
Automated Drumline Rhythm and Instrument Recognition
Levin Leesemann

Department of Computer Science
University of Iowa

14 MacLean Hall, Iowa City, IA 52242
levin-leesemann@uiowa.edu

Abstract - Drumlines typically rely on sheet music or some type of
non-audio record, however acquiring or producing such a
resource can be an expensive and time consuming endeavor.
Previous research and projects have shown that instrument and
rhythm recognition can be achieved using a variety of
approaches, ranging from very complex and sophisticated
systems, to machine learning based approaches. This paper aims
to demonstrate that the capabilities of neural networks and
readily available audio analysis libraries can be used within a
system to help transcribe drumline specific audio recordings.
Instrument recognition and rhythm analysis are the two main
problems when transcribing drumline music, which are
approached by using machine learning and a logical approach,
respectively. The system shows that a neural network is capable
of recognizing drumline instruments from short audio excerpts.
It also shows that accurately identifying common rhythms is
attainable using a simple system that can be expanded to
interpret more complex rhythms.

Index Terms - Machine Learning, Audio Analysis, Drumline

I. INTRODUCTION

Could software aid in dramatically speeding up the
tedious music transcription process? Generally speaking,
music consists of an underlying time structure, rhythm,
melody, harmony, and dynamics. Transcribing music requires
an understanding of each of these aspects to produce an
accurate transcription. When compared to other instruments,
particularly pitched wind and string instruments, drumming is
usually distinguishable by its polyphonic nature, focus on
rhythmic virtuosity, and absence of melodic choice in playing.

For the purposes of this project the focus is on
drumlines, particularly Drum Corps International
(DCI)/Winter Guard International (WGI) and high level
university/high school corps-style drumlines. These types of
drumlines typically consist of multiple drums (snares, basses,
and tenors) with each of them having rhythmically
intricate/complex parts. Drumlines were selected for this
project, since having sheet music is a common tool, and
because having a general non-audio record of a piece of music
is useful for logistical and sharing purposes.

The goal of this paper is to determine the following:
how accurately can software identify both individual drumline
instruments and the rhythms that they are playing? To answer
this question, the paper first discusses previous work on
related subject matter. Next, the methods with their associated
design decisions used for this project will be discussed.
Finally, this paper will discuss the results of the project,
followed by discussion of limitations and future work.

II. PREVIOUS WORK

Detecting what instrument is playing something and
what is being played from an audio file has been shown to be
possible in a number of papers. In a melodic/harmonic
focussed context [1] demonstrated that the intricate differences
in pitch of a piano can be detected using machine learning. [2]
showed how using recordings of approximate hummed
melodies and rhythms could be used to attain results in a
larger system, where recognition was only a small part of it.

A drum set specific application was shown in [3],
demonstrating the possibility of a combined system for both
instrument and rhythmic detection, specific to drums. Similar
to [3], many smaller projects developed by individuals or
small teams, such as [4], demonstrate complete basic drumset
transcription. Different approaches to specifically rhythm
detection have also been shown in [5] and [6], for example.

Building on aspects of the aforementioned work, this
project aims to use proven instrument recognition processes
with neural networks and a modular/expandable rhythm
detection system, to demonstrate how an application that
automatically transcribes a drumline recording into sheet
music could be created using current software.

III. METHODS

Individual drumline instrument parts are commonly
broken down into two main components when being analyzed
for transcription: the rhythm being played and on what part of
the instrument each note is being played (henceforth referred
to as “voicings”). In a drumline setting however, multiple
instruments will be doing this at once. To account for
transcribing multiple instruments in the system, two main
processes are applied to a given drumline recording: an
instrument recognizer that uses a neural network to determine
which instrument(s) are playing a certain note, and a rhythm
detector that looks at what each beat can be subdivided into
(eighth notes, sixteenth note triplets, etc.). Combining
instrument recognition with rhythm detection results in a
system that can accurately represent musical transcriptions of
drumline recordings.

The following libraries are used for this project:
Librosa [7] and SoundFile [8] for audio file processing and
handling, Keras [9] for neural network implementation, and
NumPy [10] for data handling.

1

A. Onset Detection

The distinct staccato nature of percussion
instruments is a large contributor to the unique sound
of drums. Notes can clearly be identified due to the
strong and short transients at the beginning of each
note, which are commonly referred to as onsets.

Onset detection is responsible for detecting
when a new note is starting to be played by either one
or multiple instruments at once, and is a critical part
to both instrument recognition and rhythm detection.
Fig. 1 shows a visual example of where onsets occur
in an audio file.

Fig. 1. Waveforms of two subsequent snare drum hits

[7] contains an implementation that can
detect onsets well when hyperparameters are tweaked
to specific values for drumline instruments. To ensure
the precision of the detected onset times, the system
passes over each of them and adjusts them as
necessary. The adjustment is achieved by creating a
window starting 20ms before the detected onset time,
and 50ms afterwards. The peak amplitude within that
window is then set to be the updated onset time. The
aforementioned window start and end time were
selected to be large enough to ensure that the true
peak of the onset was contained within it, and small
enough to not allow the window to contain peaks
from different onsets.

B. Instrument Recognition

Traditionally, audio is represented in the
waveform format. The waveform format is not ideal
for analysis due to audio being represented by only a
single value at any given point in time. To get good
results, the decision was made to use the spectrogram
format. The conversion from the waveform format to
the spectrogram format was achieved via the
short-time Fourier transform (STFT) function
included in [7]. Unlike the waveform format, the
spectrogram format stores both frequency and
amplitude over time. To a person this makes visually
identifying what instruments might be present at any
given time easier, but it also allows much more
information to be stored about the audio at any given
point in time as well, a crucial part to achieving
successful results with a neural network.

Determining the right amount of data to
analyze for each note was based on the realistic upper
limit of playing ability of experienced individuals in a
drumline setting. Double stroke rolls were considered
to be the limit, due to their low interonset interval
while maintaining easily distinguishable sounds of
notes. Buzz rolls would be the next step up in terms
of note density, however they are much closer to a
continuous note, and thus were not considered.

Ultimately, the window size of data used to
analyze each note was selected to be 50 milliseconds
(these windows of data will henceforth be referred to
as “chunks”). This chunk size was selected to retain
the ability of transcribing audio containing the
aforementioned upper limit of playing ability, and is
therefore the most amount of data available for each
note. The chunk length still contains a small amount
of overhead to account for error in onset detection,
but is evidently long enough to gather sufficient data
for the neural network.

The deep neural network structure used in
[1] was adapted for this system. Fig. 3 shows the
detailed layout of the neural network.

Fig. 3. Neural network architecture

Premature experimentation (Tab. 1) on small
datasets led to the decision to use 2 hidden layers.
Although 3 hidden layers yielded better individual
scores for snare drums than either 1 or 2 hidden
layers did, 2 hidden layers were selected due to
drumline settings rarely having only one instrument
playing at a given time. Section 4.B shows lower
single-instrument performance than multi-instrument
performance, which could possibly stem from the
lower number of hidden layers as well. The neural

2

network model was trained for 10 epochs due to it
being a reasonable balance between accuracy, loss,
and computation time on the hardware used. Fig. 4
shows how the multi-class f-scores (based on [13])
used in this paper were calculated.

1 layers 2 layers 3 layers
All Snares 0.4 0.4 0.69
All Tenors 0.91 0.907 0.91

Mixed 0.264 0.47 0.35

Tab. 1. F-scores of models with different numbers of hidden layers,
trained on small datasets

𝑓–𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠) = 2 · 𝑝𝑟𝑒𝑠𝑖𝑜𝑛(𝑐𝑙𝑎𝑠𝑠) · 𝑟𝑒𝑐𝑎𝑙𝑙(𝑐𝑙𝑎𝑠𝑠)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑐𝑙𝑎𝑠𝑠) + 𝑟𝑒𝑐𝑎𝑙𝑙(𝑐𝑙𝑎𝑠𝑠)

Fig. 4. Multi-class f-score formula

The input layer takes in the aforementioned
50 millisecond chunks, which are extracted starting at
each onset, and then passed to the STFT function to
be converted from the waveform format to the
spectrogram format. These formatted chunks are
flattened before entering the input layer. Two hidden
layers, identical to the input layer in design, then
further evaluate the input, before an output containing
the most likely instrument(s) present within the
chunk is given. This evaluation process is repeated
for each chunk.

C. Rhythm Detection

A number of approaches were conceived for
rhythm detection, including options using neural
networks. To limit the scope of the system, the
decision was made to use beat-by-beat evaluation. It
is a common way to listen to music, is simple to
implement, covers the majority of common rhythms,
and is easily expandable (see section 5.B). The
implementation of the system handles groupings of
one, two, three, and four notes for any given beat.
These groupings correspond to quarter, eighth,
quarter-note triplets, and sixteenth notes, respectively.

Using the time difference between each
onset and the time at which each beat occurs, each
onset is assigned to the corresponding beat it falls
under. Subsequently, the subdivision for each beat is
extracted by seeing under which subdivision grid
each of the onsets aligns.

Detecting what subdivision occurs at a given
beat is achieved by applying the following process
for each subdivision: divide the beat length by the
maximum number of notes the subdivision can
contain, compare the times calculated with the times
of each note, and keep the first subdivision that the
notes apply to (if ascending from one to four notes
while checking each subdivision, as is done in the

system’s implementation). The tempo of the
recording is needed for this process, and since it is
commonly known or relatively easy to determine, it
is entered by the user when the system is run.

A numeric example can be used to explain
how a subdivision’s times are calculated: if a beat
length is 0.5 seconds for example (given a beats per
minute value of 120) and the beat occurs 20 seconds
into the audio file, then the sixteenth note (4 notes per
beat) subdivision would have notes occurring at the
following times: 20.000, 20.125, 20.250, and 20.375.

Fig. 2 shows a high-level example of how a
beat is evaluated using the above outlined method.

Fig. 2. Visual representation of how onsets fill a sixteenth note
subdivision

It is important to note that the beat could
have also been broken down into the thirty-second
note subdivision (or an even finer subdivision for that
matter), however the most sensible approach is to use
the simplest subdivision possible.

D. Data Generation

Most pieces of drumline music don’t contain
each combination of instrument voices, however it is
very probable that any combination of instrument
voices can occur in a set of drumline audio
recordings. To account for this in the system, short
chunks (the same ones used in the neural network)
from isolated instruments are extracted individually.
The number of chunks extracted for a given
instrument exists to avoid overfitting to a specific
audio recording, and was chosen to be in the ranges
shown in Tab. 2.

Instrument # of chunks
extracted

of unique
instrument

voices
Snare Drums Low 10’s 1
Tenor Drums Low 100’s 4 - 6
Bass Drums Low 100’s 5 - 8

Tab. 2. Number of audio chunks used per instrument for neural
network dataset generation

Isolated instrument chunks are combined
with isolated chunks of other instruments in each
realistic way possible to create multi-instrument

3

chunks. Due to extensive computation time from file
combination and creation, multi-instrument chunks
were selected to be limited in the system by a value n
that determines every nth single-instrument chunk
that should be used during the combination process.
The first chunk is selected randomly between the first
and nth file, which prevents the neural network from
training and testing on the same chunks every time
the system is run.

IV. RESULTS

A. Instrument Recognition

To measure the main performance of the
neural network, the f-score metric was used. For
reasonable computation time, an n value (described in
section 4.D) of 8 was used to generate
multi-instrument files, yielding just under 13,000
files with the audio files used. Training was done
with a randomized 80:20 (training:test) split. The
results (Tab. 4 and Tab. 5) reveal information that
likely has some intuitive reasoning behind it.

Snare
Drums

Bass
Drums

Tenor
Drums

F-score 0.995 0.991 0.989
Precision 0.995 0.990 0.989

Recall 0.995 0.993 0.990
Accuracy 0.991 0.984 0.979

Tab. 4. F-scores for individual instruments

Singles Doubles Triples
Accuracy 77.04% 85.42% 98.98%

Tab. 5. Accuracy for each number of instrument combinations

The lower accuracy of tenors and bass
drums hints at their similar timbres leading to
mislabeling between the two. Investigation into cases
of individual mislabeling revealed that the two are
often mistaken for each other, or in the case of
multiple instruments being present at once, the chunk
being evaluated is thought to have both of the
instruments when there is only one, or vice versa.

With an n value of 8 being used, the number
of multi-instrument files created was cut down from
around 3,300,000 to just 13,000. Using more
multi-instrument files would likely result in even
better outcomes in all of the categories that were
evaluated. It should be noted however, that increasing
the number of multi-instrument files without
increasing the number of single-instrument files will
likely lead to the neural network mislabeling more
single-instrument chunks as multi-instrument chunks.

B. Rhythm Detection

To evaluate each of the subdivisions that
were implemented for this system, a short recording
produced in [12], that contained variations of each of
the subdivisions, was used (Fig. 5). The variations
vary in how many notes they have, where each of the
notes are located within the subdivision, and whether
a downbeat is present.

Fig. 5. Musical notation of the snare drum recording

For the recording in question, the system’s
determinations (Tab. 3) were accurate, and clearly
demonstrate how the beat-by-beat approach of
evaluation logically works.

Having a visual representation of how the
system evaluates each rhythm shows how additional
subdivisions can easily be added. It also gives an
intuition as to how adding support for rhythmic
groupings longer or shorter than a beat can be
achieved by adapting some of the same subdivisions
used in the single beat subdivision recognition to
those different grouping lengths.

Beat Subdivision Detected Notes
1 Eighth 1, 2
2 Sixteenth 1, 2, 3, 4
3 Eighth 1, 2
4 Eighth-Triplet 1, 2, 3
5 Sixteenth 1, 4
6 Eighth 1, 2
7 Sixteenth 1, 2, 4
8 Eighth 1, 2
9 Eighth 1, 2
10 Sixteenth 3, 4
11 Eighth 1, 2
12 Sixteenth 3, 4
13 Sixteenth 1, 3, 4
14 Eighth 1, 2
15 Sixteenth 1, 4
16 Eighth-Triplet 1, 2, 3
17 Quarter 1

Tab. 3. Extracted subdivision for each beat, including which notes
of the subdivision were found to be matched

4

V. DISCUSSION

A. Limitations

As discussed in section 1, DCI/WGI-style
(also known as corps-style) drumline recordings are
the main focus of this system. On one hand, this helps
limit inconsistent time-keeping, “dirt”
(inconsistencies in rhythm across multiple players),
and irregular drum sounds/tuning schemes. On the
other hand it doesn’t allow for the system to be used
for show-style drumming. The latter style focuses
more on entertainment, leaving out the more complex
rhythms, and being more tolerant to dirt.

Pitch differences between different sized
tenors and bass drums vary from one audio recording
to another, which can lead to it being very difficult
for an accurate transcription to be made without an
accompanying video of each instrument, or
recordings of each instrument voice for a given
drumline. To limit the scope of this system, all notes
that contain tenor or bass drums are simply grouped
into a single tenor or bass drum label.

Cymbals are part of certain drumlines as
well, although not as common as snare, bass, and
tenor drums. Due to cymbals being substantially
different in timbre to drums (crashes, chokes, taps,
zings, sizzles, etc.) and their relative rarity, the
decision was made to omit them from this system. To
account for the different sounds cymbals can make, a
different approach would need to be taken to this
system; likely one that is more similar to traditional
instrument recognition that handles held notes and
releases, such as is the case with many melodic
instruments.

B. Future Work

To allow the system to recognize the
individual voices of an instrument, an approach of
progressively mapping the pitches heard in a
recording to a guessed structure of the recorded
drumline could be taken. Having a recording of each
individual drum and considering them individual
instruments within this system would likely be more
reliable, but not be feasible in all situations. A cross
between both of the aforementioned approaches, in
which common voicings for each instrument have
already been trained on, could be taken, with the
model adapting to the voicings in a recording over
time to get better results, specific to that recording.

Parsing the information received from this
system into a tool such as LilyPond [11] would result
in a system that could simply take in a drumline
audio file and return a well-formatted piece of sheet
music. The information received from the system

could also be parsed into a MIDI format so that
systems such as MuseScore [12] could import a
generated MIDI file and modify, correct, or further
add to the transcription generated by the system. To
achieve this, the current system would need to be
automated to the point where all a user would have to
do is run the system while passing in a drumline
audio file and the associated tempo. The output
would simply be a piece of sheet music or MIDI file.

The number of rhythmic combinations is
endless, due to factors such as subdivision group
length (the system only accounts for lengths of 1
beat for instance), partial rhythms, nested rhythms,
and ratio rhythms. A system accounting for each
possibility would need to be very substantial.
Building on the current system however, adding
individual subsystems to address each different
rhythmical concept could be one approach to allow
the system to understand more complex rhythms.
This approach would result in a very modular design
in which each subsystem could be individually
adjusted and evaluated.

It should be noted however, that due to the
nature of drumline music, the endless combinations
of rhythms are limited to maintain playability while
marching. Drumlines generally march or “mark time”
(quasi marching in place) to a constant pulse,
typically the quarter note, and are only rarely at a
standstill. This leads drumline music to generally
only contain subdivisions of 1, 2, 3, 4, 6, and 8. More
advanced drumlines will also include subdivisions of
5, 7, and 9, although occurrences of them are rare.
These subdivisions lend themselves well to the
system described in this paper, due to the simplicity
with which they can be detected and implemented.

VI. CONCLUSION

The results of the main processes suggest that current
software is capable of performing two of the main tasks of
transcription specific to drumlines: rhythm detection and
instrument recognition. In retrospect, changes to the
parameters of the neural network, onset detection approach,
and rhythm detection could likely yield better results.
Adjusting the current processes and further developing them
along with new processes into one fully automated system
seems to be an attainable goal. The processes that make up the
system in its current state exist almost completely separately,
apart from shared files, data structures, and a few key
functions.

5

REFERENCES

[1] L. Li, I. Ni, and L. Yang, “Music Transcription Using Deep Learning,” Stanford University, Stanford, CA, 2017

[2] N. Mostafa, Y. Wan, U. Amitabh, and P. Fung, “A Machine Learning based Music Retrieval and Recommendation
System.” [Online]. Available: https://aclanthology.org/L16-1312.pdf. [Accessed: 04-May-2022].

[3] C.-W. Wu, C. Dittmar, C. Southall, R. Vog, G. Widmer, J. Hockman, M. Muller, and A. Lerch, “A Review of
AutomaticDrum Transcription” [Online]. Available: https://core.ac.uk/download/225490566.pdf.
[Accessed: 04-May-2022].

[4] Southall, C. (n.d.). Carlsouthall/adtlib: Automated Drum Transcription Library. GitHub. Retrieved April 16, 2022, from
https://github.com/CarlSouthall/ADTLib

[5] C. Raphael, “Automated Rhythm Transcription.” [Online]. Available: https://ismir2001.ismir.net/pdf/raphael.pdf.
[Accessed: 04-May-2022].

[6] A. Elowsson, “Tempo-Invariant Processing of Rhythm with Convolutional Neural Networks.” [Online]. Available:
https://arxiv.org/ftp/arxiv/papers/1804/1804.08661.pdf. [Accessed: 04-May-2022].

[7] “Librosa,” librosa. [Online]. Available: https://librosa.org/doc/latest/index.html#. [Accessed: 19-Mar-2022].

[8] “Soundfile,” SoundFile. [Online]. Available: https://pysoundfile.readthedocs.io/en/latest/. [Accessed: 19-Mar-2022].

[9] K. Team, “Simple. flexible. powerful.,” Keras. [Online]. Available: https://keras.io/. [Accessed: 19-Mar-2022].

[10] NumPy. [Online]. Available: https://numpy.org/. [Accessed: 19-Mar-2022].

[11] “Music notation for everyone,” LilyPond. [Online]. Available: http://lilypond.org/. [Accessed: 20-Mar-2022].

[12] “Create, play and print beautiful sheet music,” MuseScore. [Online]. Available: https://musescore.org/en. [Accessed:
20-Mar-2022].

[13] B. Shmueli, “Multi-class metrics made simple, part II: The F1-score,” Towards Data Science, 03-Jul-2020. [Online].
Available: https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1.
[Accessed: 12-Apr-2022].

6

https://core.ac.uk/download/225490566.pdf
https://ismir2001.ismir.net/pdf/raphael.pdf

