FMitF: Track I: A Holistic Approach Towards Online Monitoring of Integrated Circuits and Systems

Konstantinos Mamouras (PI) and Kaiyuan Yang (co-PI), Rice University https://www.nsf.gov/awardsearch/showAward?AWD_ID=2319572

Overview and Challenges

Integrated circuits and systems go through a rigorous process of verification and testing, yet errors remain hard to eliminate. There are various sources of errors:

- Unintentional design bugs
- **Maliciously** modified hardware components ("trojans") Design-time verification and testing cannot eliminate bugs or

Approach

Introduce a "last line of defense": online *monitoring* of fabricated hardware components during normal deployment and operation:

- Detect conditions that violate the system's integrity and security
- Detect the activation of trojans

malicious modifications introduced during fabrication. Moreover, hardware trojans are hard to detect in post-silicon testing.

Enable higher-level corrective actions

 $inc \coloneqq edge \land P_{[1,D]}edge$ $rst \coloneqq edge \land \neg P_{[1,D]}edge$ $c_1 \coloneqq Count(inc, rst)$ $trig_1 \coloneqq (c_1 \ge k)$ $c_2 \coloneqq CountWnd(edge, k \cdot D)$ $trig_2 \coloneqq (c_2 \ge k)$ $trigger \coloneqq trig_1 \lor trig_2$

Main Objectives

- Theoretical/Software Foundations
 - Design of high-level monitor specification languages
 - Design of hardware-friendly computational primitives
 - Compilation from specifications to hardware

Scientific Impact

- □ The project advances specification-based runtime verification and online monitoring for hardware
 - New algorithms for monitoring a specification

Scalable and Programmable Hardware Accelerator

- Design of ultra-efficient circuits for computational primitives
- Creation of hardware programming toolchain
- Prototyping of full-stack systems \bullet

Testbed Development and Applications

- Chip fabrication and testbed development
- Benchmarks for maliciously modified hardware (e.g., A2 trojan)
- Suite of monitoring benchmarks \bullet

formalism that combines Metric Temporal Logic (MTL) with regular expressions.

- Novel hardware design for event detection and pattern matching over streams
 - Hardware acceleration for patterns with nondeterminism & succinct counting using NFAs with counters and bit vectors

Monitoring benchmark for hardware trojans

Broader Impact on Society

- Improve the reliability, safety, lacksquareand security of the hardware that forms the basis of modern computing infrastructure
- Bring trust to international \bullet cooperation for hardware design and fabrication

Broader Impact on Education

Curriculum development to integrate material on online monitoring and hardwareaccelerated pattern matching in existing courses.

Broader Impact on Participation

- The project has been providing training to graduate and undergraduate students
- The PIs organize summer research experiences for Houston-area high-school students

The NSF Formal Methods in the Field PI Meeting (2024 FMitF PI Meeting) November 12-13, 2024 | The University of Iowa | Iowa City, Iowa