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approach to quotients in a nontraditional theory

- Foundational theory for logic,

  math and computer science

- Commonly built on the

  lambda calculus

- Most common core is the

  Calculus of Constructions (CoC)

  (with function types, type

  quantification, etc)

(e.g. Agda and Coq)
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Inductive Definitions

Dependent Pair

Inductive Identity Type

CoC

Implicit (or erased)

Function Types

Dependent Intersections

Primitive Equality

Inductive Definitions are

derived from these components

A Q

c

rA partitioned by ~

Given:

Then: Q is a quotient of A by ~

such that

Then

Example:

reduce to

irreducible fraction

Given A Define

sort

- Not all quotients are definable

in the above sense

(e.g. unordered pairs)

- Not all definable quotients

can be defined as inductive types

- Quotients give a different

perspective on constructing types

Quotients give two different

meanings for a concept:

Proofs can benefit from both

Projections can get in the way

of equalities between views:

This prevents projections from

interfering with equalities

between Q and A

1. Quotients by idempotent functions hide the

equivalence relation ~

2. Cedille's encoding of quotients by idempotent

functions gives you, additionally, subtypes

Given A and ~

Define: such that

Then

Equivalent to traditional definition

Example:


