Partial Type Constructors in Practice

Apoorv Ingle Alex Hubers J. Garrett Morris

The University of Iowa, USA

Kind checking rules out nonsensical types

(TAPP)
$$\frac{\Delta \vdash \tau : \kappa \to \kappa' \quad \Delta \vdash \sigma : \kappa}{\Delta \vdash \tau \sigma : \kappa'}$$

Kind checking rules out nonsensical types

[Int] is well defined

Int [] is nonsensical

Kind checking rules out nonsensical types

[Int] is well kinded

$$\frac{\Delta \vdash [\]:* \to * \quad \Delta \vdash \texttt{Int}:*}{\Delta \vdash [\texttt{Int}]:*}$$

Int [] is ill kinded

$$\frac{\Delta \vdash \texttt{Int} : \ast \quad \Delta \vdash [\texttt{]} : \ast \rightarrow \ast}{\Delta \vdash \texttt{Int} [\texttt{]} : ???}$$

Does kind checking rule out nonsensical types?

[Int] is well kinded and well defined Int [] is ill kinded and nonsensical Does kind checking rule out all nonsensical types?

Does kind checking rule out all nonsensical types? No :(

$$rac{\Delta \vdash \mathtt{Set} : * o * \quad \Delta \vdash \mathtt{Int} o \mathtt{Int} : *}{\Delta \vdash \mathtt{Set} (\mathtt{Int} o \mathtt{Int}) : *}$$

Elements of Set need to be ordered

 $\texttt{Int} \ \rightarrow \ \texttt{Int} \ \texttt{is not ordered in Haskell}$

There are more partial types

data Ratio $a = \dots$ -- a better satisfy Integral a data UArray i $e = \dots$ -- i better satisfy Ix i and e be Unboxed data StateT s m $a = \dots$ -- m better satisfy Monad m Problem: Current Haskell assumes all types are total Problem: Current Haskell assumes all types are total Consequences:

 Library writers need to explicitly write extra constraints singleton :: Ord a ⇒ a → Set a Problem:

Current Haskell assumes all types are total

Consequences:

- Library writers need to explicitly write extra constraints singleton :: Ord a \Rightarrow a \rightarrow Set a
- Partial datatypes cannot leverage typeclass abstractions Constrained Functor Problem

```
instance Functor Set where
   fmap :: (a \rightarrow b) \rightarrow Set a \rightarrow Set b
   -- mapSet :: (Ord a, Ord b) \Rightarrow (a \rightarrow b) \rightarrow Set a \rightarrow Set b
   fmap = mapSet -- Typechecking fails!
```

- How can we make partiality in types explicit?
- What impact will this have on existing code?

How can we make partiality in types explicit?

How can we make partiality in types explicit?

Define a predicate on types: $\tau @ \sigma$

$\tau @ \sigma \text{ holds } \iff \tau \sigma \text{ is well-defined}$

How can we make partiality in types explicit?

Define a predicate on types: $\tau @ \sigma$

$ au @ \sigma$ holds	\iff	$\tau\sigma$ is well-defined
Set $@$ a holds	\iff	Ord a holds
Ratio $@$ a holds	\iff	Integral a holds
UArray @ i holds	\iff	Ix i holds
UArray i @ e holds	\iff	Unboxed e holds
[] @ a holds	\iff	op holds

New kinding rule rules out all nonsensical types

$$(\text{TAPP-NEW}) \frac{\Delta \vdash \tau : \kappa \to \kappa' \quad \Delta \vdash \sigma : \kappa \quad \Delta \vdash \tau @ \sigma}{\Delta \vdash \tau \sigma : \kappa'}$$

 With explicit partiality, Set @ a \iff Ord a

mapSet :: forall a b. (Set
$$@$$
 a, Set $@$ b)
 \Rightarrow (a \rightarrow b) \rightarrow Set a \rightarrow Set b

What about classes?

class Functor f where

fmap :: (f @ a, f @ b) \Rightarrow (a \rightarrow b) \rightarrow f a \rightarrow f b

Partial Types in Action

What have we managed to do?

What have we managed to do?

[Drum roll]

What have we managed to do?

 $\begin{array}{rll} \text{fmap} & :: & (& f @ & a, & f @ & b) \Rightarrow (a \rightarrow b) \rightarrow f & a \rightarrow f & b \\ \text{mapSet} & :: & (\text{Set } @ & a, & \text{Set } @ & b) \Rightarrow (a \rightarrow b) \rightarrow & \text{Set } a \rightarrow & \text{Set } b \end{array}$

[Drum roll]

instance Functor Set where
 fmap = mapSet -- Typechecks!

Also a Monad instance for Set

```
instance Monad Set where -- Typechecks
return :: (Set @ a) \Rightarrow a \rightarrow Set a
return = ...
(>>=) :: (Set @ a, Set @ b)
\Rightarrow Set a \rightarrow (a \rightarrow Set b) \rightarrow Set b
(>>=) = ...
```

Define a predicate on types: $\tau @ \sigma$ $\tau @ \sigma$ holds $\iff \tau \sigma$ is well defined But how do we implement this in GHC?

Define a predicate on types: $\tau @ \sigma$ $\tau @ \sigma$ holds $\iff \tau \sigma$ is well defined

Take 1: Use a Typeclass

class (@) (t :: k \rightarrow k') (u :: k)

Define a predicate on types: $\tau @ \sigma$ $\tau @ \sigma$ holds $\iff \tau \sigma$ is well defined

Take 1: Use a Typeclass

```
class (@) (t :: k 
ightarrow k') (u :: k) instance [] @ \sigma
```

Define a predicate on types: $\tau @ \sigma$ $\tau @ \sigma$ holds $\iff \tau \sigma$ is well defined

Take 1: Use a Typeclass

```
class (@) (t :: k \rightarrow k') (u :: k)
```

```
instance [] @ \sigma
```

```
instance Ord \sigma \Rightarrow Set @ \sigma
```

Define a predicate on types: $\tau @ \sigma$ $\tau @ \sigma$ holds $\iff \tau \sigma$ is well defined Take 1: Use a Typeclass class (@) (t :: k \rightarrow k') (u :: k) instance [] @ σ instance Ord $\sigma \Rightarrow$ Set @ σ Ord $\sigma \vdash$ Set @ σ

but

Set $@ \sigma \not\vdash \texttt{Ord} \sigma$

Typeclasses do not allow bidirectional reasoning

Define a predicate on types: $\tau @ \sigma$ $\tau @ \sigma$ holds $\iff \tau \sigma$ is well defined

Take 2: Use a type family

type family (@) (t :: k' \rightarrow k) (u :: k') :: Constraint

Define a predicate on types: $\tau @ \sigma$ $\tau @ \sigma$ holds $\iff \tau \sigma$ is well defined

Take 2: Use a type family

type family (@) (t :: k' \rightarrow k) (u :: k') :: Constraint

type instance [] $@ \sigma =$ ()

Define a predicate on types: $\tau @ \sigma$ $\tau @ \sigma$ holds $\iff \tau \sigma$ is well defined Take 2: Use a type family type family (@) (t :: k' \rightarrow k) (u :: k') :: Constraint type instance [] $@ \sigma = ()$ type instance Set @ $\sigma =$ Ord σ Set $@ \sigma \vdash \text{Ord } \sigma$ also Ord $\sigma \vdash \text{Set} @ \sigma$

Exactly what we need \checkmark

That's all great but ..

- Where do all these @ constraints come from?
- Are there any programs that are no longer typeable?

Where do these @ constraints come from?

Where do these @ constraints come from?

Elaboration

Type signatures

 $(>\!\!>\!\!=) :: \text{forall a b.} \qquad \qquad \texttt{m a} \to (\texttt{a} \to \texttt{m b}) \to \texttt{m b}$

elaborates to

(>>=) :: forall a b. (m @ a, m @ b) \Rightarrow m a \rightarrow (a \rightarrow m b) \rightarrow m b

Datatypes

???

elaborates to

data Set $a = \dots$

type instance Set @ a = Ord a

{-# LANGUAGE DatatypeContext #-} to rescue

data Ord a \Rightarrow Set a = ...

Datatypes

data Ord a \Rightarrow Set a = ...

elaborates to

data Set $a = \dots$

type instance Set @ a = Ord a

Are there any programs that are no longer typeable?

Are there any programs that are no longer typeable? Yes

data Ap f a = MkAp (f a) -- Ap @ f \sim () Ap f @ a \sim () -- MkAp :: forall f a. f @ a \Rightarrow f a \rightarrow Ap f a

instance Functor f \Rightarrow Functor (Ap f) where fmap :: (Ap f @ a, Ap f @ b) \Rightarrow (a \rightarrow b) \rightarrow Ap f a \rightarrow Ap f b fmap g (MkAp k) = MkAp (fmap g k) -- typechecking fails!

Cannot prove f ⁽⁰⁾ b due to the use of MkAp

Need more type annotations

1. Make the data type be well defined only when the type arguments are well defined

data f @ a \Rightarrow Ap f a = MkAp (f a) -- Ap @ f \sim () Ap f @ a \sim f @ a -- MkAp :: forall f a. f @ a \Rightarrow f a \rightarrow Ap f a

instance Functor f \Rightarrow Functor (Ap f) where fmap g (MkAp k) = MkAp (fmap g k) -- Okay

-- fmap :: (Ap f @ a, Ap f @ b) \Rightarrow (a \rightarrow b) \rightarrow Ap f a \rightarrow Ap f b -- fmap :: (f @ a , f @ b) \Rightarrow (a \rightarrow b) \rightarrow f a \rightarrow f b

Need more type annotations

2. Assert that the type is well defined on all types in the instance declaration

data Ap f a = MkAp (f a) -- Ap @ f \sim () Ap f @ a \sim () -- MkAp :: forall f a. f @ a \Rightarrow f a \rightarrow Ap f a

Need more type annotations

2. Assert that the type is well defined on all types in the instance declaration

data Ap f a = MkAp (f a) -- Ap @ f \sim () Ap f @ a \sim () -- MkAp :: forall f a. f @ a \Rightarrow f a \rightarrow Ap f a

instance (forall a. f @ a, Functor f) \Rightarrow Functor (Ap f) where fmap g (MkAp k) = MkAp (fmap g k) -- Okay Need more annotations

2. Assert that the type is well defined on all types in the instance declaration

type Total f = forall a. f @ a

instance (Total f, Functor f) \Rightarrow Functor (Ap f) where fmap g (MkAp k) = MkAp (fmap g k) -- Okay data Ap f a = MkAp (f a)

data f @ a \Rightarrow Ap f a = MkAp (f a)

Semantic difference

Should not automate too much

Are there any programs that are no longer typeable? Yes, sometimes

Two ways to fix the problem

- 1. Make the data type be well defined only when the type arguments are well defined
- 2. Assert that the type is well defined for all types in the instance declaration

How often is this sometimes?

How often is this sometimes?

Case study: Compile GHC and libraries (base, mtl, etc.)

Benchmark changes in types

No term changes

How often is this sometimes?

Case study: Compile GHC and libraries (base, mtl, etc.)

Benchmark changes in types

No term changes

< 10% overall

How often is this sometimes?

Case study: Compile GHC and libraries (base, mtl, etc.)

Benchmark changes in types

No term changes

< 10% overall

	Classes and Insts, Modified/Total	Term Sigs, Modified/Total
compiler/GHC	133/1931 (6.9%)	218/16129 (1.3%)
libraries	495/5442 (9.7%)	412/17337 (2.8%)

Who are the biggest culprits in libraries?

	Classes and Insts, Modified/Total
libraries	495/5442 (9.7%)
libraries/transformers	167/444 (37.6%)
libraries/base	78/1108 (7.0%)
libraries/mtl	69/80 (86.2%)

Top 3 account for > 60%

But why?

The Applicative typeclass

The Applicative typeclass class Functor $f \Rightarrow$ Applicative f where :: a \rightarrow f a pure (<*>) :: f (a \rightarrow b) \rightarrow f a \rightarrow f b (<*>) = liftA2 idliftA2 :: $(a \rightarrow b \rightarrow c) \rightarrow f a \rightarrow f b \rightarrow f c$ liftA2 f x = (<*>) (fmap f x)

The Applicative typeclass, now elaborated class Functor $f \Rightarrow$ Applicative f where pure :: $f @ a \Rightarrow a \rightarrow f a$ (<*>) :: (f @ a \rightarrow b, f @ a, f @ b) \Rightarrow f (a \rightarrow b) \rightarrow f a \rightarrow f b (<*>) = liftA2 id liftA2 :: (f @ a, f @ b, f @ c) \Rightarrow (a \rightarrow b \rightarrow c) \rightarrow f a \rightarrow f b \rightarrow f c liftA2 f $x = (\langle * \rangle)$ (fmap f x) -- Typechecking fails

Use of fmap demands f @ (b \rightarrow c)

The Applicative typeclass, elaborated and modified

class (Total f, Functor f) \Rightarrow Applicative f where pure :: f @ a \Rightarrow a \rightarrow f a

$$\begin{array}{rll} (<\!\!*\!\!>) & :: (f @ a \rightarrow b, f @ a, f @ b) \\ & \Rightarrow f (a \rightarrow b) \rightarrow f a \rightarrow f b \\ (<\!\!*\!\!>) & = liftA2 \ id \end{array}$$

The Applicative typeclass, elaborated and modified

class (Total f, Functor f) \Rightarrow Applicative f where pure :: f @ a \Rightarrow a \rightarrow f a

$$\begin{array}{rll} (<\!\!*\!\!>) & :: (f @ a \rightarrow b, f @ a, f @ b) \\ & \Rightarrow f (a \rightarrow b) \rightarrow f a \rightarrow f b \\ (<\!\!*\!\!>) & = liftA2 \ id \end{array}$$

But now instances of Monads, MonadPlus, etc. all need a Total constraint

Who are the biggest culprits in libraries?

Module	Classes and Insts, Modified/Total
libraries	495/5442 (9.7%)
libraries/transformers	167/444 (37.6%)
libraries/base	78/1108 (7.0%)
libraries/mtl	69/80 (86.2%)

But why? Applicative is to blame

The Partial Applicative Problem

instance Applicative Set where (<*>) :: (Set @ (a \rightarrow b), Set @ a, Set @ b) \Rightarrow Set (a \rightarrow b) \rightarrow Set a \rightarrow Set b $(<*>) = \dots$

But Set @ (a \rightarrow b) or Ord (a \rightarrow b) can never be satisfied

Partial Types and Applicative

Attempt to solve the Partial Applicative Problem

Partial Types and Applicative

Attempt to solve the Partial Applicative Problem

Use Monoidal as Monad's superclass

class Functor f \Rightarrow Monoidal f where pure :: f @ a \Rightarrow a \rightarrow f a unit :: f @ () \Rightarrow f () (>*<) :: (f @ a, f @ b, f @ (a, b)) \Rightarrow f a \rightarrow f b \rightarrow f (a, b)

instance Monoidal Set where -- \checkmark

. . .

. . .

class Monoidal m \Rightarrow Monad m where -- \checkmark

Was the AMP a good idea? Functor-Applicative-Monad should have been Functor-Monoidal-Monad

Partial

- GADTs
- Type Families: Open/Closed/Associated Types
- Data Families
- Newtypes

And more dirty details...

That's all Folks

Summary:

- Make partial types first class
 - Generate @ constraints via elaboration
 - Support Functor and Monad instances for partial datatypes
- Empirical Study
 - Retrofit GHC and core libraries
 - Measure code impact (< 10% change overall)

Prototype implementation: