
The NSF Formal Methods in the Field PI Meeting (2024 FMitF PI Meeting)
November 12-13, 2024 | The University of Iowa | Iowa City, Iowa

FMitF: Track I: Safe, Efficient Persistent Memory Systems, 2220410
PI(s): Brian Demsky and Anton Burtsev
Institution(s): University of California, Irvine and University of Utah

Add Your Logo and/or project info here

Award ID#:

Challenge:
• Research is motivated by ensuring crash consistency of software

systems that use emerging persistent memory and CXL shared
memory technologies.

• Critical gap to be addressed is a lack of techniques to verify crash
consistency of persistent memory software

• Transformative because the project will allow developers to have
significantly more assurance that their software is crash consistent.

Objective:
Build tools to support the development of persistent memory software
that is crash consistent by construction. Evaluate these tools on a range
of high-performance systems to ensure that they are flexible enough to
allow the construction of real-world systems.

Broader Impacts and Outreach:
• Persistent memory and CXL shared memory technologies
have the potential to enable higher performance systems.
Crash consistency is a major challenge in their development.
The project has the potential to eliminate crash consistency
bugs.
• The PIs have introduced topics related to this work into their
graduate courses.

Broader Impacts:
Persistent memory and CXL shared memory has the potential
to transform how programs store and process data. A major
threat to this potential is crash consistency. The proposed
research will develop new tools to assure safety even in the
presence of crashes

Key Insight:
Operations on many crash consistent data structures have the
following structure:
(1) Logically or physically private writes that do not change

the logical state of the data structure.
(2) A commit store that logically changes the state of the data

structure.
(3) A number of helping actions that change the physical state

of the data structure, but not its logical state.

Use type systems to verify that code follows this structure.
Linear types + logical guards to check for private data.
Then prove that all well-typed programs are crash consistent.
Use type information to insert flush and fence operations.

Crash-
Lang

Program

Type
Checker

Flush and
Fence

Insertion

Rust
Code

private struct QNode {
var elem : T;
once next : QNode;

}
public struct Queue {

spec head : QNode;
help<next> tail : QNode;
// Helping action CASes this value to tail.next.
// Since next is a once field, the helping action
// needs to be done when it is assigned.

}
public def enqueue :

W (q : Queue, e : T) : void {
let n = new Node;
n.elem = consume e;
tryEnqueue(q, consume n);

}
private def tryEnqueue :

W (q : Queue, n : pristine QNode) : void {
let oldTail = q.tail;
if (try(oldTail.next = n))

help q;
} else {a

tryEnqueue(q, consume n);
}

}

Code for Treiber Stack

Formal reasoning about Rust code: Rust + Verus

Practical, low-burden reasoning about low-level systems code

• Linear types (Rust) - restricted aliasing model, no explicit
annotations about heap

• Fast, automated SMT-based verification (Verus) - efficient
encoding into Z3 (most proofs finish under a second)

Possibility to reason about unsafe pointer operations, avoid
trust in unsafe Rust extensions and standard library.

Possibility to reason about concurrent code.

Sidestep complexity of verification, concentrate on models of
the system and the hardware.

Information flow control to track unpersistent state

• Leverage Rust procedural macros to annotate code and track
unpersisted state

• Use verification to reconstruct corner cases and develop
persistence proof

0

5

10

15

20

25

1 2 4 8 16

Treiber Stack

CrashLang Hand-Written

	FMitF: Track I: Safe, Efficient Persistent Memory Systems, 2220410�

