clause

A.2 Rewrite Axioms

{0 = ¢} {0~ ¢}

const_pred; const_preds

(0O~c)e L O0O~c)eT
{c positive} e {c non-zero} |
h <ty ot <cfy mutinean h=tyoc t=c f, mutedn
right_minus_left plus_pred

t1~vto e 0~ty — 1 t1 ~to &t +13 ~1a2+ 13

iDL negated_ine
t1 =ttt <ty ﬂlpimeq _‘(tl < tg) Sat 74 to & g

rewrite_eq_refl

t=t)eT =, o, = 'owiteedsymm

{e1 <1 2}

weaker_ineq
0%201+t$0(-<1'-<2) co+1

{01 <—CQ}
0<c +1t :>_|(0§62—t1)

imply_negated_ineq

A.3 Propositional Rules
P1 S P2 P2 <= P3 Y1 P15 P2

o1 S o3 iff_trans e iff_mp
= .
% lfffsym m [CR=3) iff_refl
= = =
L ;’12:;?;3 3 impl_trans PL_PL T P2 %2 P2 impl_mp

29

oo T iff_true

W% iff_not_false

¥
pe L

not_to_iff

——— rewrite_not_not
() & p
P1 <= P2

== basic_subst_op02

(T)ﬁ rewrite_not_true

—— rewrite_iffy
(peT) e

—— rewrite_iffy
(e e e L

P1 = P2 P3S Pa
p11 03 = pald @y
where O € {A, V, &},

A.4 Equality Rules

(pel)e

ng/\.../\(pn

0 iff_true_elim

=T iff_false_elim

P .
” not_not_elim

rewrite_implies
(p1 = p2) & (P2 V —p1) P

rewrite_iff_symm
(1 & p2) = (02 & ©1)

W rewrite_not_false

rewrite_iff;

2 andE

basic_subst_ops

H refl
=ty t3=1, . th =ty to=13
t
bl oty ~ basic_subst_op; T eq_trans
ti1 =ty tz3 =1y . t1 =to
eq_symm
hodls =1, a1 basic_subst_opl — q-sy
A.5 Theory Rules
t1 <1t to <ot < <
Lol2 2225 eal_shadow hsty st real_shadow _eq
t1(=<1 - <2) t3 ty =12
t1 <1ty t3 <9ty . - t1 = 81 .
add_inequalities —>—°%
bt t3(<1 - <o) ta + ta q r— basic_subst_op0;
m uminus_to_mult W rewrite_ite_same

(t1 —tg) =t1 + (—1-t2)

minus_to_plus

{t' canonical form of ¢}
t=t

canon

30

t1 <to+c ta<ti+c2 {c1+c2=0}
ti=1to+ci ANta =11 +co

A.6 CNF Conversion Rules

——— CNF_.imp.0
(01 = p2) V1 P

CNF_imp_2
(1 = p2) Vo1 Voo

CNF_iff_0

(014 p2) V1 Voo

CNF_iff_2
(p1 € v2) Vo1 Voo I

CNF_and_mid

(1 A A n) Vi

CNF_or_mid

- CNFITE.O
—ite(d, o1, 02) V OV @2

- CNFITE_2
ite(¢, v1,p2) V 2 V -1

- CNFITE 4
ite(g, p1,02) V@V o1 V mpo

A.7 Coarse Grained Rules

{¢' canonical form of ¢}
ey

P, :t, <nt

n

P1:t1-<1t/1

L

implyEqualities

CNF_imp_1
(01 = @2) V o P

(P15 92) Vg1 V gy CNFiff1
o1) Vo v, CNFAff3
(@1 A APV 1V ..V g, CNF-andfinal
(1 V.. N o) V1 V... Vo CNF _or final
(0o 7a) VBV gy CNFITEL
ite(G o P V —p oy CNFITES

CNFITE 5

—ite(p, p1,02) Vo1V o2

rewrite_and, rewrite_or

cycleConflict

where (t; <1 t)) A A (ty <p th) = L.

t1h=8 ... tn=358, ..
optimized_subst_op;

t= t[81/t1, ey Sn/tn]

QD1<:>¢1 (pn<:>'[/)n

optimized_subst_ops
P = @[%/Sfm v 7wn/§0n]

31

B L Specific Proof Rules
B.1 Axiom Rules

. {c>0} :
0=0 I[ra_axiom= cS0 Ira_axiom>
{c >0} : {c # 0} :

>0 Ira_axiom> cZ0 Ira_axiom=#

B.2 Equality Deduction Rule

p>0 p'>0 {p+p =0}
p=0

Ira>>to=

B.3 Contradiction Rules

p=0 {p#0} p>0 {p#0}
—— " lra_contra ————— lra_contras
1 1
> =
p=0 {p<0} I[ra_contras M Ira_contra,
1 = 1
B.4 Multiplication Rules
b= Ira_mult p>0 fe>0b o
ra_mult_c— —————— lra_mult_c
(c-p)l= (c-p)d >0 >
> >
M |raimu|tic> ZM |rair'nu|*tic;é
(c-p)d = (erp)l#0
B.5 Addition Rules
p1=0 p2=0 p1>0 p2>0
— = Jra.add—— ————=""— lra_add
(p1+p2)l =0 (p1+p2)l >0 -
p1=>0 p2>0 p1=0 p2>0
=" 2= Jracaddss —— =" — |ra_add_
(p1+p2) >0 == (p1 +p2)l >0 ~
= > >
w Ira_add_> M Ira_adds >
(p1+p2)l >0 = (p1+p2)l>0 -
p=0 p270 Ira_add__

(pr+p2)l #0

32

B.6 Subtraction Rules

p1=0 p2=0 p1 >0 py=0

— % Jrasub__ ——— = lra_sub-_

(p1—p2)d =0 (p1 —p2)l >0 ”
> = =

P20 p2=0 . qp, P7A0 P2=0 g,

(p1—p2) >0 = (pm1—p2)l#0

B.7 Term Normalization Rules

In the rules below ¢; and ¢, denote the same rational constant, in one case
considered of term type and in the other as of polynomial type (similarly for
the variables vy and vy).

th=p1 tla=p2

G=g¢, Poly-norm const PR e poly_norm.
l1=p1 ta=p
=0 poly_norm_var h—ta= (o1 —pa)l poly_norm _
t=p t=p
m poly_norm.. m poly_norm..
— t::(i?p)i poly_norm,,_

f tomize_t t=v poly_norm_atom
o atomizeterm G —7

where v is introduced as a fresh variable in the atomize_term rule.

B.8 Equation Normalization Rules

t1 =ty t1—ta=p th#ta ta—t;=p
oly_norm_ poly_norm
p=0 i p#0 7
>t h-t2=p oly_norm <t tz-t=p oly_norm
D > 0 poly_ > P > O poly_ <

t1 >ty t1—ta=p
p=>0

Sty to—t1=p
p=>0

tq
poly_norm> poly_norm<

33

