Machine Learning Approach Identifies Dysbiotic Oral Communities in Multiple Sclerosis

Feb 13th 2024
Objective

Uncover the oral microbial signatures of Relapsing Remitting Multiple Sclerosis
Multiple Sclerosis

- Neurodegenerative autoimmune disease of the CNS
- 2.8 million people worldwide
- Relapsing-Remitting makes up 85% of all MS cases
- Myelin sheath is attacked by immune cells and the regeneration is limited
- Linked to genetics and environment
 - Gut microbiome

Image from the National Multiple Sclerosis Society
Oral Microbiome

• Linked to neurodegenerative diseases
 • Alzheimer’s
 • Parkinson’s
• After gut, 2nd most diverse microbiome
 • ~700 bacterial species
• Limited current MS research (3 papers)
 • Small sample sizes
 • Only genus level resolution

Methods

- **Cohort**
 - RRMS, adults from the University of Iowa MS Clinic
 - HC, adults from the University of Iowa College of Nursing
 - No autoimmune disease or prior oral health conditions
 - Quit smoking at least 10 years ago (n=5), or never smoked
 - No antibiotics within the last 3 months

- **Saliva collection in clinic**
- **Shotgun metagenomic sequencing**
- **Data analysis with Argon and R**

<table>
<thead>
<tr>
<th></th>
<th>RRMS (n=48)</th>
<th>HC (n=49)</th>
<th>Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (avg +/- sd)</td>
<td>28.68 +/- 5.16</td>
<td>26.21 +/- 5.36</td>
<td>Linear Regression (n.s.) *</td>
</tr>
<tr>
<td>Age (avg +/- sd)</td>
<td>42.02 +/- 8.64</td>
<td>43.08 +/- 18.66</td>
<td>T.test, p = 0.7197</td>
</tr>
<tr>
<td>Female/Male/Intersex</td>
<td>43:5:0</td>
<td>28:21:0</td>
<td>Linear Regression (n.s.) *</td>
</tr>
</tbody>
</table>

* Linear regression showed no significant difference at the species level
Is bacterial diversity altered in RRMS?

- Observe the richness and evenness of the present bacteria as well as the community structure.
- Alpha (Shannon) and beta (Aitchison) diversity significantly different between HC and RRMS.
What specific species are altered in RRMS?

- 96 bacteria significantly altered
 - 46 higher in RRMS
 - 50 higher in HC
What specific species are altered in RRMS?

- 96 bacteria significantly altered
 - 46 higher in RRMS
 - 50 higher in HC
- 28 *Streptococcus* species lower in RRMS
 - 1st inhabitants
 - Predominate the OM
 - High abundance associated with “health” in subgingival plaque studies *
 - *S. sanguinis* produces H_2O_2
What about the *community* of bacteria?

- Micro-ecosystem
 - Gene expression
 - Resources
- Topic Modeling: Unsupervised machine learning
 - Discover key patterns or themes within a set of data
- Community Patterns
What about the community of bacteria?

- Ideal topic number
- Built topic model with 33 topics
- 5 topics significantly more often assigned HC samples
5 significant bacterial communities

- Ideal topic number
- Built topic model with 33 topics
- 5 topics significantly more often assigned to HC samples
Topic 28 most often assigned to HC

- *S. salivarius* most often assigned species
- *S. parasanguinis* and *S. sanguinis* were associated with “health” in microbiome studies
- *P. melaninogenica* increased in oral microbiome of patients with RA and AD
- *V. parvula* and *S. gordonii* coaggregate and alter gene of one another

![Image of a heat map representing the community type 28 with Log2FC 6.442 in HC (p=1e-05 q=0.00044).]
Conclusions

• First oral microbiome study with:
 – large cohort of RRMS patients
 – Shotgun metagenomics
 – Unveiling dysbiotic communities linked to RRMS

• Many oral bacteria are linked to RRMS
 – Streptococcus species of interest
 – Coaggregation of species
 – Overlap with other chronic inflammatory diseases

• Future direction: Utilize a mouse model to explore if healthy communities (topics) can reduce severity of disease
Thank you!

- Dr. Ashutosh Mangalam
- Dr. Sukirth Ganesan
- Leeann Aguilar Meza
- Dr. Jeffrey Banas
- Dr. Grant Brown
- Dr. Albert Erives
- Mangalam Lab

- T90 funding from the College of Dentistry
 - Special thanks to Drs. Levy, Drake, and Banas
- F31 from the NIH