
https://VeriNum.org

Formally Verified Numerical Methods
Andrew Appel
Princeton University

David Bindel
Cornell University

Find x such that Ax=b Let A be positive definite,
find R upper triangular such RTR =AMethod: let D be the diagonal of A, let N=A-D,

iterate: xn+1 = D-1(b – N xn)

General Approach Example: Differential Equation

Example: Jacobi iteration Example: Cholesky decomposition

Mathematical specification to be approximated

Real-valued functional model of algorithm

Floating point functional model of algorithm

 C program

Coq proof: C program exactly
refines float functional model

Coq proof: bound the
floating-point roundoff error

Coq proof: bound the
method error

method error proof

roundoff error proof

program + data structures proof

Coq:
compose

all
proofs
into
main

theorem

Coq:
combine

errors
using

triangle
inequality

for (n = 0; n < N; n++) {
 a = -(s->q);
 s->q = s->q + h * s->p + (0.5f * (h * h)) * a;
 s->p = s->p + (0.5f * h) * (a + -(s->q));
 t = t + h;
}

Ariel E. Kellison & Andrew W. Appel,
Verified Numerical Methods for Ordinary Differential Equations,
NSV’22: Workshop on Numerical Software Verification, 2022.

Mohit Tekriwal, Andrew W. Appel, Ariel E. Kellison, David Bindel, and Jean-Baptiste Jeannin.
Verified correctness, accuracy, and convergence of a stationary iterative linear solver: Jacobi method
16th Conference on Intelligent Computer Mathematics, September 2023.

 Floating-point accuracy proof in Coq: based on,
Pierre Roux, Formal Proofs of Rounding Error Bounds,
Journal of Automated Reasoning, Volume 57, pages 135–156, (2016).

C program correctness proof in Coq: work in progress, using VST.

Verified

Software
Toolchain

VCFloat2
 Floating-point
 roundoff error
 analysis tool
 in Coq

LAProof
 Verified
 linear algebra
 library

Why3
Intermediate
language for
verification

Num
Floating-point
roundoff analysis
via typechecking

Libraries and Tools

Broader Impact:

Andrew W. Appel & Ariel E. Kellison
VCFloat2: Floating-point Error Analysis in Coq,
CPP'24: ACM SIGPLAN International Conference on
Certified Programs and Proofs, 2024

Andrew W. Appel et al.
Foundational program logic and
proof system for verifying C programs,
2011-2024

Joshua M. Cohen and
Philip Johnson-Freyd.
A Formalization of
Core Why3 in Coq.
POPL 2024: 51st ACM SIGPLAN
Symposium on Principles of
Programming Languages, 2024.

Ariel E. Kellison & Justin Hsu
Numerical Fuzz: A Type System
for Rounding Error Analysis.
PLDI’24: ACM SIGPLAN Conf. on Programming
Language Design and Implementation, 2024

 Ariel E. Kellison, Andrew W. Appel, Mohit
 Tekriwal, and David Bindel
LAProof: a library of formal accuracy and
correctness proofs for sparse linear algebra
programs. 30th IEEE International Symposium on
Computer Arithmetic, 2023.

void cholesky (unsigned n, double A[N][N], double R[N][N]) {
 unsigned i,j,k; double s;
 for (j=0; j<n; j++) {
 for (i=0; i<j; i++) {
 s = A[i][j];
 for (k=0; k<i; k++) s -= R[k][i]*R[k][j];
 R[i][j]=s/R[i][i];
 }
 s = A[j][j];
 for (k=0; k<j; k++) {
 double rkj = R[k][j];
 s -= rkj*rkj;
 }
 R[j][j] = sqrt(s);
 }
}

Theorem (proved in Coq):

Given matrix A and vector b
satisfying our preconditions,
the C program will converge
within k iterations;
and the residual will be
 within the tolerance.

Theorem (proved in Coq):

After N time steps,
the absolute error in
position or momentum
will be within the
specified tolerance.

One trend in computer architecture motivates accuracy guarantees more than ever:
Supercomputers are no longer designed for scientific computing
(with 64-bit, 128-bit floating point); they are sold for machine
learning (with 32-bit, 16-bit, 8-bit floating point).
Can no longer aim for accuracy by just throwing extra bits of
precision at the problem!

The 2024 Formal Methods in the Field PI Meeting (2024 FMitF PI Meeting)
November 12-13, 2024 | The University of Iowa | Iowa City, Iowa

Machine-checked proofs of numerical accuracy and program correctness,
end-to-end from foundational specifications of C language semantics,

IEEE floating point, to high-level problem specification

