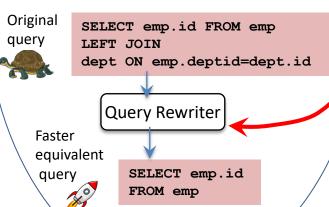

Automatic Discovery and Verification of Database Query Transformations

Challenge:

- Rule Discovery:
- ➤ How to define the search space and enumerate rules?
- Rule Verification:
- ➤ How to prove query equivalence based on semantics instead of syntax?


W NYU Yale

Scientific Impact:

- The first tool for the automatic discovery of SQL rewrite rules.
- State-of-the-art SQL equivalence checker based on the theory of LIA*
- A new theory extending general SMT theory with multisets and Presburger arithmetic

Solution:

- Model rules as <q_s, q_d, c> for enumeration
 - ightharpoonup q_s, q_d: templated queries with symbols for table/column names.
 - > c: a constraint relating symbols of q_s, q_d
- Semantics-based rule verification
 - ➤ Query → U-expression → LIA* → LIA
 - ➤ LIA* enables reasoning "sums with unbounded domain" in U-expr

Online rule-based rewrite

Award ID: fmitf-2220407

New York University, Yale University
Jinyang Li (jinyang@cs.nyu.edu), Ruzica Piskac (ruzica.piskac@yale.edu)

Broader Impact and Broader Participation:

- All database-backed applications benefit from faster queries.
 - ➤ Newly discovered rules have fixed 38 out 50 Github issues in Gitlab etc.
- Our verifier is being used by database classes for autograding
- Provided undergrad research opportunity
- Created new course materials at NYU

