
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cedar: a new language for
expressive, fast, safe, and
analyzable authorization
Emina Torlak
Sr Principal Applied Scientist, AWS
Affiliate Professor at the University of Washington

Joint work with
Craig Disselkoen, Aaron Eline, Shaobo He, Kyle Headley, Mike Hicks, Kesha Hietala, John Kastner, Anwar
Mamat, Darin McAdams, Matt McCutchen, Neha Rungta, and Andrew Wells

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is authorization?

• Document authoring
• Social media
• Trouble Ticketing
• Payroll
• On-line gaming
• Project management
• Microservices

Determining who can do what
in a multi-user application

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is hard about authorization?

The theory is known …
but hard to implement

• Role-based access control (RBAC)
• Attribute-based access control (ABAC)
• Relation-based access control (ReBAC)

q author
q audit
q maintain

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is hard about authorization? An example

q author
q audit
q maintain

Allow users and teams
to create, manage, and
share task lists

TinyTodo✓

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

List123

name: “Demo”
owner: User::"aaron"
editors: Team::”interns”
readers: Team::”temp”
tasks: [...]

users and teams

task lists

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is hard about authorization? An example

q author
q audit
q maintain

Allow users and teams
to create, manage, and
share task lists

TinyTodo✓
users and teams

task lists

✗
✗
✗

def get_list(request):

list = db.query(request.listId)
 return { 'id': list.id, 'owner': list.owner, ... }

if not request.user in db.query(admin):
 if db.query(request.listId).owner != request.user:
 if not request.user in db.query(request.listId).readers:
 if not request.user in db.query(request.listId).editors:
 return 'AccessDenied'

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

List123

name: “Demo”
owner: User::"aaron"
editors: Team::”interns”
readers: Team::”temp”
tasks: [...]

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Better authorization: policies as code

q author
q audit
q maintain

TinyTodo✓
Allow users and teams
to create, manage, and
share task lists

✓
✓
✓

Delegate decision to an
authorization engine

Policies written in an
authorization language

def get_list(request):

list = db.query(request.listId)
 return { 'id': list.id, 'owner': list.owner, ... }

if not is_authorized(request):
 return 'AccessDenied'

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cedar: a new authorization language

Powers Amazon Verified Permissions
and AWS Verified Access

Open source at
https://github.com/cedar-policy

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Verification guided
development:
formal verification &
differential testing

What is unique about Cedar?

Cedar offers a new way
to balance these criteria
to achieve analyzability
(OOPSLA 2024)

Cedar is the first
authorization language
built with high
assurance (FSE 2024)

Performance

Expressiveness

Analyzability

Safety

Ergonomics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cedar: design & development highlights

PerformanceExpressiveness

Analyzability

Safety

Ergonomics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cedar: design & development highlights

PerformanceExpressiveness

Analyzability

Safety

Ergonomics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Syntax
Effect: either permit or forbid

Scope: (optionally) constrains the
principal, action, and
resource using == and in

Condition(s): boolean expression
prefixed by when or unless that
further constrains access

Policy
permit (
 principal,
 action == Action::"GetList",
 resource)
when {
 principal in resource.readers ||
 principal in resource.editors
};

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Syntax, data model
Policy

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

Entities: Hierarchy

List123

name: “Demo”
owner: User::"aaron"
editors: Team::”interns”
readers: Team::”temp”
tasks: [...]

Entities: Attributes

permit (
 principal,
 action == Action::"GetList",
 resource)
when {
 principal in resource.readers ||
 principal in resource.editors
};

Application entities with
hierarchy and attributes

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

(, , ,)
Request

Syntax, data model

👩🦳
kesha

principal

GetList

action
List123

resource

Policy

context

{}

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

Entities: Hierarchy

List123

name: “Demo”
owner: User::"aaron"
editors: Team::”interns”
readers: Team::”temp”
tasks: [...]

Entities: Attributes

(, , ,{})👩🦳
kesha

GetList

List123

Request

permit (
 principal,
 action == Action::"GetList",
 resource)
when {
 principal in resource.readers ||
 principal in resource.editors
};

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Syntax, data model, and semantics
Policy

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

List123

name: “Demo”
owner: aaron
editors: interns
readers: temp
tasks: [...]

(, , ,{})👩🦳
kesha

GetList

List123

Request

✓

Request allowed when:
• it satisfies at least one permit
• and no forbid policies

permit (
 principal,
 action == Action::"GetList",
 resource)
when {
 principal in resource.readers ||
 principal in resource.editors
};

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Syntax, data model, and semantics
Policy

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

List123

name: “Demo”
owner: aaron
editors: interns
readers: temp
tasks: [...]

✗

Request allowed when:
• it satisfies at least one permit
• and no forbid policies

permit (
 principal,
 action == Action::"GetList",
 resource)
when {
 principal in resource.readers ||
 principal in resource.editors
};

(Default deny)

👱(, , ,{})
emma

GetList

List123

Request

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

permit (
 principal,
 action == Action::"GetList",
 resource)
when {
 principal in resource.readers ||
 principal in resource.editors
};

Syntax, data model, and semantics
Policy Request

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

List123

name: “Demo”
owner: aaron
editors: interns
readers: temp
tasks: [...]

permit (
 principal in Team::"admin",
 action,
 resource);

✓ 👱(, , ,{})
emma

GetList

List123

Request

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

(, , ,{})
andrew

CreateList🧔
TinyTodo

✗
(Explicit deny)

permit (
 principal,
 action == Action::"GetList",
 resource)
when {
 principal in resource.readers ||
 principal in resource.editors
};

Syntax, data model, and semantics
Policy Request

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

List123

name: “Demo”
owner: aaron
editors: interns
readers: temp
tasks: [...]

permit (
 principal in Team::"admin",
 action,
 resource);

forbid (
 principal in Team::"temp",
 action == Action::"CreateList",
 resource == Application::"TinyTodo");

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Syntax, data model, and semantics for ...

• role-based access control (RBAC)
• attribute-based access control (ABAC)
• relation-based access control (ReBAC)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

permit (
 principal in Team::"admin",
 action,
 resource);

forbid (
 principal in Team::"temp",
 action == Action::"CreateList",
 resource == Application::"TinyTodo");

Syntax, data model, and semantics

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

Hierarchy for Roles

List123

name: “Demo”
owner: User::"aaron"
editors: Team::”interns”
readers: Team::”temp”
tasks: [...]

in: transitive
membership

Key idea for O(1) in checks: it operates on
the transitive closure of the entity hierarchy,
given as a map from entities to their
ancestors (sets of entities).

: RBAC

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Syntax, data model, and semantics

/ 👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

: ABAC

permit (
 principal,
 action,
 resource)
when {
 resource has owner &&
 resource.owner == principal
};

Hierarchy

Attributes

for Roles

for Conditions

List123

name: “Demo”
owner: User::"aaron"
editors: Team::”interns”
readers: Team::”temp”
tasks: [...]

Conditions are pure, loop-free expressions:
== , in, set membership, conditionals, !, &&,
||, wildcard matching, ...

Evaluation time O(n) typical, O(n3) worst case

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Syntax, data model, and semantics

permit (
 principal,
 action == Action::"GetList",
 resource)
when {
 principal in resource.readers ||
 principal in resource.editors
};

👱 👩🦳🧔 🧑🦱

temp

admin

andrew aaronkeshaemma

interns

Hierarchy

: ReBAC

Attributes+
= Relations

“principal is related to resource via the readers relation
 or
principal is related to resource via the editors relation”

List123

name: “Demo”
owner: User::"aaron"
editors: Team::”interns”
readers: Team::”temp”
tasks: [...]

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cedar: design & development highlights

PerformanceExpressiveness

Analyzability

Safety

Ergonomics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PerformanceExpressiveness

Analyzability

Safety

Ergonomics

Cedar: design & development highlights

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Schema

Policy validation for safety

Valid?

permit(
principal,
action == Action::"GetList",
resource)
when {
principal in resource.readers ||
principal in resource.editors
};

Can detect: improper entity relationship, misspelling of
action, unrecognized attributes, illegal operations, …

Key features: path-sensitive request-type handling,
flow-sensitive capability tracking, singleton types

Theorem (soundness): If validation succeeds, policy
evaluation will exhibit no run-time type errors.

entity Application;
entity Team, User in [Team];
entity List {
 readers: Team,
 editors: Team,
 owner: User,
 tasks: Set<Task>,
 name: String
};
action GetList appliesTo {
 principal: [User],
 resource: [List]
};

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Policy analysis for semantic reasoning

Answers universal questions
about the behavior of policies
on all possible inputs—all
requests and entities

Example (equivalence): do two
(sets of) policies produce the
same decision on all inputs?

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example policy analysis: equivalence

Same decision
on all inputs?

=

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example policy analysis: equivalence

✗

🧑🦱
aaron

interns

TinyTodoGetOwnedLists(, , ,){}

✓ ✗

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example policy analysis: equivalence

✓

Works by symbolically compiling
policies to logical formulas, and
using an SMT solver to check that
the negation of the desired
property is unsatisfiable.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Theorem (soundness and completeness): policy analysis based on
symbolic compilation produces no false negatives and no false positives.

Policy analysis by symbolic compilation to SMT

Key challenge: how to encode the fact
that hierarchies are DAGs while
remaining decidable (i.e., without
transitive closure or quantifiers)?

Symbolic compilation: type-
directed reduction to a decidable
fragment of SMT (uninterpreted
functions, bitvectors, strings,
ADTs, and finite sets)

M,Γ ⊢ e ↓ t
Schema Expression

Symbolic termSymbolic
environment

Solution: observe that an expression e can
access only a finite set of entities. Compute
an overapproximation of that set, and use it
to ground acyclicity and transitivity
constraints on hierarchies.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PerformanceExpressiveness

Analyzability

Safety

Ergonomics

Cedar: design & development highlights

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PerformanceExpressiveness

Analyzability

Safety

Ergonomics

Cedar: design & development highlights

Built with high assurance

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cedar
production

A fast runtime with Rust

§ Request
§ Entity data
§ Policies

Allow/Deny
Diagnostics

authorizer

evaluator

< 10 μs for a typical input

42.8×-80.8× faster than OPA Rego
28.7×-35.2× faster than OpenFGA

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A fast & safe runtime with Rust, DRT

Cedar
production

Cedar
specification

=
Differential
Random
Testing

§ Request
§ Entity data
§ Policies

x 1,000,000

Allow/Deny
Diagnostics

Allow/Deny
Diagnostics

=?
no

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A fast & safe runtime with Rust, DRT, and Lean

Cedar
specification

§ Default deny
§ Deny overrides allow
§ Sound slicing
§ Validator soundness
§ Symbolic compiler

soundness/completeness

proof
⟹

Is the language
specification safe?
Does it satisfy key
properties?

6 bugs
found due to
failed proof

attempts

L∃∀N

Cedar
production

Differential
Random
Testing

26 bugs
found by DRT

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cedar: expressive, fast, safe, analyzable authz

https://github.com/cedar-policyPerformanceExpressiveness

Analyzability

Safety

Ergonomics

Built with high assurance

