

Machine Learning Approach Identifies Dysbiotic Oral Communities in Multiple Sclerosis

Feb 13th 2024

Objective

Uncover the oral microbial signatures of Relapsing Remitting Multiple Sclerosis

Multiple Sclerosis

- Neurodegenerative autoimmune disease of the CNS
- 2.8 million people worldwide
- Relapsing-Remitting makes up 85% of all MS cases
- Myelin sheath is attacked by immune cells and the regeneration is limited
- Linked to genetics and environment
 - Gut microbiome

Oral Microbiome

- Linked to neurodegenerative diseases
 - Alzheimer's
 - Parkinson's
- After gut, 2nd most diverse microbiome
 - ~700 bacterial species
- Limited current MS research (3 papers)
 - Small sample sizes
 - Only genus level resolution

Methods

- Cohort
 - RRMS, adults from the University of Iowa MS Clinic
 - HC, adults from the University of Iowa College of Nursing
 - · No autoimmune disease or prior oral health conditions
 - Quit smoking at least 10 years ago (n=5), or never smoked
 - No antibiotics within the last 3 months
- Saliva collection in clinic
- Shotgun metagenomic sequencing
- Data analysis with Argon and R

	RRMS (n=48)	HC (n=49)	Stats
BMI (avg +/- sd)	28.68 +/- 5.16	26.21 +/- 5.36	Linear Regression (n.s.) *
Age (avg +/- sd)	42.02 +/- 8.64	43.08 +/- 18.66	T.test, p = 0.7197
Female/Male/Intersex	43:5:0	28:21:0	Linear Regression (n.s.) *

^{*} Linear regression showed no significant difference at the species level

Is bacterial diversity altered in RRMS?

- Observe the richness and evenness of the present bacteria as well as the community structure
- Alpha (Shannon) and beta (Aitchison) diversity significantly different between HC and RRMS

What specific species are altered in RRMS?

- 96 bacteria significantly altered
 - −46 higher in RRMS
 - -50 higher in HC

What specific species are altered in RRMS?

- 96 bacteria significantly altered
 - -46 higher in RRMS
 - −50 higher in HC
- 28 Streptococcus species lower in RRMS
 - -1st inhabitants
 - -Predominate the OM
 - High abundance associated with "health" in subgingival plaque studies *
 - -S. sanguinis produces H_2O_2

What about the community of bacteria?

- Micro-ecosystem
 - Gene expression
 - Resources
- Topic Modeling: Unsupervised machine learning
- Discover key patterns or themes within a set of data
- Community Patterns

What about the community of bacteria?

- Ideal topic number
- Built topic model with 33 topics
- 5 topics significantly more often assigned HC samples

5 significant bacterial communities

- Ideal topic number
- Built topic model with 33 topics
- 5 topics significantly more often assigned HC samples

Topic 28 most often assigned to HC

- · S. salivarius most often assigned species
- · S. parasanguinis and S. sanguinis were associated with "health" in microbiome studies
- P. melaninogenica increased in oral microbiome of patients with RA and AD
- V. parvula and S. gordonii coaggregate and alter gene of one another

Conclusions

- First oral microbiome study with:
 - large cohort of RRMS patients
 - Shotgun metagenomics
 - Unveiling dysbiotic communities linked to RRMS
- Many oral bacteria are linked to RRMS
 - Streptococcus species of interest
 - Coaggregation of species
 - Overlap with other chronic inflammatory diseases
- Future direction: Utilize a mouse model to explore if healthy communities (topics) can reduce severity of disease

Thank you!

- Dr. Ashutosh Mangalam
- Dr. Sukirth Ganesan
- Leeann Aguilar Meza
- Dr. Jeffrey Banas
- Dr. Grant Brown
- Dr. Albert Erives
- Mangalam Lab
- T90 funding from the College of Dentistry
 - Special thanks to Drs. Levy, Drake, and Banas
- F31 from the NIH

