
Partial Type Constructors in Practice

Apoorv Ingle Alex Hubers J. Garrett Morris

The University of Iowa, USA

Motivation

Kind checking rules out nonsensical types

∆ ⊢ τ : κ → κ′ ∆ ⊢ σ : κ(tapp)
∆ ⊢ τ σ : κ′

2 / 42

Motivation

Kind checking rules out nonsensical types

[Int] is well defined

Int [] is nonsensical

3 / 42

Motivation

Kind checking rules out nonsensical types

[Int] is well kinded

∆ ⊢ [] : ∗ → ∗ ∆ ⊢ Int : ∗
∆ ⊢ [Int] : ∗

Int [] is ill kinded

∆ ⊢ Int : ∗ ∆ ⊢ [] : ∗ → ∗
∆ ⊢ Int [] : ???

4 / 42

Motivation

Does kind checking rule out nonsensical types?

[Int] is well kinded and well defined

Int [] is ill kinded and nonsensical

5 / 42

Defining Partial Types: Motivation

Does kind checking rule out all nonsensical types?

No :(

∆ ⊢ Set : ∗ → ∗ ∆ ⊢ Int → Int : ∗
∆ ⊢ Set (Int → Int) : ∗

Elements of Set need to be ordered

Int → Int is not ordered in Haskell

6 / 42

Defining Partial Types: Motivation

Does kind checking rule out all nonsensical types? No :(

∆ ⊢ Set : ∗ → ∗ ∆ ⊢ Int → Int : ∗
∆ ⊢ Set (Int → Int) : ∗

Elements of Set need to be ordered

Int → Int is not ordered in Haskell

6 / 42

Motivation

There are more partial types

data Ratio a = . . . -- a better satisfy Integral a

data UArray i e = . . . -- i better satisfy Ix i and e be Unboxed

data StateT s m a = . . . -- m better satisfy Monad m

7 / 42

Motivation

Problem:
Current Haskell assumes all types are total

Consequences:

1 Library writers need to explicitly write extra constraints
singleton :: Ord a ⇒ a → Set a

2 Partial datatypes cannot leverage typeclass abstractions
Constrained Functor Problem

instance Functor Set where

fmap :: (a → b) → Set a → Set b

-- mapSet :: (Ord a, Ord b) ⇒ (a → b) → Set a → Set b

fmap = mapSet -- Typechecking fails!

8 / 42

Motivation

Problem:
Current Haskell assumes all types are total
Consequences:

1 Library writers need to explicitly write extra constraints
singleton :: Ord a ⇒ a → Set a

2 Partial datatypes cannot leverage typeclass abstractions
Constrained Functor Problem

instance Functor Set where

fmap :: (a → b) → Set a → Set b

-- mapSet :: (Ord a, Ord b) ⇒ (a → b) → Set a → Set b

fmap = mapSet -- Typechecking fails!

8 / 42

Motivation

Problem:
Current Haskell assumes all types are total
Consequences:

1 Library writers need to explicitly write extra constraints
singleton :: Ord a ⇒ a → Set a

2 Partial datatypes cannot leverage typeclass abstractions
Constrained Functor Problem

instance Functor Set where

fmap :: (a → b) → Set a → Set b

-- mapSet :: (Ord a, Ord b) ⇒ (a → b) → Set a → Set b

fmap = mapSet -- Typechecking fails!

8 / 42

Motivation

How can we make partiality in types explicit?

What impact will this have on existing code?

9 / 42

Defining Partial Types

How can we make partiality in types explicit?

Define a predicate on types: τ @ σ

τ @ σ holds ⇐⇒ τ σ is well-defined

Set @ a holds ⇐⇒ Ord a holds

Ratio @ a holds ⇐⇒ Integral a holds

UArray @ i holds ⇐⇒ Ix i holds

UArray i @ e holds ⇐⇒ Unboxed e holds

[] @ a holds ⇐⇒ ⊤ holds

10 / 42

Defining Partial Types

How can we make partiality in types explicit?

Define a predicate on types: τ @ σ

τ @ σ holds ⇐⇒ τ σ is well-defined

Set @ a holds ⇐⇒ Ord a holds

Ratio @ a holds ⇐⇒ Integral a holds

UArray @ i holds ⇐⇒ Ix i holds

UArray i @ e holds ⇐⇒ Unboxed e holds

[] @ a holds ⇐⇒ ⊤ holds

10 / 42

Defining Partial Types

How can we make partiality in types explicit?

Define a predicate on types: τ @ σ

τ @ σ holds ⇐⇒ τ σ is well-defined

Set @ a holds ⇐⇒ Ord a holds

Ratio @ a holds ⇐⇒ Integral a holds

UArray @ i holds ⇐⇒ Ix i holds

UArray i @ e holds ⇐⇒ Unboxed e holds

[] @ a holds ⇐⇒ ⊤ holds

10 / 42

Defining Partial Types: Motivation

New kinding rule rules out all nonsensical types

∆ ⊢ τ : κ → κ′ ∆ ⊢ σ : κ ∆ ⊢ τ @ σ
(tapp-new)

∆ ⊢ τ σ : κ′

11 / 42

Partial Types in Action

mapSet :: forall a b. (Ord a, Ord b)

⇒ (a → b) → Set a → Set b

With explicit partiality, Set @ a ⇐⇒ Ord a

mapSet :: forall a b. (Set @ a, Set @ b)

⇒ (a → b) → Set a → Set b

12 / 42

Partial Types in Action

mapSet :: forall a b. (Ord a, Ord b)

⇒ (a → b) → Set a → Set b

With explicit partiality, Set @ a ⇐⇒ Ord a

mapSet :: forall a b. (Set @ a, Set @ b)

⇒ (a → b) → Set a → Set b

12 / 42

Partial Types in Action

What about classes?

class Functor f where

fmap :: (f @ a, f @ b) ⇒ (a → b) → f a → f b

13 / 42

Partial Types in Action

What have we managed to do?

fmap :: (f @ a, f @ b) ⇒ (a → b) → f a → f b

mapSet :: (Set @ a, Set @ b) ⇒ (a → b) → Set a → Set b

[Drum roll]

instance Functor Set where

fmap = mapSet -- Typechecks!

14 / 42

Partial Types in Action

What have we managed to do?

fmap :: (f @ a, f @ b) ⇒ (a → b) → f a → f b

mapSet :: (Set @ a, Set @ b) ⇒ (a → b) → Set a → Set b

[Drum roll]

instance Functor Set where

fmap = mapSet -- Typechecks!

14 / 42

Partial Types in Action

What have we managed to do?

fmap :: (f @ a, f @ b) ⇒ (a → b) → f a → f b

mapSet :: (Set @ a, Set @ b) ⇒ (a → b) → Set a → Set b

[Drum roll]

instance Functor Set where

fmap = mapSet -- Typechecks!

14 / 42

Partial Types in Action

Also a Monad instance for Set

instance Monad Set where -- Typechecks

return :: (Set @ a) ⇒ a → Set a

return = . . .
(>>=) :: (Set @ a, Set @ b)

⇒ Set a → (a → Set b) → Set b

(>>=) = . . .

15 / 42

Defining Partial Types

Define a predicate on types: τ @ σ

τ @ σ holds ⇐⇒ τ σ is well defined

But how do we implement this in GHC?

16 / 42

Defining Partial Types

Define a predicate on types: τ @ σ
τ @ σ holds ⇐⇒ τ σ is well defined

Take 1: Use a Typeclass

class (@) (t :: k → k’) (u :: k)

instance [] @ σ

instance Ord σ ⇒ Set @ σ

Ord σ ⊢ Set @ σ

but

Set @ σ ̸⊢ Ord σ

Typeclasses do not allow bidirectional reasoning

17 / 42

Defining Partial Types

Define a predicate on types: τ @ σ
τ @ σ holds ⇐⇒ τ σ is well defined

Take 1: Use a Typeclass

class (@) (t :: k → k’) (u :: k)

instance [] @ σ

instance Ord σ ⇒ Set @ σ

Ord σ ⊢ Set @ σ

but

Set @ σ ̸⊢ Ord σ

Typeclasses do not allow bidirectional reasoning

17 / 42

Defining Partial Types

Define a predicate on types: τ @ σ
τ @ σ holds ⇐⇒ τ σ is well defined

Take 1: Use a Typeclass

class (@) (t :: k → k’) (u :: k)

instance [] @ σ

instance Ord σ ⇒ Set @ σ

Ord σ ⊢ Set @ σ

but

Set @ σ ̸⊢ Ord σ

Typeclasses do not allow bidirectional reasoning

17 / 42

Defining Partial Types

Define a predicate on types: τ @ σ
τ @ σ holds ⇐⇒ τ σ is well defined

Take 1: Use a Typeclass

class (@) (t :: k → k’) (u :: k)

instance [] @ σ

instance Ord σ ⇒ Set @ σ

Ord σ ⊢ Set @ σ

but

Set @ σ ̸⊢ Ord σ

Typeclasses do not allow bidirectional reasoning

17 / 42

Defining Partial Types

Define a predicate on types: τ @ σ
τ @ σ holds ⇐⇒ τ σ is well defined

Take 2: Use a type family

type family (@) (t :: k’ → k) (u :: k’) :: Constraint

type instance [] @ σ = ()

type instance Set @ σ = Ord σ

Set @ σ ⊢ Ord σ

also

Ord σ ⊢ Set @ σ

Exactly what we need ✓

18 / 42

Defining Partial Types

Define a predicate on types: τ @ σ
τ @ σ holds ⇐⇒ τ σ is well defined

Take 2: Use a type family

type family (@) (t :: k’ → k) (u :: k’) :: Constraint

type instance [] @ σ = ()

type instance Set @ σ = Ord σ

Set @ σ ⊢ Ord σ

also

Ord σ ⊢ Set @ σ

Exactly what we need ✓

18 / 42

Defining Partial Types

Define a predicate on types: τ @ σ
τ @ σ holds ⇐⇒ τ σ is well defined

Take 2: Use a type family

type family (@) (t :: k’ → k) (u :: k’) :: Constraint

type instance [] @ σ = ()

type instance Set @ σ = Ord σ

Set @ σ ⊢ Ord σ

also

Ord σ ⊢ Set @ σ

Exactly what we need ✓

18 / 42

Partial Types Empirical Evaluation

That’s all great but..

Where do all these @ constraints come from?

Are there any programs that are no longer typeable?

19 / 42

Defining Partial Types

Where do these @ constraints come from?

Elaboration

20 / 42

Defining Partial Types

Where do these @ constraints come from?

Elaboration

20 / 42

Defining Partial Types: Elaboration

Type signatures

(>>=) :: forall a b. m a → (a → m b) → m b

elaborates to

(>>=) :: forall a b. (m @ a, m @ b) ⇒ m a → (a → m b) → m b

21 / 42

Defining Partial Types: Elaboration

Datatypes

???

elaborates to

data Set a = . . .

type instance Set @ a = Ord a

22 / 42

Breaking News: Thetas now considered not stupid

{-# LANGUAGE DatatypeContext #-} to rescue

data Ord a ⇒ Set a = . . .

23 / 42

Defining Partial Types: Elaboration

Datatypes

data Ord a ⇒ Set a = . . .

elaborates to

data Set a = . . .

type instance Set @ a = Ord a

24 / 42

Partial Types in Action

Are there any programs that are no longer typeable?

25 / 42

Partial Types in Action

Are there any programs that are no longer typeable? Yes

data Ap f a = MkAp (f a)

-- Ap @ f ∼ () Ap f @ a ∼ ()

-- MkAp :: forall f a. f @ a ⇒ f a → Ap f a

instance Functor f ⇒ Functor (Ap f) where

fmap :: (Ap f @ a, Ap f @ b) ⇒ (a → b) → Ap f a → Ap f b

fmap g (MkAp k) = MkAp (fmap g k) -- typechecking fails!

Cannot prove f @ b due to the use of MkAp

26 / 42

Partial Types in Action

Need more type annotations

1. Make the data type be well defined only when the type arguments are well defined

data f @ a ⇒ Ap f a = MkAp (f a)

-- Ap @ f ∼ () Ap f @ a ∼ f @ a

-- MkAp :: forall f a. f @ a ⇒ f a → Ap f a

instance Functor f ⇒ Functor (Ap f) where

fmap g (MkAp k) = MkAp (fmap g k) -- Okay

-- fmap :: (Ap f @ a, Ap f @ b) ⇒ (a → b) → Ap f a → Ap f b

-- fmap :: (f @ a , f @ b) ⇒ (a → b) → f a → f b

27 / 42

Partial Types in Action

Need more type annotations

2. Assert that the type is well defined on all types in the instance declaration

data Ap f a = MkAp (f a)

-- Ap @ f ∼ () Ap f @ a ∼ ()

-- MkAp :: forall f a. f @ a ⇒ f a → Ap f a

instance (forall a. f @ a, Functor f) ⇒ Functor (Ap f) where

fmap g (MkAp k) = MkAp (fmap g k) -- Okay

28 / 42

Partial Types in Action

Need more type annotations

2. Assert that the type is well defined on all types in the instance declaration

data Ap f a = MkAp (f a)

-- Ap @ f ∼ () Ap f @ a ∼ ()

-- MkAp :: forall f a. f @ a ⇒ f a → Ap f a

instance (forall a. f @ a, Functor f) ⇒ Functor (Ap f) where

fmap g (MkAp k) = MkAp (fmap g k) -- Okay

28 / 42

Partial Types in Action

Need more annotations

2. Assert that the type is well defined on all types in the instance declaration

type Total f = forall a. f @ a

instance (Total f, Functor f) ⇒ Functor (Ap f) where

fmap g (MkAp k) = MkAp (fmap g k) -- Okay

29 / 42

Partial Types in Action

data Ap f a = MkAp (f a)

data f @ a ⇒ Ap f a = MkAp (f a)

Semantic difference

Should not automate too much

30 / 42

Partial Types in Action

Are there any programs that are no longer typeable? Yes, sometimes

Two ways to fix the problem

1. Make the data type be well defined only when the type arguments are well defined

2. Assert that the type is well defined for all types in the instance declaration

31 / 42

Partial Types Empirical Evaluation

How often is this sometimes?

Case study: Compile GHC and libraries (base, mtl, etc.)

Benchmark changes in types

No term changes

< 10% overall

Classes and Insts, Modified/Total Term Sigs, Modified/Total
compiler/GHC 133/1931 (6.9%) 218/16129 (1.3%)

libraries 495/5442 (9.7%) 412/17337 (2.8%)

32 / 42

Partial Types Empirical Evaluation

How often is this sometimes?

Case study: Compile GHC and libraries (base, mtl, etc.)

Benchmark changes in types

No term changes

< 10% overall

Classes and Insts, Modified/Total Term Sigs, Modified/Total
compiler/GHC 133/1931 (6.9%) 218/16129 (1.3%)

libraries 495/5442 (9.7%) 412/17337 (2.8%)

32 / 42

Partial Types Empirical Evaluation

How often is this sometimes?

Case study: Compile GHC and libraries (base, mtl, etc.)

Benchmark changes in types

No term changes

< 10% overall

Classes and Insts, Modified/Total Term Sigs, Modified/Total
compiler/GHC 133/1931 (6.9%) 218/16129 (1.3%)

libraries 495/5442 (9.7%) 412/17337 (2.8%)

32 / 42

Partial Types Empirical Evaluation

How often is this sometimes?

Case study: Compile GHC and libraries (base, mtl, etc.)

Benchmark changes in types

No term changes

< 10% overall

Classes and Insts, Modified/Total Term Sigs, Modified/Total
compiler/GHC 133/1931 (6.9%) 218/16129 (1.3%)

libraries 495/5442 (9.7%) 412/17337 (2.8%)

32 / 42

Partial Types Empirical Evaluation

Who are the biggest culprits in libraries?

Classes and Insts, Modified/Total
libraries 495/5442 (9.7%)

libraries/transformers 167/444 (37.6%)
libraries/base 78/1108 (7.0%)
libraries/mtl 69/80 (86.2%)

Top 3 account for > 60%

But why?

33 / 42

Partial Types Empirical Evaluation

The Applicative typeclass

class Functor f ⇒ Applicative f where

pure :: a → f a

(<∗>) ::

f (a → b) → f a → f b

(<∗>) = liftA2 id

liftA2 ::

(a → b → c) → f a → f b → f c

liftA2 f x = (<∗>) (fmap f x)

Use of

34 / 42

Partial Types Empirical Evaluation

The Applicative typeclass

class Functor f ⇒ Applicative f where

pure :: a → f a

(<∗>) ::

f (a → b) → f a → f b

(<∗>) = liftA2 id

liftA2 ::

(a → b → c) → f a → f b → f c

liftA2 f x = (<∗>) (fmap f x)

Use of

34 / 42

Partial Types Empirical Evaluation

The Applicative typeclass, now elaborated

class Functor f ⇒ Applicative f where

pure :: f @ a ⇒ a → f a

(<∗>) :: (f @ a → b, f @ a, f @ b)

⇒ f (a → b) → f a → f b

(<∗>) = liftA2 id

liftA2 :: (f @ a, f @ b, f @ c)

⇒ (a → b → c) → f a → f b → f c

liftA2 f x = (<∗>) (fmap f x) -- Typechecking fails

Use of fmap demands f @ (b → c)

35 / 42

Partial Types Empirical Evaluation

The Applicative typeclass, elaborated and modified

class (Total f, Functor f) ⇒ Applicative f where

pure :: f @ a ⇒ a → f a

(<∗>) :: (f @ a → b, f @ a, f @ b)

⇒ f (a → b) → f a → f b

(<∗>) = liftA2 id

liftA2 :: (f @ a, f @ b, f @ c)

⇒ (a → b → c) → f a → f b → f c

liftA2 f x = (<∗>) (fmap f x) -- Typechecks

But now instances of Monads, MonadPlus, etc. all need a Total constraint

36 / 42

Partial Types Empirical Evaluation

The Applicative typeclass, elaborated and modified

class (Total f, Functor f) ⇒ Applicative f where

pure :: f @ a ⇒ a → f a

(<∗>) :: (f @ a → b, f @ a, f @ b)

⇒ f (a → b) → f a → f b

(<∗>) = liftA2 id

liftA2 :: (f @ a, f @ b, f @ c)

⇒ (a → b → c) → f a → f b → f c

liftA2 f x = (<∗>) (fmap f x) -- Typechecks

But now instances of Monads, MonadPlus, etc. all need a Total constraint

36 / 42

Partial Types Empirical Evaluation

Who are the biggest culprits in libraries?

Module Classes and Insts, Modified/Total
libraries 495/5442 (9.7%)

libraries/transformers 167/444 (37.6%)
libraries/base 78/1108 (7.0%)
libraries/mtl 69/80 (86.2%)

But why? Applicative is to blame

37 / 42

Partial Types and Applicative

The Partial Applicative Problem

instance Applicative Set where

(<∗>) :: (Set @ (a → b), Set @ a, Set @ b)

⇒ Set (a → b) → Set a → Set b

(<∗>) = . . .

But Set @ (a → b) or Ord (a → b) can never be satisfied

38 / 42

Partial Types and Applicative

Attempt to solve the Partial Applicative Problem

Use Monoidal as Monad’s superclass

class Functor f ⇒ Monoidal f where

pure :: f @ a ⇒ a → f a

unit :: f @ () ⇒ f ()

(>∗<) :: (f @ a, f @ b, f @ (a, b))

⇒ f a → f b → f (a, b)

instance Monoidal Set where -- ✓
. . .

class Monoidal m ⇒ Monad m where -- ✓
. . .

39 / 42

Partial Types and Applicative

Attempt to solve the Partial Applicative Problem

Use Monoidal as Monad’s superclass

class Functor f ⇒ Monoidal f where

pure :: f @ a ⇒ a → f a

unit :: f @ () ⇒ f ()

(>∗<) :: (f @ a, f @ b, f @ (a, b))

⇒ f a → f b → f (a, b)

instance Monoidal Set where -- ✓
. . .

class Monoidal m ⇒ Monad m where -- ✓
. . .

39 / 42

Partial Types and Applicatives: Hot Take

Was the AMP a good idea?

Functor-Applicative-Monad

should have been

Functor-Monoidal-Monad

40 / 42

Whats more in the paper?

Partial

GADTs

Type Families: Open/Closed/Associated Types

Data Families

Newtypes

And more dirty details...

41 / 42

That’s all Folks

Summary:

Make partial types first class

Generate @ constraints via elaboration
Support Functor and Monad instances for partial datatypes

Empirical Study

Retrofit GHC and core libraries
Measure code impact (< 10% change overall)

Prototype implementation:

GHC + {#- LANGUAGE PartialTypeConstructors -#}

github.com/IaFP/ghc

42 / 42

github.com/IaFP/ghc

