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Find x  such that Ax=b Let A be positive definite, 
find R  upper triangular such RTR =AMethod: let D be the diagonal of A, let N=A-D,

iterate:      xn+1 = D-1(b – N xn )

General Approach Example: Differential Equation

Example: Jacobi iteration Example: Cholesky decomposition

Mathematical specification to be approximated

Real-valued functional model of algorithm

Floating point functional model of algorithm

                       C program

Coq proof: C program exactly
refines float functional model

Coq proof: bound the
floating-point roundoff error

Coq proof: bound the
method error
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roundoff error proof
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combine
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for (n = 0; n < N; n++) {
   a = -(s->q);
   s->q = s->q + h * s->p + (0.5f * (h * h)) * a;
   s->p = s->p + (0.5f *  h) * (a + -(s->q));
   t = t + h;
}
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    Floating-point accuracy proof in Coq: based on,
Pierre Roux, Formal Proofs of Rounding Error Bounds,
Journal of Automated Reasoning, Volume 57, pages 135–156, (2016).

C program correctness proof in Coq: work in progress, using VST.
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void cholesky (unsigned n, double A[N][N], double R[N][N]) {
  unsigned i,j,k; double s;
  for (j=0; j<n; j++) {
     for (i=0; i<j; i++) {
       s = A[i][j];
       for (k=0; k<i; k++) s -= R[k][i]*R[k][j];
       R[i][j]=s/R[i][i];
     }
     s = A[j][j];
     for (k=0; k<j; k++) {
       double rkj = R[k][j];
       s -= rkj*rkj;
     }
     R[j][j] = sqrt(s);
  }
}

Theorem (proved in Coq):

Given matrix A and vector b
satisfying our preconditions,
the C program will converge
within k iterations; 
and the residual will be
 within the tolerance.

Theorem (proved in Coq):

After N time steps,
the absolute error in
position or momentum
will be within the 
specified tolerance.

One trend in computer architecture motivates accuracy guarantees more than ever:
Supercomputers are no longer designed for scientific computing 
(with 64-bit, 128-bit floating point); they are sold for machine 
learning (with 32-bit, 16-bit, 8-bit floating point).
Can no longer aim for accuracy by just throwing extra bits of
precision at the problem! 
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Machine-checked proofs of numerical accuracy and program correctness, 
end-to-end from foundational specifications of  C language semantics, 

IEEE floating point, to high-level problem specification    


