
The NSF Formal Methods in the Field PI Meeting (2024 FMitF PI Meeting)
November 12-13, 2024 | The University of Iowa | Iowa City, Iowa

Formal Methods
in Software Support
for Sound Experimentation

PIs: Emma Tosch and Chris Martens, Northeastern University

Motivating Challenge:
No automated enforcement nor validation of consistency between hypotheses,
experiments, and analyses; undetected violations of internal validity can lead to
issues with replication and reproducibility.
Approach:
• Domain-specific languages for encoding hypotheses and experiments.
• Enforce consistency via program analysis.
• Integrate with legacy tooling for both data collection and statistical analyses.

Add Your Logo and/or project info here

Award ID#:

Broader Impacts
• FOSS with target user population

beyond computing
• Jupyter notebook extension for

interactive experimental design to
support adoption

• Potential to identify scientific
misinformation or invalid studies
generated by malicious AI

Broader Scientific Impacts
• Empirical Sciences: Encoding past
studies yields novel insights into
sources of (in)validity.
• Formal Methods: Hypotheses as
types for experiments.
• Aid in replication, reproducibility,
and auditing, reducing overhead to
validate findings.

Grant Outputs
• Workshop keynote on artifact

evaluation
• PostDoc mentorship at NEU
• Robotics & Software Engineering

Seminar Talks
• NEU Coop Student funding and

mentorship (Kevin Yang)
• Three UVM Graduate Students

involved in early work

ExistingHelical

Formulate
Hypotheses

(HyPL)

Design
Procedure

(ExPL)

Run
Executable

Perform
Analysis

2. You create your experiment in ExPL:
Helical detects you’re testing a specific
refined hypothesis.

Corresponding ExPL encoding
for prog in config.benchmarks @(samples prog rams) do
 for optlevel in O do
 run prog.compile optlevel > @(intervenes O)
 for trialid in [1..config.ntrials] @(samples mstate) do
 run config.timing prog.exec > @(measures P)
 done
 done
done

HyPL encoding of prior work as described in
Mytkowicz et al., ASPLOS 2009
O : { ‘-O2, '-O3 }
P : nat

(programs) P <- O
(programs) assert (P | O = '-O3) > (P | O = '-O2) Programs

Machine State

O

P

Programs

Machine State

O

P

3. You can rework your hypothesis or collect data.
This ex: Helical ensures the effect of Optimization on
Performance is identifiable.

1. You have a hypothesis; HyPL helps:
Optimization level -O3 is better than -O2

Am I asking the
correct

questions?

I better rework
my experiment;
it can be better!

Now I have
confidence in

what I’m testing.

Solution:
• Specification language and tool support to tightly couple hypotheses and experiments.
• Static and dynamic analysis tools to automate checking that statistical analyses are
consistent with hypotheses and data collection.

	Formal Methods �in Software Support �for Sound Experimentation

