
The NSF Formal Methods in the Field PI Meeting (2024 FMitF PI Meeting) 
November 12-13, 2024 | The University of Iowa | Iowa City, Iowa

Partial Observability (RLC 2024 [3]) 
• Problem: most domains are not fully observable! Remove 

this assumption (but include observability in model). 
• Example environment: Flashlight 

• Synthesize: a decentralized shield where each agent 
operates on local observations, rather than global state. 

• At any state, all joint actions in the Cartesian product of 
the enabled individual actions for that state's 
observations should be safe at that state. 

• Low Observability: Must decide on protocol in advance. 
• Encode constraints on action selection as a SAT problem. 
• Adding bounded history helps, at cost of synthesis time. 

• Resulting shield can be executed independently by agents 
with no communication in partially observable domains. 

• Results: our method prevents safety violations in newly-
possible domains. Table: task-specific reward over 10 
seeds, with safety violations in parentheses, if any.
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Overview 
• Even if agents have individual goals, they 

must collaborate to enforce safety. 
• Collision avoidance (warehouse robots, 

cars, planes), datacenter temperature  
control (multiple zones), etc. 

• Agents may have limited communication with each other 
(either by default, or as a failure state). 

• Two different approaches to solving tasks: 

• Goal: Combine the best parts of FM and RL to provide 
rigorous safety guarantees that scale to large 
environments, while also solving agent-specific tasks.

• Able to guarantee safety 
and correctness 

• Difficult to scale to large 
environments with 
many agents

• Cannot guarantee safety 
or correctness 

• Can often solve 
problems in complex 
multi-agent domains
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Key Problems 
• In no-communication environments, can local 

observations be relied upon to enforce safety? 
• This problem is undecidable in general [1]. Can we find 

a solution for a useful subset of tasks? 
• Is a complete manually-constructed model of the 

environment necessary, or can a sufficient model be 
learned through interaction? 

• How can hard constraints be implemented without 
negatively affecting, or even potentially improving, 
reinforcement learning's ability to optimize for reward?

Learning Through Interaction (Ongoing) 
• Environment does not have any model available—assume 

training environment allows limited safety violations. 
• Learn centralized model of safety with a neural network 

that is structurally constrained to allow decentralization. 

Broader Impacts 
• Potential to allow MARL to be used for the first time in 

safety-critical systems by providing rigorous safety 
guarantees, transforming the way these systems are 
developed and deployed. 

• PIs have a history and plans to broaden participation in 
research and involve undergraduate students.

Decentralized Shields (Preliminary Work [2]) 

• Given: Model of an environment, safety specification. 
• Environment is assumed to be fully observable. 
• Safety specification is defined as set of unsafe states. 

• Synthesize: Decentralized shield such that each agent can 
independently decide if an individual action is safe. 

• Choose sets of individual actions such that all joint 
actions in their Cartesian product is safe. 

• Experiments: successfully enforces safety in gridworld 
collision-avoidance domain, including momentum task. 
• 0 collisions during training or evaluation, compared to 

thousands during training without shield. 
• Next step: can we remove input assumptions?
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